Re: Primality verification needed
While you folks are poking at Phil's latest, perhaps you could verify the others that he generated, already in the Photuris internet-draft: A 1024-bit strong prime (p), expressed in hex: 97f6 4261 cab5 05dd 2828 e13f 1d68 b6d3 dbd0 f313 047f 40e8 56da 58cb 13b8 a1bf 2b78 3a4c 6d59 d5f9 2afc 6cff 3d69 3f78 b23d 4f31 60a9 502e 3efa f7ab 5e1a d5a6 5e55 4313 828d a83b 9ff2 d941 dee9 5689 fada ea09 36ad df19 71fe 635b 20af 4703 6460 3c2d e059 f54b 650a d8fa 0cf7 0121 c747 99d7 5871 32be 9b99 9bb9 b787 e8ab The recommended generator (g) for this prime is 2. A 1024-bit strong prime (p), expressed in hex: a478 8e21 84b8 d68b fe02 690e 4dbe 485b 17a8 0bc5 f21d 680f 1a84 1313 9734 f7f2 b0db 4e25 3750 018a ad9e 86d4 9b60 04bb bcf0 51f5 2fcb 66d0 c5fc a63f bfe6 3417 3485 bbbf 7642 e9df 9c74 b85b 6855 e942 13b8 c2d8 9162 abef f434 2435 0e96 be41 edd4 2de9 9a69 6163 8c1d ac59 8bc9 0da0 69b5 0c41 4d8e b865 2adc ff4a 270d 567f The recommended generator (g) for this prime is 5. Bill.Simpson@um.cc.umich.edu Key fingerprint = 2E 07 23 03 C5 62 70 D3 59 B1 4F 5E 1D C2 C1 A2
participants (1)
-
William Allen Simpson