
Phantom: Exploiting Decoder-detectable Mispredictions

Johannes Wikner†, Daniël Trujillo†, and Kaveh Razavi
ETH Zürich

† Equal contribution joint first authors

ABSTRACT

Violating the Von Neumann sequential processing principle
at the microarchitectural level is commonplace to reach high
performing CPU hardware — violations are safe as long
as software executes correctly at the architectural interface.
Speculative execution attacks exploit these violations and
queue up secret-dependent memory accesses allowed by long
speculation windows due to the late detection of these vio-
lations in the pipeline. In this paper, we show that recent
AMD and Intel CPUs speculate very early in their pipeline,
even before they decode the current instruction. This mecha-
nism enables new sources of speculation to be triggered from
almost any instruction, enabling a new class of attacks that
we refer to as PHANTOM. Unlike Spectre, PHANTOM spec-
ulation windows are short since the violations are detected
early. Nonetheless, PHANTOM allows for transient fetch and
transient decode on all recent x86-based microarchitectures,
and transient execution on AMD Zen 1 and 2. We build a
number of exploits using these new PHANTOM primitives
and discuss why mitigating them is difficult in practice.

1. INTRODUCTION

Security research at the intersection of software and hard-
ware has surfaced a concerning amount of information
leaks [9,11,12,13,21,36,39,45,46,58,59,61,62,66,67,73,74].
Spectre in particular forces the misprediction of branching
instructions, leading to arbitrary information disclosure in
many scenarios of interest [9, 11, 21, 36, 39, 46, 62, 73, 74].
While it is commonly assumed that the CPU speculates only
after it decodes the instruction to be a branch, we show in
this paper that all recent AMD and Intel CPUs speculate at
much earlier stages of their pipeline. Our investigation into
this speculation before instruction decode uncovers a new
class of attacks that we refer to as PHANTOM speculation.
We show the practical importance of PHANTOM speculation
by building a number of exploits for the AMD Zen microar-
chitectures.

Speculation before instruction decode. In the first stage
of a pipelined CPU architecture, the Instruction Fetch unit
fetches blocks of instructions from the instruction cache. In-
struction prefetchers try to predict future instruction cache
lines and bring them into the cache before execution reaches
those cache lines [78]. These predictions are made by learn-
ing the control flow of the instructions over time, and are not
based on the instructions themselves. Depending on the con-

trol flow of the program, instructions that are prefetched may
never enter the pipeline. We show in this paper that modern
AMD and Intel CPUs do much more to improve performance:
they predict and fetch the next block of instructions from
the instruction cache into the pipeline immediately after the
current fetch, before branch sources are decoded, in line with
designs previously discussed in the microarchitecture com-
munity [8, 15].

The decision of whether the current instruction is a branch
is made by the CPU’s frontend before decoding the instruc-
tion by consulting the Branch Target Buffer (BTB). On top
of predicting whether the current instruction is a branch, the
BTB further provides the predicted branch target to the fron-
tend. The branch target effectively becomes the frontend’s
next instruction fetch location.

Backend-issued resteers and Spectre. While speculation
before decode improves performance, it may also result in
bad speculation. This bad speculation can lead to informa-
tion disclosure as shown by many variants of Spectre. The
bad speculation that are caused by these Spectre variants
is resolved in the CPU’s backend where µops are executed.
This is due to the fact that the instructions that cause spec-
ulation, such as indirect branches [9, 11, 21, 36, 48, 62] or
returns [39, 46, 73, 74], have dependencies that can only be
resolved at the execute stage. Upon detection of bad specu-
lation, the backend issues a resteer to the frontend, so that it
can restart instruction fetch from a corrected program counter.
The time between misprediction and backend-issued resteer
allows for speculative execution of several memory loads,
which Spectre exploits.

Frontend-issued resteers and PHANTOM. The backend
is not the only source of resteers. We find in this paper
that in many cases of interest, the CPU frontend also issues
resteers when the misprediction is detected by the decoder.
We systematically explore the cases under which an attacker
can force mispredictions that are resolved by the frontend.
Frontend-issued resteers caused by bad speculation is the
source of a new class of attacks that we call PHANTOM.
Unlike Spectre, PHANTOM speculation windows are short,
and it is unclear how far in the pipeline such speculations
proceed. We build observation channels that can identify
pipeline stages for various PHANTOM speculations on AMD
and Intel CPUs. Insights from these observation channels
provide attackers with exploitation primitives for transient
fetch and transient decode on all recent AMD CPUs, and
short transient execution on AMD Zen 1 and 2.

1



Exploitation with PHANTOM. Our analysis shows that
PHANTOM speculation enables fetch, decode and a short
execution window of the mispredicted target on AMD Zen
1 and 2, which is enough to trigger memory operations. On
AMD Zen 3 and 4, PHANTOM speculation enables fetch and
decode of the mispredicted target. We show the conditions
for these PHANTOM speculations happen in real-world sce-
narios by building three exploits. First, we show PHANTOM
speculation breaks KASLR of the kernel image on all AMD
microarchitectures. Building this exploit required us to re-
verse engineer cross-privilege BTB functions on AMD Zen
3 and 4 for the first time. Second, on AMD Zen 1 and 2, we
show that PHANTOM speculation can further break physmap
KASLR, signifying full KASLR derandomization. Lastly,
we show that PHANTOM speculation can leak arbitrary kernel
memory with MDS gadgets on AMD Zen 1 and 2, which are
not affected by MDS [13, 61, 67]. Our analysis shows that
existing mitigations cannot stop PHANTOM attacks.

Contributions. In summary our contributions are as follows.

• We systematically analyze sources of misprediction
before instruction decode on recent AMD and Intel
microarchitectures. We further analyze how far in the
pipeline target instructions proceed.

• We present PHANTOM, a new class of attacks based
on decoder-detectable misprediction. PHANTOM specu-
lation enables new primitives such transient fetch and
transient decode on all recent AMD microarchitectures,
and short transient execution on AMD Zen 1 and 2.

• We build three attacks based on PHANTOM specula-
tion, derandomizing KASLR of the kernel image and
physmap, as well as arbitrary kernel memory leak with
an MDS gadget. The attacks on AMD Zen 3 and 4
required us to reverse engineer the cross-privilege BTB
functions for the first time.

Disclosure efforts. We initially disclosed our findings to
AMD in June 2022. AMD issued CVE-2022-23825 and
released an advisory [5] in July 2022 that addresses both
our findings and another issue [74]. However, our analysis
shows that the published advisory only considers transient
execution, but not transient fetch and decode. This means
that existing mitigations are ineffective against our attacks,
which we subsequently reported to AMD in May 2023. In
response, AMD informed us that that they are not planning
on releasing a new CVE. We have reported the existence of
PHANTOM speculation to Intel in July 2023.

2. BACKGROUND

To understand the source of PHANTOM speculation and
how to potentially defend against it, in this section we give
an introduction to branch target prediction and how it inter-
acts with the CPU pipeline. We then discuss how Spectre
attacks use bad speculation to infer secrets, and the current
approaches for mitigating them.

BPU IF ID EX

BPU IF ID EX

Branch source:

Mispredicted target:

t0 t1 t2 
time

t3 t4 

Fig. 1: BPU mispredicts the next branch target already while the
branch source is in IF. How far the mispredicted target advances in
the pipeline depends on the branch source dependencies, including
its decoding stage. For example, at t2 the decoder may discover that
the branch source conflicts with the prediction at t1.

2.1 Branch Target Prediction

The Branch Prediction Unit (BPU) provides the CPU
pipeline with predictions of the upcoming control flow.
To provide accurate predictions, branch predictors record
control-flow history in registers and table-like buffers. These
data structures are read from and written back to as instruc-
tions advance through the pipeline. We discuss some of these
data structures next.

BHB and BTB. Branch History Buffers (BHBs) contain a
footprint of recently encountered control-flow edges, and are
used to index Branch Target Buffers (BTBs) [9, 36]. BTB
entries contain branch targets predictions, which may serve
indirect [36] or direct branches [71], as well as returns [74].
BTB entries can serve multiple targets depending on the size
of each entry, which may depend on the distance between the
branch source and target [78]. The BPU selects the target by
matching a tag of the current BHB with the tag from one of
the targets [9].

RSB. Return Stack Buffer (RSB), sometimes referred to as
Return Address Stack (RAS), is another data structure that the
CPU uses for predicting the target of return instructions [39,
46]. The RSB contains the N most recently encountered call
sites so that return speculation can proceed without memory
look-ups from the volatile stack pointer (N is usually 16 or
32).

2.2 Pipelining

Without pipelining, the slowest instruction determines the
length of a CPU’s clock cycle. With a long clock cycle, most
components of the CPU remain underutilized. To improve
utilization and increase instruction throughput, pipelining
enables simultaneous processing of instructions by splitting
their execution into stages. Pipeline stages include Instruc-
tion Fetch (IF), Instruction Decode (ID), and Out-of-Order
Execute (EX), after which instructions retire and effects are
committed to the architectural, visible state. While improv-
ing utilization, pipelining introduces concurrency issues. For
example, if the location of the next IF depends on result of
the currently executing instructions, awaiting their retirement
would stall the pipeline. Therefore, the BPU provides IF a
prediction of the next location. In case of a misprediction, an
incorrect control flow will consequently be processed until a
corrected fetch location is provided through a resteer signal.
The time range between misprediction and resteer is known
as the speculation window and can be several hundred clock

2



Frontend
Insn. Byte Queue

0x8b 0x37 0x48 0x8b 0x36 0x0f 0xae 0xe8
0x48 0xc7 0xc7 0xff 0x00 0x00 0x00 0x90

...

0xff 0x31 0xed 0x89 0xe8 0x48 0x83 0xc4
0x08 0x5b 0x41 0x5e 0x41 0x5f 0x5d 0xc3

ID IDIDID

DecoderInstruction Fetch
BPU

dispatch
for EX

STORE, ALU, NOP, NOP

μop cache hit. dispatch μops onto queue

μop cache I-cache

dipatch
for ID

Out-of-
Order

Execution
Engine

Frontend-issued resteer

μop cache
miss μop queue

ALU, LOAD, LOAD, LOAD

STORE, ALU, NOP, NOP

Fig. 2: The different pipeline stages are decoupled, asynchronous modules that consume input queues and dispatch onto output queues. This
example shows a decoupled Instruction Fetch unit that dispatches raw instruction bytes onto an Instruction Byte Queue (IBQ), which are
decoded and dispatched onto a µop-queue. The Instruction Fetch unit continues to fetch instruction independently and push onto the IBQ.

cycles wide.
Figure 1 shows an example of a mispredicted control flow.

It is important to consider that the control flow of the mispre-
dicted branch target may start advancing through the pipeline
while its branch source is still at an early stage — even before
the branch source has reached the ID stage. Figure 2 illus-
trates how this can happen in finer detail. The IF and ID units
are implemented as decoupled modules, communicating via
the Instruction Byte Queue (IBQ). Blocks of raw instruction
bytes are dispatched by IF onto the IBQ to be decoded by ID.
These instructions bytes are then decoded into µops and dis-
patched onto a µop-queue. Another pipeline unit of the CPU
backend can then process these µops for resource allocation
and scheduling in the Out-of-Order execution engine. We
imagine that the majority of the CPU pipeline components
follow this asynchronous, event-driven behavior.

A problem with this architecture is the limited transac-
tional support. Once work has been dispatched, it is difficult
to keep track of the stages it reaches and what state needs to
be rolled back on a resteer. In Figure 2, the BPU provides a
mispredicted Program Counter (PC), from which instruction
bytes will be fetched. At decode, the next PC can already be
finalized, unless a branch source that is execute-dependent
was decoded (e.g., conditional, indirect, or return branch).
The decoder can therefore provide IF with this feedback,
which could disagree with BPU-provided prediction. How-
ever, for the execute-dependent branch sources, the next PC
can only be finalized during the execute stage. These execute-
dependent cases are exploited in Spectre attacks.

2.3 Spectre

Spectre [36] is a subclass of transient execution attacks that
abuses branch mispredictions. While the multitude of Spectre
variants is ever-increasing, their common goal is to make the
mispredicted control flow operate on architecturally inacces-
sible information, such that it can be transmitted (i.e., leaked)
via a covert channel, commonly the CPU caches. We refer to
the code snippets responsible for the transmission of informa-
tion as the disclosure gadgets. By forcing a misprediction of
an execute-dependent branch source, the attacker can hijack
the speculative control flow to execute a disclosure gadget
that loads secrets from memory and exfiltrates them using a
covert channel.

Conventional Spectre attacks rely on hijacking execute-
dependent branch sources that have speculation windows
that are wide enough to queue up several secret-dependent
memory loads. Our work explores a new Spectre class that
considers speculation windows that can be resteered before
the mispredicted instruction reaches the execute stage. The
exploits we present work thanks to speculation before instruc-
tion decode, where not only the branch target but also the
branch source can be mispredicted.

2.4 Mitigating Spectre

Modern systems use software and hardware-based defenses
to block Spectre leaks, preventing transient access to se-
crets [1,63,75,76], patching the branch sources susceptible to
misprediction [4, 5, 31, 32, 65], and restricting the use of pre-
dictions [29, 30]. Early branch target prediction can impact
the latter two, which we will briefly discuss.

Patching the source of mispredicted control flow. The
lfence x86 instruction limits the mispredicted control flow by
stalling execution until pending loads retire. Placing lfence
where bad speculation may occur is often a recommended
mitigation as it minimizes the speculation window [32]. Ret-
polines [4, 65] and jmp2ret [5] rewrite potential sources of
attacker-controllable misprediction to prevent speculation
altogether.

Restricted use of predictions. RSB stuffing [46], post-
barrier RSB stuffing [64], call-depth tracking [20], and un-
train ret [5] are software defenses that overwrite bad pre-
dictions with dummy targets. Hardware solutions strive to
restrict branch targets instead of removing them. Indirect
Branch Restricted Speculation (IBRS) [29] variants (Au-
toIBRS, eIBRS, Legacy IBRS) restrict branch predictions
based on the privilege mode. Moreover, Single Thread Indi-
rect Branch Predictors (STIBP) [30] restrict sibling threads’
branch predictors from influencing each other.

The two types defenses have practical challenges. When
patching the branch source, knowing which branch sources
are vulnerable is not trivial in face of branch target prediction
before instruction decode, as we show in this paper. Further-
more, for defenses that advertise restricted speculation, it is
unclear whether they consider all pipeline stages to which
bad speculation can advance.

3



3. THREAT MODEL

We consider a realistic threat model with an attacker that
can execute unprivileged code on top of a recent Linux kernel.
We assume a modern CPU that supports speculative and out-
of-order execution. As we show in this paper, such CPUs
may employ branch prediction before instruction decode.
We further assume a default Ubuntu configuration including
all state-of-the-art Spectre defenses, both in software and
hardware. These include AutoIBRS [55], retpolines [65] and
untrain ret [5]. The goal of the attacker is to infer secrets
that are otherwise only available to privileged software by
exploiting decoder-detectable mispredictions.

4. OVERVIEW

Previous research on the topic of branch target prediction
exploitation almost exclusively focuses on cases where the
training and victim branch sources have the same type of in-
struction, specifically indirect branches [9, 18, 36, 48]. Asym-
metric combinations, where the training and victim branch
sources are of different instruction types, are commonly not
considered exploitable: instruction type mismatches can be
discovered already at decode. Consequentially, mispredic-
tions are detectable and can be resteered by the decoder before
reaching execute. However, recent work has shown that the
asymmetric case can also lead to long exploitable specula-
tion windows [74]. As discussed in § 2.4, these cases can
potentially compromise existing mitigations. Hence, the first
question we ask in this paper is which asymmetric cases in
modern CPUs can potentially lead to exploitable scenarios:

Research Question RQ1.

Which asymmetric combinations of branch types can
trigger misprediction?

We hypothesize that the asymmetric combinations of
branch types will likely lead to short mispredictions that the
CPU can detect during decode due to mismatching instruc-
tion types. Consequently, our analysis could benefit from
observation channels that allow us to infer how far in the
pipeline a mispredicted control flow advances. For example,
if we observe transient memory operations from the mispre-
dicted target, we can infer that the mispredicted control flow
reached Execute (EX) and advanced through the preceding
stages, namely IF and ID. For when we cannot observe EX,
we build the tools to observe transient fetch and transient
decode of the (mispredicted) branch target. We then use
these observation channels to detect branch target speculation
for asymmetric combinations of training and victim branch
sources in Section 5. Because the CPU frontend predicts a
branch source instruction that may not match reality, or not
even exist, we refer to these cases as PHANTOM speculation.

The established methods to observe branch misprediction
rely on transient execution effects (e.g., data cache and port
contention). However, because certain types of mispredic-
tions may be invisible on certain systems, it is difficult to
tell whether it is because the microarchitecture exhibits a
different prediction scheme or because the resteer was issued
before the mispredicted branch target could reach the EX

 Fetch DecodeBranch
Predictors

OoO 
Execute

Retire

Misprediction 1 3

I-Cache μop-Cache D-Cache

2

BTB RSB PHT

Fig. 3: We can discover a misprediction at any of the stages pre-
ceding retire. 1 We can observe fetch by querying the I-Cache, 2
decode by querying the µop-Cache, and 3 using a load instruction
in the mispredicted path, we can observe execution by querying the
D-Cache.

stage and emit a signal. Being able to observe speculation
windows without relying on EX, our second question is:

Research Question RQ2.

What new exploitation primitives can we build using
PHANTOM speculation?

In Section 6, we investigate what exploitation primitives
we can build using PHANTOM speculation, even when predic-
tions do not advance to the execute stage, that is execution-
free speculation. Having built practical exploitation primi-
tives, we investigate the following question:

Research Question RQ3.

What information can we leak with these exploitation
primitives?

Short speculation windows are often considered harm-
less [4, 5], but this is unfortunately not always true [48]. In
the same spirit, in Section 7 we build efficient end-to-end
KASLR derandomization attacks on the latest generations of
AMD CPUs using our exploitation primitives, despite miti-
gations that should block speculation. To do this, we reverse
engineer BTB indexing schemes of the Zen 3 and Zen 4
microarchitectures. Finally, we demonstrate that PHANTOM
speculation can be nested inside a conventional Spectre attack
to increase its known attack surface. This nesting allows us to
repurpose MDS-gadgets [34], known to be exploitable only
on Intel CPUs, to also be exploitable on AMD Zen 1 and
Zen 2 CPUs.

5. PHANTOM SPECULATION

In this section, we study methods for observing branch
mispredictions, even if the branch target did not execute. We
then use these methods to study some unconventional sources
of branch mispredictions that we also discuss.

5.1 Observation Channels

Figure 3 provides an overview of the pipeline stages that
we consider and their respective observation channels. Al-
though performance counters can keep count of the number
of mispredicted branches, they do not indicate how far mis-
predictions advance in the pipeline. Therefore, relying on
performance counters that measure branch mispredictions is
insufficient for this purpose.

4



A B

C

training
insn.

victim
insn.

barrier
probe(C)

signal EX

BTB

h(A) h(B)

1 2
BTB

CC

C signal

Fig. 4: In 1 , A creates a BTB entry to C, so that in 2 , the victim
instruction of B may reuse that BTB entry. The instructions in
C emit a transient execution signal. By fetching and decoding C,
transient fetch and transient decode signals are already emitted.

A Cjmp C

B 5x nop time(C') C'

1

2

jmp* CA

B nop;nop

jmp… pfcjmp

…jmp jmp1

2

jmp…jmp = fill μop cache set = barrier (mfence)

pfc = read perf. counter

A) IF: jmp + nops  B) ID jmp* + nops 

3 B() pfc

= victim insn. = training insn.

= misprediction

Fig. 5: A) Training non branch using (direct) jmp, measuring IF:
C′ is at an address at the same relative offset from B as C from A.
B) Training non branch using (indirect) jmp*, measuring ID: In 3 ,
the jmp-series will evict the jmp-series in C, resulting in µop-cache
misses when executing B.

The generic procedure is as follows. We have two snippets
of code A and B, where A ends with a training branch to
C. In the example shown in Figure 4, C emits a signal to
indicate transient execution, but before that, it will also signal
transient fetch and transient decode. We want to observe that
running B after A causes a misprediction to C that emits one
or more of these signals. Hence, A is the training source
and B is the victim source. To observe misprediction to
C, after 1 , we moreover prime the microarchitectural state
that we use as observation channel, for example flushing C
from the instruction cache (I-Cache). In 2 , after the victim
instruction, a barrier instruction, such as lfence, ensures that
older operations have completed when we probe for a signal.

Previous work discusses how A and be B should be laid
out in memory and executed to trigger BTB index aliasing
(i.e., where h(A) = h(B)), resulting in branch target mis-
prediction [9, 36, 74]. However, such BTB index aliasing has
never previously been shown between user- and kernel-mode
branches for newer microarchitectures such as AMD Zen 3
and Zen 4. To build a practical user-to-kernel exploit, we
need BTB aliasing across privilege modes. Although user
space BTB aliasing is sufficient for the purposes of building
our observational channels, we will discuss our reverse engi-
neering efforts to enable cross-privilege mode BTB aliasing
on newer AMD microarchitectures in Section 6. We now
discuss the construction of our observation channels.

Instruction Fetch (IF). Observing IF of a particular branch
target can be done by observing the I-cache state using a tim-
ing side channel. Hence, our method to observe IF involves
timing the execution time of C as shown in Figure 5 A. After
1 , we flush C from I-cache, and in 2 , we probe C by timing
access of an instruction that resides in it.

Unfortunately, discerning IF from BPU-assisted I-cache

prefetching [78] (e.g., due to spatial locality) is not possible
using this method. I-cache prefetching ensures that instruc-
tion bytes are available before IF. To get a stronger indication
that the prefetched instructions enter the pipeline, we con-
struct an observation channel that lets us detect ID.

Instruction Decode (ID). Instructions decoded into µops
are cached in the µop-cache. To detect decoded instruc-
tions, we therefore build an observation channel of the µop-
cache using performance counters based on methods pro-
posed in previous work [60]. We sample the performance
counters de_dis_uops_from_decoder.opcache_dispatched on
Zen 2, op_cache_hit_miss.op_cache_hit on Zen 3 and 4 and
idq.dsb_cycles on Intel. By observing these events we find
that these caches always have 64 8-way sets, selected by the
lower 12 bits of the instruction’s virtual address. Following
the procedure illustrated in Figure 5 B, after 1 , we have
primed a particular µop-cache set by executing a jmp-series
of 7 direct forward branches separated by 4096 bytes. In 2 ,
we have allocated B so that it collides with the BTB entry
created for A to C. In 3 , we select a jmp-series that maps to
a µop-cache set that matches the set that C maps to. When
we then execute B in 3 , if a misprediction to C happened, it
results in eviction of one or more ways of the set, which is
observable using performance counters. We can sample the
counter before and after executing B, as the diagram shows.
Alternatively, we can observe µop-cache misses after B by
executing the purple-filled jmp-series again, sampling the
counter before and after it. Measuring, µop-cache misses
is less reliable on our Intel parts than on AMD. To accom-
plish reliable results, we use complementary negative testing
using a training branch that does not alias with the victim
branch. Only when we measure significantly more µop-cache
misses compared to the negative test do we conclude that the
mispredicted target advanced to ID.

Execute (EX). Previous work has presented several methods
to observe transient execution, through caches [36] and port
contention [3,11]. While observing execution port contention
is possible, the signal is less reliable than observing memory
access. Typically, Spectre gadgets leak memory through tran-
siently executing two memory accesses, where the second
access depends on the result of the first. Hence, the mis-
predicted control flow not only reaches EX, but remains in
this stage over several clock cycles, allowing a speculation
window that is wide enough to execute a second load. With
shorter speculation windows, resteer typically happens before
any memory operation completes. However, dispatching a
single memory operation consumes only a few clock cycles,
and there is no mechanism to abort a dispatched memory
request since merely fetching a cache line is considered harm-
less. We can hence rely on a data cache side channel to detect
if a misprediction reaches the EX stage by using a memory
access in the mispredicted path.

5.2 Triggering mispredictions

With the methods to observe short speculation windows,
we want to explore the possible combinations of training
and victim instructions. We consider the following instruc-
tions: indirect branch (jmp*), direct branch (jmp), conditional

5



0x000
0x100

0x200
0x300

0x400
0x500

0x600
0x700

0x800
0x900

0xa0
0
0xb00

0xc0
0
0xd00

0xe0
0
0xf0

0

page offset of C

0

20

40
op

 c
ac

he
 h

its

zen 2
zen 4

Fig. 6: Detecting speculative decode. Mispredictions caused by
training non branch using jmp* is observable in the µop-cache.
Only when we place C at the page offset that matches the jmp-series
in B (here 0xac0), we see µop-cache misses.

branch (jcc), return (ret), and nop-sled (non branch). The
asymmetric combinations of these comprise 22 possible vari-
ants to evaluate on each microarchitecture. We consider
training jmp and jcc branches with different displacement
than the victim jmp or jcc as asymmetric as well. Some of
these combinations are new, and some have been explored in
previous work which we discuss next.

Training using non branch instructs the branch predictor
that the victim instruction is not a branch, and results in
the CPU executing the next instruction in sequence, even if
the current instruction is actually a branch. This has been
reported as Straight-Line-Speculation on some AMD microar-
chitectures [7, 72].

Training using jmp has, to the best of our knowledge, only
been explored in previous work on Intel processors [78]. Con-
current work has studied jmp also on AMD processors [48].
Since the speculation may happen pre-decode, even though
the PC-relative displacement is available as part of the branch
instruction, the target is served from the BTB. Unlike indirect
branch targets, the branch predictor serves direct branch tar-
gets as PC-relative. This means that for this combination, the
signal does not become observable at C (based on Figure 5 A).
Instead we create a copy of C to C′, which we allocate to an
address that has the same relative distance from the victim
instruction as C has from the training instruction.

Training using jmp* has been explored in the original Spec-
tre work [36]. In this paper, we are interested in the jmp*
instruction’s impact on the other victim instructions (i.e., jmp,
jcc, ret, and non branch).

Training using ret instructs the branch predictor that the
victim instruction is a return, and the branch predictor will
therefore predict a return from B when we execute it. The
return target will not be to C, but to the most recent call site.

An important observation we made while designing these
experiments is that the training instruction always determines
the prediction semantics of the victim instruction. This could
be because the victim instruction may not have been decoded
when providing the prediction. In the next section, we will
investigate how far in the pipeline these combinations reach
and what exploitation primitives they enable.

6. EXPLOITATION PRIMITIVES

Table 1 shows the results of our experiments. We draw a
number of interesting observations from these results. First,

Victim instruction
jmp* jmp jcc ret non branch

Tr
ai

ni
ng

jmp* a
b

jmp

jcc

ret —

non branch c —

: IF : ID : EX : AMD Zen 1 : Zen 2 : Zen 3 : Zen 4

: Intel 9th gen. : 11th gen. : 12th gen. (P core) : 13th gen. (P core)
a Spectre-V2 [36] b Retbleed [74]. c Spectre-SLS [7, 72].

Tbl. 1: Various combination of training and victim instructions and
how far they reach in the pipeline. The asymmetric combinations
here, we refer to as PHANTOM speculation.

for all tested combinations, fetch and decode of the predicted
target happens. This happens even in the absence of an ar-
chitectural branch at that location (e.g., when the victim
instructions are nops, used for the non branch case). We can
thus conclude that the frontend fetches branch targets before
it has even determined whether a branch exists. This leads to
our first observation:

Observation O1.

On all tested CPUs, speculative branch targets are
fetched before the branch source is decoded.

Moreover, our results show that instructions at speculative
branch targets are decoded as well, even in the absence of any
branch source. As an example, Figure 6 shows the results of
the ID observation channel, when a non branch is confused
with a jmp*. Thus, our second observation is:

Observation O2.

On all tested CPUs, the speculative branch target
fetches we are usually not only prefetched, but they
enter the CPU pipeline.

We note that our results for some of our Intel parts do not
indicate ID, and sometimes not even IF, in certain scenarios
where the victim instruction is jmp*. While this suggests that
indirect branches are not subject to PHANTOM speculations,
we cannot reject the hypothesis that this victim branch type
has unknown effects on the accuracy of our measurements.

On AMD Zen 1 and Zen 2, instructions at the target even
reach the execute stage. On these microarchitectures, we mea-
sure a D-cache hit on the address loaded from memory by the
instructions at the speculative target. Our third observation
therefore is:

Observation O3.

On AMD Zen 1 and Zen 2, decoder-detectable specula-
tions yield windows long enough to execute code.

We occasionally observe transient execute after a taken
conditional branch (jcc). This occurs when training it as
non branch. This is likely due to the conditional branch
sometimes being predicted non-taken, therefore unrelated to
the training. All processor frontends will fetch and decode

6



instructions following the victim branch in the current fetch
block (typically 32 B) of instructions.

PHANTOM on Intel. Table 1 further shows the results of our
experiments on a number of recent Intel processors. Most
scenarios allow for transient fetch and decode. While these in-
sights show similarity in designs from different vendors, Intel
processors have eIBRS protection against cross-privilege at-
tacks since the 9th generation. Moreover, the Intel processors
we tested do not re-use a user-injected prediction in kernel
mode, even while the mitigation is switched off. This sug-
gests that these processors may address the BTB differently
depending privilege mode, complicating exploitation. We
therefore limit our focus to the AMD parts for exploitation.

6.1 Attacker primitives

Our results reveal two channels that can be used for ex-
ploitation. First, we can trigger speculation on arbitrary in-
structions that results in fetching and decoding the target.
Second, on certain AMD microarchitectures, we can trig-
ger PHANTOM speculations that fit a memory load, even on
non-branch instruction.

We identify these channels to give rise to three adversarial
exploitation primitives. This section describes these primi-
tives in detail. In Section 7, we discuss how we build exploits
using these primitives.

P1: Detecting mapped executable memory. An instruc-
tion fetch only populates the instruction cache if the target
of the fetch was executable and backed by physical mem-
ory. Combining this insight with PHANTOM, we can detect
whether a virtual address T is mapped and executable. The
adversary would first 1 train the BTB with branches to T ,
2 execute the victim and 3 infer whether T was fetched.
For the last step, the adversary can use Prime+Probe [52] on
the instruction cache.

P2: Detecting mapped non-executable memory. If our tar-
get T is mapped but not executable, the fetch fails and would
leave the state of the instruction cache unaffected. Using
PHANTOM on Zen 1 and Zen 2, however, an adversary can
trigger a data load of T . To detect mapped non-executable
memory, the victim’s address space needs to contain a disclo-
sure gadget G that loads T from memory. Then, they would
1 train the BTB with branches to G, 2 execute the victim

with T in a register and 3 infer whether T was loaded from
memory. To infer the data load, Prime+Probe can be used on
the data cache. This primitive works on AMD Zen 1 and Zen
2 only.

P3: Leaking register values. Lastly, instead of detecting
mapped memory, an adversary can use the short speculation
window to leak the victim’s register values on AMD Zen 1
and Zen 2. G filters out a single byte from the register and
arranges it to reside in bits [13:6] (i.e., cache-line aligned),
which it uses as offset into a mapped area in the victim’s
address space, and issues a load of the resulting address. An
adversary would 1 train the BTB with a branch to G, 2
execute the victim and 3 infer which address was loaded in
the data cache using Prime+Probe.

Alternatively, if an adversary shares memory with the vic-

tim, they can use Flush+Reload [77] instead. G needs to shift
the value to become a 64-byte aligned offset, which can be
as big as the memory area which now must be shared with
the adversary (e.g. physmap [35]). Thus, an adversary would
1 train the BTB with a branch to G, 2 execute the victim

so that victim register-dependent memory ends up in the data
cache, and 3 infer which address was loaded in 2 using
Flush+Reload.

6.2 Collision with kernel addresses

Wikner and Razavi showed that triggering a misprediction
on a kernel address can be achieved from user space by
branching to a kernel address and catching the resulting page
fault [74]. In order to collide with the desired kernel address,
they reverse engineer BTB indexing functions. However, they
did not discover cross-privilege functions on AMD Zen 3.
Furthermore, more the recent AMD Zen 4 microarchitecture
has not been studied on this topic in previous work. To evalu-
ate our primitives and build exploits using them, we need to
reverse engineer the cross-privilege BTB indexing functions
on these newer microarchitectures.

We start on Zen 3 by allocating a kernel address K, using
a kernel module which contains nops followed by a return in-
struction. By changing the Page Table Entry (PTE) attributes
of address K, we make it accessible to user space.

Brute forcing. We first attempt to create collisions with K by
brute forcing a pattern such that, when applied to the kernel
address K, it yields a user space address that collides with
K, as done in [74]. Using performance counters and timing
results, we determine whether a collision was successful,
However, this approach does not yield any results between
user- and kernel addresses when flipping up to 6 bits. A
possible reason of failing to find collisions could be that bit
47 is involved in multiple functions, requiring us to flip more
bits. Since brute forcing all combinations with more than 6
bits takes an unreasonable amount of time, we consider an
alternative approach.

SMT solver. Instead, we will generate random addresses to
find collisions between user- and kernel addresses, and then
observe patterns in the addresses that collide. For this, we use
a Z3 SMT solver, as done in previous work [43]. For each
kernel address K, we collect lists LK of user space addresses
that collide with the kernel address. To shrink the search
space, we do not randomize the lower twelve bits of our
user space addresses. Instead, we set them equal to K0−11.
We wish to find functions of address bits, such that they
all yield the same value for K and all addresses in LK . For
this, we attempt to find coefficients for the equation system
(x0×A0)⊕ (x1×A1)⊕ ...⊕ (x46×A46)⊕ (1×A47) = y such
that it yields the same value y for all addresses that collide. At
the same time, we impose x0 +x1 + ...+x46 +x47 ≤ n, where
n is the maximum number of coefficients set to 1, which we
gradually increase. This is to prevent solutions that combine
different solutions to obtain the same output y.

Results. Our results are shown in Figure 7 and were found
for n = 4. Specifically, we find that whenever b13 is toggled
in the random-generated user space address with respect to
K, b17 is toggled as well. Likewise, whenever b12 is toggled,

7



f0 = b47⊕b35⊕b23 f1 = b47⊕b36⊕b24⊕b12
f2 = b47⊕b37⊕b25⊕b13 f3 = b47⊕b38⊕b26⊕b14
f4 = b47⊕b39⊕b26⊕b13 f5 = b47⊕b39⊕b27⊕b15
f6 = b47⊕b40⊕b28⊕b16 f7 = b47⊕b41⊕b29⊕b17
f8 = b47⊕b42⊕b30⊕b18 f9 = b47⊕b43⊕b31⊕b19
f10 = b47⊕b44⊕b32⊕b20 f11 = b47⊕b45⊕b33⊕b21

Fig. 7: Functions for creating cross-privilege collisions in the BTB
found on Zen 3. Least significant 12 bits not considered.

b16 is flipped as well, and vice versa. In essence, that means
that these bits are used in multiple, partially overlapping
functions. Therefore, we erroneously obtained functions
almost identical to the ones presented.

Comparing our results with those in [74], we see that all
functions additionally include bit 47. However, we did not
find some of the functions, potentially because they do not
involve bit 47. We also find some functions that were previ-
ously not discovered.

Overlapping functions. While trying to create collisions
with kernel addresses by flipping multiple bits, we discov-
ered that using other lower bits shown in Figure 7 does
not yield colliding addresses. We suspect that this is due
to overlapping functions, just as b12, b13, b16 and b17 are
used in multiple functions. These functions may not in-
volve bit 47, or use address bits we did not consider. One
reason for overlapping functions could be that some func-
tions are used for tag generation, while others are used for
set selection. Therefore, to create collisions, we use the
higher bits (i.e., the first three bits of each function). As
an example, for a kernel address K, we can obtain a user-
colliding address by computing K⊕ 0xffffbff800000000
or K⊕0xffff8003ff800000. We confirm both of these pat-
terns to work on AMD Zen 4 as well.

6.3 SuppressBPOnNonBr and AutoIBRS

In response to our report, AMD disclosed a configura-
tion of Zen 2 CPUs that should prevent speculation from
non-branch instructions. By setting bit in MSR 0xC00110E3
named SuppressBPOnNonBr, PHANTOM speculations should
be prevented. In addition, Zen 4 CPUs support AutoIBRS,
which restrict speculation to be influenced across privilege
levels. In this section, we discuss the implication of setting
the SuppressBPOnNonBr bit and enabling AutoIBRS on our
results.

SuppressBPOnNonBr. We first measure the overhead of
setting this bit using UnixBench1. We run each benchmark 5
times and compute the geometric mean across all tests. Our
UnixBench results indicate an overhead of 0.69% (single-
core) and 0.42% (multi-core).

To understand the impact of setting this bit on our results,
we repeat the experiments as described in Section 5.1 with
this bit enabled. As expected, our results show that whenever
the victim instruction is of type non-branch, we do not ob-
serve execution at the predicted target anymore. However, we
find that this bit does not prevent IF or ID when the victim
instruction is not a branch.

1https://github.com/kdlucas/byte-unixbench

µarch Model Accuracy Rate
Zen AMD Ryzen 5 1600X 96.30% 204 bits/s
Zen 2 AMD EPYC 7252 93.04% 215 bits/s
Zen 3 Ryzen 5 5600G 100% 256 bits/s
Zen 4 Ryzen 7 7700X 90.67% 341 bits/s
Zen AMD Ryzen 5 1600X 100% 256 bits/s
Zen 2 AMD EPYC 7252 99.28% 292 bits/s

Tbl. 2: Accuracy and leakage rate of P1 (top) and P2 (bottom) when
leaking 4096 bits (median of 10 runs).

Observation O4.

SuppressBPOnNonBr does not prevent IF or ID caused
by PhantomJMPs.

AutoIBRS. We repeat the experiments in Section 5.1 on Zen
4. However, we train in user space while we try to trigger a
speculative branch in kernel space. Interestingly, our results
show that the IF is still triggered, despite AutoIBRS.

Observation O5.

AMD AutoIBRS does not prevent IF of cross privilege
mode branch targets.

Our previously described primitive P1 is thus unaffected
on all AMD Zen microarchitectures. Primitives P2 and P3,
however, are now restricted to speculation on branch instruc-
tions on AMD Zen 2, thanks to the SuppressBPOnNonBr
mitigation. However, given that branches are common in soft-
ware, the impact of this mitigation is negligible. In addition,
P2 and P3 still work unrestricted on Zen 1.

6.4 Covert Channel

Our primitives P1 and P2 enable an adversary to trigger
a fetch and, on some microarchitectures, even a data load
(i.e., execute) from a branch instruction, even if its in a higher
privilege mode. In this section, we investigate the accuracy
and leakage rate of these primitives. For this, we build a
kernel module that performs a number of direct branches. We
aim to hijack one of these by injecting a prediction from user
mode, that triggers when executing kernel module branches.

Fetch. We randomly generate 4096 bits. In the kernel address
space, T1 is mapped in memory while T0 is not. For each
random bit b, 1 we prime a chosen instruction cache set
S, 2 inject a prediction to Tb which maps to cache set S,
3 invoke the kernel module and 4 probe cache set S. If
our probe step indicates a higher latency after injecting a
prediction to T1 than to T0, we deduce that b was 1, otherwise
0. To improve accuracy, we inject the speculative branch so
such that it straddles a page boundary and furthermore stress
the sibling thread 2. The results can be seen in Table 2-top.

Execute. Again, we randomly generate 4096 bits. However,
an additional address T is mapped executable in kernel mode,
containing a memory load of the address in register R. For
each random bit b, 1 we prime a chosen data cache set S, 2
inject a prediction to target T , 3 invoke the kernel module
2We use stess -c 10. Other workloads work too

8

https://github.com/kdlucas/byte-unixbench


µarch Model Accuracy Median time
Zen 2 AMD EPYC 7252 97% 4.09 s
Zen 3 Ryzen 5 5600G 100% 1.38 s
Zen 4 Ryzen 7 7700X 95% 1.23 s

Tbl. 3: Accuracy and median time needed to derandomize kernel
image location on AMD Zen microarchitectures using P1, over 100
runs.

while R is assigned a pointer to Tb, and 4 probe data cache
set S. If we observe a slowdown when probing S, we deduce
that b was 1, otherwise 0. Additional sibling thread workloads
were unnecessary for the tested parts. Table 2-bottom shows
our results.

7. EXPLOITATION

We build three exploits using the primitives we discussed
in Section 6 to break kernel image KASLR, physmap KASLR
and consequently leak kernel data. Recent KASLR exploits
on AMD microarchitectures do not fully derandomize the
address [43], do not consider the newer Zen 3 and Zen 4
CPUs [42, 43], only work in the absence of KPTI [42] or
focus exclusively on kernel image KASLR [43]. KASLR is
an important defense against memory corruption attacks in
the kernel, since it prevents the knowledge of specific gadget
addresses [14].

We use P1 to leak the kernel image location in Section 7.1,
and P2 to leak kernel’s physmap location in Section 7.2.
These two attacks rely on Prime+Probe [52] which turns out
to be noisy. We discuss how we can overcome this in Sec-
tion 7.3. Finally, in Section 7.4 we show how P3 extends the
attack surface of Spectre with new gadgets.

7.1 Breaking kernel image KASLR

We show how we can derandomize kernel image KASLR
on AMD microarchitectures with PHANTOM speculation. We
run Linux kernel 5.19 with the latest patches.

Lst. 1: We trigger speculation at the nop instruction in __task_pid_nr_ns().
Found at kernel image offset 0xf6520.

1 nop DWORD PTR [rax+rax *1+0x0]
2 push rbp
3 mov rbp ,rsp

We can break kernel image KASLR with P1. KASLR
places the kernel image in one of 488 possible locations [40].
For each possible location, we inject a jmp* prediction to
a branch target that maps to a specific instruction cache set
that we choose. The getpid() system call will execute the
code shown in Listing 1, where we inject a prediction at
the nop instruction on Line 1. Hence, for each possible
location, 1 we prime the chosen cache set, 2 inject the jmp*
prediction, 3 issue getpid(), and 4 probe the cache set. If
the prediction was used and the branch target was mapped
in memory, we can observe a cache signal from the chosen
cache set through Prime+Probe. This happens when testing
with the correct kernel image location.

Results. We run our KASLR exploit 100 times on our AMD
Zen machines, each time rebooting the machine to refresh

µarch Model Accuracy Median time
Zen AMD Ryzen 5 1600X 100% 101 s
Zen 2 AMD EPYC 7252 90% 106.5 s

Tbl. 4: Accuracy and median time needed to find physmap on a
AMD Zen 2 microarchitecture using P2, over 10 runs.

µarch Model Memory Accuracy Median time
Zen AMD Ryzen 5 1600X 8 GB 99% 1 s
Zen 2 AMD EPYC 7252 64 GB 100% 16 s

Tbl. 5: Accuracy and median time needed to find a physical address
on AMD Zen 1/2 microarchitectures, over 100 runs.

KASLR. Table 3 presents the success rate and median time
needed to derandomize the kernel image location.

7.2 Breaking physmap KASLR

Now that we have found the kernel image location, we can
further derandomize physmap KASLR on AMD Zen 1 and
Zen 2. Physmap is the direct mapping of physical memory in
the kernel address space, and has, depending on configuration,
25 600 possible locations [40]. Randomizing its location
helps preventing certain memory corruption attacks [35].

As mentioned in Section 6.1, we can only detect mapped
memory using the speculative instruction fetch if the target
is executable. However, physmap is marked non-executable.
To derandomize physmap, we use P2, which detects mapped
non-executable memory by detecting a transient load in the
PHANTOM speculation window using Prime+Probe on the L2
data cache. For Prime+Probe on L2, we use 2 MiB physically
contiguous transparent huge pages.

Lst. 2: We trigger speculation at the call instruction, upon entering
__fdget_pos(). Found at kernel image offset 0x41db60.

1 nop DWORD PTR [rax+rax *1+0x0]
2 push rbp
3 mov esi ,0x4000
4 mov rbp ,rsp
5 sub rsp ,0x8
6 call 0x9341c7b0

Lst. 3: Our disclosure gadget to leak the physmap location. Found at kernel
image offset 0x41da52.

1 mov r12 ,QWORD PTR [r12+0xbe0]

By using the tooling from previous work [74], we find
that upon executing the readv() system call, we control the
value of R12 using the second argument of the system call
(i.e., RSI) when __fdget_pos() is called. We trigger spec-
ulation by confusing the call instruction shown in Listing 2
with a jmp* prediction to the disclosure gadget shown in List-
ing 3. The steps of the attack are very similar to our kernel
image KASLR derandomization exploit, except that the EX
step of P2 allows us to issue a load that we can detect with
Prime+Probe.

Results. We run our physmap derandomization exploit 10
times on our vulnerable AMD machines, each time rebooting
the system. Table 4 shows the success rate and median time
needed to derandomize the physmap location.

7.3 Overcoming Noise

9



Prime+Probe proves to be very noisy, especially on the
L1 instruction cache. This may be due to the cache replace-
ment policy or because the system call thrashes the chosen
cache set before we can probe it. Instruction prefetching may
contribute to this as well.

To improve the results, we repeat our exploit for multiple
cache sets. For each set S, in addition to measuring the prob-
ing time when the injected target maps to the given set (TS),
we also measure the time when it maps to some unrelated set.
This gives us a baseline time for the monitored set, BS. For
the kernel image derandomization exploit, we score each pos-
sible location by using a bounded relative timing difference
between speculatively branching to addresses mapping to the
primed cache set and the baseline, accumulated for all 64 sets.
That is, scoreguess = ∑

S≤64
S=0 min(max(TS−BS,−10),10). To

amplify the difference, we trigger another speculative branch
along the execution path of the system call to an additional
target mapped to S.

7.4 Leaking kernel memory

We now discuss how P3 extends the attack surface of
Spectre with new gadgets. First, to leak kernel memory, we
need to find the location of a Flush+Reload buffer (reload
buffer) in physmap.

Enabling Flush+Reload. We use the attacks in Section 7.1
and Section 7.2 to leak the kernel image and physmap lo-
cations. To enable Flush+Reload, we make a guess, Pg of
the physical address of a virtual address A in our user mode
program. We use the same setup as described in Section 7.2,
meaning we trigger speculation during the readv() system
call. We pass physmap + Pg in RSI to the system call. We
can verify if Pg is correct using Flush+Reload on address A.
To reduce entropy, we allocate A as a 2 MiB transparent huge
page. Our results show that we can successfully determine
the physical address of a virtual address in our program.

We attempt to determine the physical address of A 100
times. To re-randomize the physical address of A in each
attempt, we allocate a random number (0–99) of huge pages
before allocating A. Table 5 presents the accuracy and median
time observed.

Leaking memory with MDS gadgets. In this section, we
discuss how limited Spectre gadgets, referred to as MDS
gadgets in previous literature [34], can be combined with our
P3 to leak arbitrary kernel memory. A conventional Spectre
gadget performs two loads: one that fetches the secret from
memory and one which encodes it in a reload buffer with a
secret-dependent offset. With P3, however, we are able to
trigger the secret-dependent load elsewhere. A gadget that
only performs one out-of-bound load would thus be enough
to enable arbitrary read capabilities.

Lst. 4: A sample MDS gadget.

1 void read_data(uint64_t user_index) {
2 if (user_index < *array_length) {
3 uint8_t data = array[user_index]
4 parse_data(data);
5 }
6 }

To prove the feasibility of such an exploit, we build a kernel
module that contains an MDS gadget. Listing 4 shows what
such a gadget might look like. When the user provides an out-
of-bounds value to read_data(), the conditional branch may
be incorrectly predicted as taken, causing a user-controlled
address to be fetched from memory. A conventional Spectre
attack would not succeed, however, since there is no data-
dependent load. Our goal is to induce this secret-dependent
load using P3.

We assume we know where our MDS gadget resides in
the kernel address space. We also assume we know the start
of physmap, the physical address of our reload buffer, and
the kernel address of a disclosure gadget that performs the
secret-dependent load. All this information can be leaked
with our previous steps. We also assume that the address
of array (Line 3 of Listing 4) is known. The user provides
the kernel module with user_index and the location of our
reload buffer in the kernel’s virtual address space.

Relying on BTB aliasing, we train the conditional branch to
predict taken. Additionally, we train the BTB with a branch
to the disclosure gadget at the location of the (direct) call
to parse_data(). Our disclosure gadget indexes into our
reload buffer using the (shifted) value of data.

Results. We run our proof-of-concept on an AMD Zen 2
EPYC 7252. Our results show that we can reliably leak
4096 bytes of randomized data from the kernel using an
MDS gadget. We repeat our experiment 10 times, each time
after a reboot. In 8 of these attempts, we measure a median
bandwidth of 84 bytes/s, achieving a perfect accuracy of
100%. In the remaining 2 attempts, no signal was observed.
One possible explanation could be an undesired BTB aliasing.

Finding MDS gadgets. This work focuses on the analysis
of frontend speculation and not the discovery of gadgets.
Previous work shows how one can find MDS-like gadgets in
the kernel [34]. Furthermore, new gadgets are continuously
discovered and patched as shown recently by Google [79].

8. MITIGATION

We discuss the hardware- and software-based mitigation
strategies for the type the exploits that we built, including
mitigations that AMD proposed. The mitigations therefore
mainly concern attacks against the OS kernel by an unprivi-
leged user, described in finer detail in Section 3.

8.1 Hardware mitigations

SuppressBPOnNonBranch. AMD introduced an MSR bit
SuppressBPOnNonBranch that, when set, limits branch pre-
diction to control-flow edges [5]. This means that Suppress-
BPOnNonBranch should not allow the nops column in Table 1
to proceed in the pipeline. Our evaluation, however, paints to
two problems: 1 SuppressBPOnNonBranch is not supported
on AMD Zen (+) and 2 on AMD Zen 2, the SuppressBPOn-
NonBranch does not stop branch prediction. As we showed
in Section 6, the invalid branch target still advances through
IF and ID. However, we confirm that it stops the transient
execution. Only stopping transient execution at non-branches
means primitives P1 is unaffected, and P2 and P3 still work

10



if targeting a victim instruction that is a control-flow edge.

AutoIBRS. Our evaluation suggests that AutoIBRS has the
same issue as the SuppressBPOnNonBranch mitigation in
the sense that the misprediction is only prevented after ID,
which again means that primitive P1 is unaffected. This
would be necessary if AutoIBRS follows the original IBRS
specification, which, as the name suggests, concerns only
indirect branch speculation. A possible enhancement for
AutoIBRS could be that the branch predictor refuses to serve
any prediction where the current privilege mode mismatches
the privilege mode specified by the prediction.

An in-depth mitigation in this direction should stop pre-
dictions until the decoding of the branch source has finished,
thereby preventing all branch type confusions. However, we
presume that such an approach would require fundamental de-
sign changes and performance impact, rendering it unfeasible
in practice.

8.2 Software mitigations

lfence. AMD has also continued to recommend using lfence
at sources of bad speculation, however as we discussed ear-
lier in Section 2.4, finding all possible sources of bad spec-
ulation is not trivial. Because proactively placing specula-
tion barriers behind every conditional branch has an average
performance impact of 5× [69], determining the branches
where speculation barriers are necessary is in practice often a
semi-manual process. Although automatic tools have been
proposed [24, 34, 50, 69, 79], most of them do not achieve
completeness. Furthermore, short speculation expands the
set of possible gadgets that future tools of this type should
consider.

IBPB. Indirect Branch Prediction Barrier (IBPB) is a mecha-
nism supported by all recent x86 CPUs that is used to flush
the BTB state when switching between distrusting execution
contexts. On some microarchitectures, IBPB flushes more
than just indirect branch predictions. As such, if IBPB flushes
all types of predictions, it is possible to use it when switching
from user mode to kernel mode to ensure that user mode can-
not cause PHANTOM speculation in the kernel context. The
problem with IBPB is its large performance penalty. Assum-
ing that IBPB can flush all types of predictions, it mitigates
all our exploitation primitives P1, P2, and P3.

9. RELATED WORK

We discuss related work on microarchitectural side chan-
nels and transient execution attacks.

9.1 Microarchitectural info leaks

Kocher et al. [37] discuss that microarchitectural optimiza-
tions, like branch prediction, caches, variable-time instruc-
tions (e.g., division and multiplication) are workload depen-
dent. Using timing side channels on these components, secret
bits of information about the workload can be inferred. A
recent study by Ramhöj et al. systemizes various microarchi-
tectural attacks over the past few decades [26].

Shared cache leaks. Caches are the most studied component
of microarchitectural side channels. Percival [54] showed
how co-located sibling threads could infer each other’s mem-
ory interactions. Osvik et al. [52] introduced Prime+Probe
and Evict+Time naming, but the similar techniques were
in previous cache attacks as well [10]. Prime+Probe was
adapted to web browser settings by Oren et al. [51] and Gras
et al. [22] showed Evict+Time to leak pointers from within
the browser sandbox. Yarom et al. [77] introduced the more
noise-resistant Flush+Reload technique in shared memory
scenarios. Cache attacks continue to advance along with
modern CPU caches [17, 23, 43, 56]. Advanced cache attacks
also considers ring and mesh interconnects [16, 53, 68].

Branch Predictor side channels. Aciiçmez et al. [2] showed
leaking secrets through Simple Branch Prediction Analysis
to exfiltrate cryptographic keys. Evtyushkin et al. [18, 19]
showed branch prediction can be abused to break KASLR
and infer control flow inside SGX. Lee et al. [41] used branch
shadowing to infer control flow inside SGX.

Beyond cache and branch predictor side channels, leakage
through variable instruction timing [6, 38, 62], port con-
tention [3, 11], frequency [42, 70], and power use [44] have
been studied in the past.

9.2 Transient execution attacks

Spectre [36] and Meltdown [45] combined microarchitec-
tural side-channels with invalid speculative and Out-of-Order
(OoO) execution, creating the new class of transient execution
attacks. Meltdown triggers invalid OoO execution through a
faulting memory load. Other fault-based transient execution
attacks include [12, 13, 58, 59, 66, 67].

Spectre enables info leaks through invalid speculative
execution triggered through the manipulation of branch
target predictors [9, 33, 36, 48, 74], return target predic-
tors [39,46,73,74], branch condition predictors [21,33,36,49],
and the memory disambiguator [27].

Wikner and Razavi [74] showed branch target mis-
prediction of return instructions by training them using
indirect branches. Wieczorkiewicz [71, 72] reverse engi-
neered AMD branch predictors showing branch condition
and straight-line misprediction vulnerabilities. We did a sys-
tematic analysis of branch mispredictions due to early specu-
lation and discovered new sources of information leakage.

Milburn et al. [48] showed that particular SMT work-
loads can extend the speculation window which bypassed
the AMD’s original, lfence-style retpoline [4]. Ren et al. [60]
introduced techniques to reverse engineer the µop-cache and
potential methods to leak secrets across lfence barrier.

Zhiyuan et al. [78] manipulates the BTBs to trigger instruc-
tion prefetching on Intel CPUs. Unlike this concurrent work,
the mispredictions we trigger lead to the fetched instructions
to enter the pipeline with intent to execute as we showed
using a µop-cache observation channel.

9.3 Mitigations

Mitigation of potentially exploitable branch sources by
inserting speculation barriers has been explored in previ-

11



ous work [28, 47]. It is possible to leverage binary or
source analysis for discovering exploitable Spectre gad-
gets [24, 25, 34, 50, 57, 69, 74]. In particular, Johannesmeyer
et al. [34] explored dynamic analysis through fuzzing com-
bined with speculative emulation to automatically discover
Spectre and MDS leaks in the Linux kernel. In their work,
conventional Spectre V1-gadgets dereference an attacker-
controllable pointer and subsequently encode the result in
the cache (e.g., two dependent loads). As we showed in this
paper, PHANTOM can leak arbitrary data using only a single
load (similar to MDS-gadgets), by triggering short specu-
lation to a separate gadget that dispatches the second load.
Based on the results presented in Kasper [34], PHANTOM
increases possible Spectre gadgets by about 4 times (from
183 to 722).

10. CONCLUSION

We introduced PHANTOM, a new class of attacks that arise
from early speculation in recent AMD and Intel microar-
chitectures. PHANTOM allows for triggering speculation on
arbitrary instructions with speculation windows that are short,
but still allowing for transient fetch and transient decode on
almost all tested microarchitectures, and transient execution
of a single memory operation on AMD Zen 1 and 2. We
used these new PHANTOM primitives in the construction of
three attacks: leaking code and data KASLR on all AMD
Zen microarchitectures, as well as arbitrary kernel memory
with MDS gadgets on AMD Zen 1 and 2. The attacks on
AMD Zen 3 and 4 required us to reverse engineer the cross-
privilege BTB functions for the first time. Our analysis of
existing hardware and software mitigations shows that miti-
gating PHANTOM is going to be difficult in practice.

Acknowledgments

We thank the anonymous MICRO reviewers, David Kaplan
of AMD, and Brad Spengler of Open Source Security Inc.,
for their feedback. We furthermore thank the members of the
Linux security response group of Retbleed for insights. This
work was supported in part by the Swiss State Secretariat for
Education, Research and Innovation under contract number
MB22.00057 (ERC-StG PROMISE).

REFERENCES

[1] “The Chromium Projects: Site Isolation,” accessed on 29.1.2022.
[Online]. Available:
https://www.chromium.org/Home/chromium-security/site-isolation/

[2] O. Aciiçmez, Ç. K. Koç, and J.-P. Seifert, “On the power of simple
branch prediction analysis,” in Proceedings of the 2nd ACM
symposium on Information, computer and communications security,
2007, pp. 312–320.

[3] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. García, and
N. Tuveri, “Port contention for fun and profit,” in 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, 2019, pp. 870–887.

[4] AMD, “Amd64 technology indirect branch control extension,” 2018.
[Online]. Available: https://developer.amd.com/wp-content/resources/
Architecture_Guidelines_Update_Indirect_Branch_Control.pdf

[5] AMD, “Technical guidance for mitigating branchtype confusion,”
2022, accessed on 1.8.2022. [Online]. Available:

https://www.amd.com/system/files/documents/technical-guidance-
for-mitigating-branch-type-confusion_v7_20220712.pdf

[6] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and
H. Shacham, “On subnormal floating point and abnormal timing,” in
2015 IEEE Symposium on Security and Privacy. IEEE, 2015, pp.
623–639.

[7] ARM, “Straight-line speculation,” 2020, accessed on 8.2.2023.
[Online]. Available: https://developer.arm.com/-/media/Arm%
20Developer%20Community/PDF/Security%20Update%2008%
20June%202020/Straight-line_Speculation-v1.0.pdf

[8] T. Asheim, B. Grot, and R. Kumar, “A storage-effective btb
organization for servers,” in 2023 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 2023, pp.
1153–1167.

[9] E. Barberis, P. Frigo, M. Muench, H. Bos, and C. Giuffrida, “Branch
history injection: On the effectiveness of hardware mitigations against
cross-privilege spectre-v2 attacks,” in USENIX Security, 2022.

[10] D. J. Bernstein, “Cache-timing attacks on AES,” The University of
Illinois at Chicago, Tech. Rep., 2005.

[11] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus, “Smotherspectre: Exploiting
speculative execution through port contention,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS. Association for Computing Machinery, 2019,
https://doi.org/10.1145/3319535.3363194.

[12] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution,” in SEC, 2018.

[13] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar, J. Van Bulck, and
Y. Yarom, “Fallout: Leaking data on meltdown-resistant cpus,” in
Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 2019.

[14] C. Canella, M. Schwarz, M. Haubenwallner, M. Schwarzl, and
D. Gruss, “Kaslr: Break it, fix it, repeat,” in Proceedings of the 15th
ACM Asia Conference on Computer and Communications Security,
2020, pp. 481–493.

[15] Y.-J. Chang, “Lazy btb: reduce btb energy consumption using
dynamic profiling,” in Proceedings of the 2006 Asia and South Pacific
Design Automation Conference, 2006, pp. 917–922.

[16] M. Dai, R. Paccagnella, M. Gomez-Garcia, J. McCalpin, and M. Yan,
“Don’t mesh around:{Side-Channel} attacks and mitigations on mesh
interconnects,” in 31st USENIX Security Symposium (USENIX
Security 22), 2022, pp. 2857–2874.

[17] C. Disselkoen, D. Kohlbrenner, L. Porter, and D. Tullsen,
“Prime+abort: A timer-free high-precision l3 cache attack using intel
{TSX},” in 26th USENIX Security Symposium (USENIX Security 17),
2017, pp. 51–67.

[18] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump over aslr:
Attacking branch predictors to bypass aslr,” in Microarchitecture
(MICRO), 2016 49th Annual IEEE/ACM International Symposium on.
IEEE, 2016, pp. 1–13.

[19] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, D. Ponomarev et al.,
“Branchscope: A new side-channel attack on directional branch
predictor,” in Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, 2018, pp. 693–707.

[20] T. Gleixner, “LKML: [patch 00/38] x86/retbleed: Call depth tracking
mitigation,” 2022. [Online]. Available: https://lore.kernel.org/lkml/
f9fd86acac4f49bc8f90b403978e9df3@AcuMS.aculab.com/t/

[21] E. Göktas, K. Razavi, G. Portokalidis, H. Bos, and C. Giuffrida,
“Speculative probing: Hacking blind in the spectre era,” in Proceedings
of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2020, pp. 1871–1885.

[22] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, “Aslr on the
line: Practical cache attacks on the mmu.” in NDSS, vol. 17, 2017,
p. 26.

[23] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+flush: a
fast and stealthy cache attack,” in International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment.

12

https://www.chromium.org/Home/chromium-security/site-isolation/
https://developer.amd.com/wp-content/resources/Architecture_Guidelines_Update_Indirect_Branch_Control.pdf
https://developer.amd.com/wp-content/resources/Architecture_Guidelines_Update_Indirect_Branch_Control.pdf
https://www.amd.com/system/files/documents/technical-guidance-for-mitigating-branch-type-confusion_v7_20220712.pdf
https://www.amd.com/system/files/documents/technical-guidance-for-mitigating-branch-type-confusion_v7_20220712.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Security%20Update%2008%20June%202020/Straight-line_Speculation-v1.0.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Security%20Update%2008%20June%202020/Straight-line_Speculation-v1.0.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Security%20Update%2008%20June%202020/Straight-line_Speculation-v1.0.pdf
https://doi.org/10.1145/3319535.3363194
https://lore.kernel.org/lkml/f9fd86acac4f49bc8f90b403978e9df3@AcuMS.aculab.com/t/
https://lore.kernel.org/lkml/f9fd86acac4f49bc8f90b403978e9df3@AcuMS.aculab.com/t/


Springer, 2016, pp. 279–299.

[24] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez,
“Spectector: Principled detection of speculative information flows,” in
2020 IEEE Symposium on Security and Privacy (SP). IEEE, 2020,
pp. 1–19.

[25] S. Guo, Y. Chen, P. Li, Y. Cheng, H. Wang, M. Wu, and Z. Zuo,
“Specusym: Speculative symbolic execution for cache timing leak
detection,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, 2020, pp. 1235–1247.

[26] N. R. Holtryd, M. Manivannan, and P. Stenström, “Sok: Analysis of
root causes and defense strategies for attacks on microarchitectural
optimizations,” arXiv preprint arXiv:2212.10221, 2022.

[27] J. Horn, “Issue 1528: Speculative execution, variant 4: Speculative
store bypass,” 2018. [Online]. Available:
https://bugs.chromium.org/p/project-zerot/issues/detail?id=1528

[28] O. S. S. Inc., “Respectre: The state of the art in spectre defenses,”
2018. [Online]. Available: https://grsecurity.net/respectre_announce

[29] Intel Corp., “Indirect Branch Restricted Speculation,” 2018. [Online].
Available: https://www.intel.com/content/www/us/en/developer/
articles/technical/software-security-guidance/technical-
documentation/indirect-branch-restricted-speculation.html

[30] Intel Corp., “Speculative Execution Side Channel Mitigations,” 2018.
[Online]. Available: https://www.intel.com/content/www/us/en/
developer/articles/technical/software-security-guidance/technical-
documentation/speculative-execution-side-channel-mitigations.html

[31] Intel Corp, “Retpoline: A branch target injection mitigation,” 2022.
[Online]. Available: https://www.intel.com/content/www/us/en/
developer/articles/technical/software-security-guidance/technical-
documentation/retpoline-branch-target-injection-mitigation.html

[32] Intel Corp, “Speculative Execution Side Channel Mitigations,” 2022.
[Online]. Available: https://www.intel.com/content/www/us/en/
developer/articles/technical/software-security-guidance/technical-
documentation/speculative-execution-side-channel-mitigations.html

[33] “Reading privileged memory with a side-channel,” Jan. 2018,
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-
memory-with-side.html.

[34] B. Johannesmeyer, J. Koschel, K. Razavi, H. Bos, and C. Giuffrida,
“Kasper: Scanning for Generalized Transient Execution Gadgets in the
Linux Kernel,” in NDSS, Feb. 2022. [Online]. Available:
https://download.vusec.net/papers/kasper_ndss22.pdf

[35] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis, “ret2dir:
Rethinking kernel isolation,” in 23rd USENIX Security Symposium
(USENIX Security 14), 2014, pp. 957–972.

[36] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in 40th
IEEE Symposium on Security and Privacy (S&P’19), 2019.

[37] P. C. Kocher, “Timing attacks on implementations of diffie-hellman,
rsa, dss, and other systems,” in Annual International Cryptology
Conference. Springer, 1996, pp. 104–113.

[38] D. Kohlbrenner and H. Shacham, “On the effectiveness of mitigations
against floating-point timing channels.” in USENIX Security
Symposium, 2017, pp. 69–81.

[39] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,” in
12th USENIX Workshop on Offensive Technologies (WOOT 18).
USENIX Association, 2018,
https://www.usenix.org/conference/woot18/presentation/koruyeh.

[40] J. Koschel, C. Giuffrida, H. Bos, and K. Razavi, “Tagbleed: Breaking
kaslr on the isolated kernel address space using tagged tlbs,” in 2020
IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2020, pp. 309–321.

[41] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado,
“Inferring fine-grained control flow inside sgx enclaves with branch
shadowing.” in USENIX Security Symposium, vol. 19, 2017, pp.
16–18.

[42] M. Lipp, D. Gruss, and M. Schwarz, “{AMD} prefetch attacks
through power and time,” in 31st USENIX Security Symposium
(USENIX Security 22), 2022, pp. 643–660.

[43] M. Lipp, V. Hadžić, M. Schwarz, A. Perais, C. Maurice, and D. Gruss,

“Take a way: Exploring the security implications of amd’s cache way
predictors,” in Proceedings of the 15th ACM Asia Conference on
Computer and Communications Security, 2020, pp. 813–825.

[44] M. Lipp, A. Kogler, D. Oswald, M. Schwarz, C. Easdon, C. Canella,
and D. Gruss, “Platypus: Software-based power side-channel attacks
on x86,” in 2021 IEEE Symposium on Security and Privacy (SP).
IEEE, 2021, pp. 355–371.

[45] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and
M. Hamburg, “Meltdown: Reading kernel memory from user space,”
in 27th USENIX Security Symposium (USENIX Security 18), 2018.

[46] G. Maisuradze and C. Rossow, “Ret2spec: Speculative execution
using return stack buffers,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS,
2018.

[47] Microsoft, “Spectre mitigations in msvc.” [Online]. Available: https:
//devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc/

[48] A. Milburn, K. Sun, and H. Kawakami, “You cannot always win the
race: Analyzing the lfence/jmp mitigation for branch target injection,”
arXiv preprint arXiv:2203.04277, 2022.

[49] O. Oleksenko, M. Guarnieri, B. Köpf, and M. Silberstein, “Hide and
Seek with Spectres: Efficient discovery of speculative information
leaks with random testing,” arXiv preprint arXiv:2301.07642, 2023.

[50] O. Oleksenko, B. Trach, M. Silberstein, and C. Fetzer, “Specfuzz:
Bringing spectre-type vulnerabilities to the surface,” in 29th USENIX
Security Symposium (USENIX Security 20), 2020, pp. 1481–1498.

[51] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis,
“The Spy in the Sandbox: Practical Cache Attacks in JavaScript and
their Implications,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM,
2015, pp. 1406–1418.

[52] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and
countermeasures: the case of aes,” in Cryptographers’ track at the
RSA conference, 2006, pp. 1–20.

[53] R. Paccagnella, L. Luo, and C. W. Fletcher, “Lord of the ring (s): Side
channel attacks on the cpu on-chip ring interconnect are practical.” in
USENIX Security Symposium, 2021, pp. 645–662.

[54] C. Percival, “Cache missing for fun and profit,” 2005.

[55] K. Phillips, “LKML: [PATCH 0/3] x86/speculation: Support
Automatic IBRS,” 2022. [Online]. Available:
https://lkml.org/lkml/2022/11/4/1199

[56] A. Purnal, F. Turan, and I. Verbauwhede, “Prime+scope: Overcoming
the observer effect for high-precision cache contention attacks,” in
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, 2021, pp. 2906–2920.

[57] Z. Qi, Q. Feng, Y. Cheng, M. Yan, P. Li, H. Yin, and T. Wei,
“Spectaint: Speculative taint analysis for discovering spectre gadgets,”
in Annu. Network and Distributed System Security Symp.(NDSS),
2021.

[58] H. Ragab, E. Barberis, H. Bos, and C. Giuffrida, “Rage against the
machine clear: A systematic analysis of machine clears and their
implications for transient execution attacks,” in 30th USENIX Security
Symposium (USENIX Security 21), 2021, pp. 1451–1468.

[59] H. Ragab, A. Milburn, K. Razavi, H. Bos, and C. Giuffrida,
“CrossTalk: Speculative Data Leaks Across Cores Are Real,” in S&P,
2021.

[60] X. Ren, L. Moody, M. Taram, M. Jordan, D. M. Tullsen, and
A. Venkat, “I see dead µops: Leaking secrets via intel/amd micro-op
caches,” in 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2021, pp. 361–374.

[61] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “ZombieLoad: Cross-privilege-boundary
data sampling,” in CCS, 2019.

[62] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss,
“Netspectre: Read arbitrary memory over network,” in European
Symposium on Research in Computer Security. Springer, 2019, pp.
279–299.

[63] J. Shahid and O. Weisse, “https://lwn.net/articles/909469/,” 2022,
accessed on 02.02.2023. [Online]. Available: https://lwn.net/ml/linux-
kernel/20220223052223.1202152-1-junaids@google.com/

13

https://bugs.chromium.org/p/project-zerot/issues/detail?id=1528
https://grsecurity.net/respectre_announce
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://download.vusec.net/papers/kasper_ndss22.pdf
https://www.usenix.org/conference/woot18/presentation/koruyeh
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc/
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc/
https://lkml.org/lkml/2022/11/4/1199
https://lwn.net/ml/linux-kernel/20220223052223.1202152-1-junaids@google.com/
https://lwn.net/ml/linux-kernel/20220223052223.1202152-1-junaids@google.com/


[64] D. Sneddon, “[PATCH 5.4 14/15] x86/speculation: Add RSB VM Exit
protections,” 2022. [Online]. Available:
https://lkml.org/lkml/2022/8/9/728

[65] P. Turner, “Retpoline: a software construct for preventing
branch-target-injection,” 2018. [Online]. Available:
https://support.google.com/faqs/answer/7625886

[66] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin,
D. Genkin, Y. Yarom, B. Sunar, D. Gruss, and F. Piessens, “Lvi:
Hijacking transient execution through microarchitectural load value
injection,” in 41th IEEE Symposium on Security and Privacy
(S&P’20), 2020, pp. 1399–1417.

[67] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue in-flight data
load,” in S&P, May 2019.

[68] J. Wan, Y. Bi, Z. Zhou, and Z. Li, “Meshup: Stateless cache
side-channel attack on cpu mesh,” in 2022 IEEE Symposium on
Security and Privacy (SP). IEEE, 2022, pp. 1506–1524.

[69] G. Wang, S. Chattopadhyay, I. Gotovchits, T. Mitra, and
A. Roychoudhury, “oo7: Low-overhead defense against spectre attacks
via program analysis,” IEEE Transactions on Software Engineering,
2019.

[70] Y. Wang, R. Paccagnella, E. T. He, H. Shacham, C. W. Fletcher, and
D. Kohlbrenner, “Hertzbleed: Turning power {Side-Channel} attacks
into remote timing attacks on x86,” in 31st USENIX Security
Symposium (USENIX Security 22), 2022, pp. 679–697.

[71] P. Wieczorkiewicz, “The amd branch (mis)predictor: Just set it and
forget it!” 2022, accessed on 8.2.2023. [Online]. Available: https:
//grsecurity.net/amd_branch_mispredictor_just_set_it_and_forget_it

[72] P. Wieczorkiewicz, “The amd branch (mis)predictor part 2: Where no
cpu has gone before (cve-2021-26341),” 2022, accessed on 8.2.2023.
[Online]. Available: https://grsecurity.net/amd_branch_mispredictor_
part_2_where_no_cpu_has_gone_before

[73] J. Wikner, C. Giuffrida, H. Bos, and K. Razavi, “Spring: Spectre
Returning in the Browser with Speculative Load Queuing and Deep
Stacks,” in 16th IEEE Workshop on Offensive Technologies
(WOOT’22). IEEE, May 2022,
https://comsec.ethz.ch/wp-content/files/spring_woot22.pdf.

[74] J. Wikner and K. Razavi, “Retbleed: Arbitrary Speculative Code
Execution with Return Instructions,” in USENIX Security, 2022.
[Online]. Available:
https://comsec.ethz.ch/wp-content/files/retbleed_sec22.pdf

[75] D. Williams, “LKML: [PATCH v6 02/13] array_index_nospec:
sanitize speculative array de-references,” 2018,
https://lore.kernel.org/lkml/151727414808.33451.
1873237130672785331.stgit@dwillia2-desk3.amr.corp.intel.com/.

[76] H. Xia, D. Zhang, W. Liu, I. Haller, B. Sherwin, and D. Chisnall, “A
secret-free hypervisor: Rethinking isolation in the age of speculative
vulnerabilities,” in IEEE S&P ’22. IEEE, 2022, pp. 370–385.

[77] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack,” in USENIX Security
Symposium, 2014, pp. 719–732.

[78] Z. Zhang, M. Tao, S. O’Connell, C. Chuengsatiansup, D. Genkin, and
Y. Yarom, “Bunnyhop: Exploiting the instruction prefetcher,” 2023.

[79] J. Zomer and A. Sandulescu, “Linux kernel: Spectre-v1 gadgets,”
2023. [Online]. Available: https://github.com/google/security-
research/security/advisories/GHSA-m7j5-797w-vmrh

14

https://lkml.org/lkml/2022/8/9/728
https://support.google.com/faqs/answer/7625886
https://grsecurity.net/amd_branch_mispredictor_just_set_it_and_forget_it
https://grsecurity.net/amd_branch_mispredictor_just_set_it_and_forget_it
https://grsecurity.net/amd_branch_mispredictor_part_2_where_no_cpu_has_gone_before
https://grsecurity.net/amd_branch_mispredictor_part_2_where_no_cpu_has_gone_before
https://comsec.ethz.ch/wp-content/files/spring_woot22.pdf
https://comsec.ethz.ch/wp-content/files/retbleed_sec22.pdf
https://lore.kernel.org/lkml/151727414808.33451.1873237130672785331.stgit@dwillia2-desk3.amr.corp.intel.com/
https://lore.kernel.org/lkml/151727414808.33451.1873237130672785331.stgit@dwillia2-desk3.amr.corp.intel.com/
https://github.com/google/security-research/security/advisories/GHSA-m7j5-797w-vmrh
https://github.com/google/security-research/security/advisories/GHSA-m7j5-797w-vmrh

	Introduction
	Background
	Branch Target Prediction
	Pipelining
	Spectre
	Mitigating Spectre

	Threat model
	Overview
	phantom speculation
	Observation Channels
	Triggering mispredictions

	Exploitation Primitives
	Attacker primitives
	Collision with kernel addresses
	SuppressBPOnNonBr and AutoIBRS
	Covert Channel

	Exploitation
	Breaking kernel image KASLR
	Breaking physmap KASLR
	Overcoming Noise
	Leaking kernel memory

	Mitigation
	Hardware mitigations
	Software mitigations

	Related Work
	Microarchitectural info leaks
	Transient execution attacks
	Mitigations

	Conclusion

