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Abstract
To protect against transient control-flow hijacks, software re-
lies on a secure state of microarchitectural buffers that are
involved in branching decisions. To achieve this secure state,
hardware and software mitigations restrict or sanitize these
microarchitectural buffers when switching the security con-
text, e.g., when a user process enters the kernel. Unfortunately,
we show that these mitigations do not prevent an attacker from
manipulating the state of these microarchitectural buffers in
many cases of interest. In particular, we present Training in
Transient Execution (TTE), a new class of transient execution
attacks that enables an attacker to train a target microarchi-
tectural buffer after switching to the victim context. To show
the impact of TTE, we build an end-to-end exploit called
INCEPTION that creates an infinite transient loop in hardware
to train the return stack buffer with an attacker-controlled
target in all existing AMD Zen microarchitectures. INCEP-
TION leaks arbitrary kernel memory at a rate of 39 bytes/s on
AMD Zen 4 despite all mitigations against transient control-
flow hijacks, including the recent Automatic IBRS.

1 Introduction

Transient execution attacks let attackers execute code
in the victim’s context to leak sensitive informa-
tion [9, 30, 33, 36, 48, 49]. To hijack the transient control
flow, attackers need to manipulate microarchitectural buffers
involved in making branching decisions. A common approach
is restricting or sanitizing these microarchitectural buffers
when switching security contexts [6, 12, 14, 15, 40]. In this
paper, we show that current approaches are insufficient
against an attacker that uses privileged software and hardware
as confused deputies to train microarchitectural branch
predictors with transiently executed instructions.

Hijacking transient execution and mitigations. To hijack
the transient control flow of privileged software, like the
kernel, attackers manipulate microarchitectural branch pre-
diction buffers, such as the Return Stack Buffer (RSB) [33]

or the Branch Target Buffer (BTB) [49]. Consequently, to
protect privileged software, mitigations sanitize or restrict
these when switching to higher privilege mode. The RSB
may be sanitized by means of stuffing [15, 33], preventing
return instructions of other execution contexts to be hijacked
by poisoned RSB entries. A combination of retpoline [47]
and jmp2ret [6] mitigations transform all indirect branches
and returns into a single return instruction, whose prediction
is sanitized on kernel entry for certain AMD CPUs. Modern
microarchitectures support hardware-level features, such as
Automatic and Enhanced IBRS [12, 40], that restrict usage
of potentially-malicious branch predictions, providing a more
efficient mitigation against transient control-flow hijacks.

Training in Transient Execution. Restriction and sanitiza-
tion of branch predictors assume that an attacker is unable to
manipulate these predictors after entering the victim context,
such as the kernel. This is unfortunately not true. We present a
new class of transient execution attacks that do their Training
in Transient Execution (TTE). TTE expands the attack
surface of transient control-flow hijacks by using the kernel
and in some instances even the CPU as confused deputies for
manipulating the BTB and RSB. Our evaluation of the TTE
variants shows new capabilities in different scenarios: TTE of
the BTB (TTEBTB) trains the BTB in transient execution with
a target that is later consumed by a branch to trigger attacker-
controlled transient execution. Likewise, by executing a call
instruction in transient execution, TTE of the RSB (TTERSB)
trains the RSB with a target that is subsequently consumed
by a return instruction. While TTEBTB and TTERSB can use
the kernel as a confused deputy to poison microarchitectural
buffers after kernel entry, they require specific gadgets that are
not necessarily trivial to find. Is it possible to lift this require-
ment by turning the CPU into a confused deputy instead?

INCEPTION. Recent work shows that PHANTOMJMPS
enable transient control-flow hijacking from an arbitrary
instruction on AMD Zen 1(+) and Zen 2 [50], as well as the
more recent AMD Zen 3 and Zen 4 [51]. If PHANTOMJMPS
allow manipulation of the branch predictor in their short



transient window, synergies between PHANTOM and TTE
would allow for new variants of TTE. Our investigation
shows that TTERSB is possible inside a PHANTOMJMP, even
in the absence of a call, using a new primitive which we refer
to as PHANTOMCALLS. By triggering this PHANTOMCALL
inside the transient window of a PHANTOMJMP, an attacker
can push an arbitrary return address to the RSB by injecting
a call prediction for an arbitrary instruction. In essence,
the CPU trains the RSB autonomously with a non-existent
control flow. PHANTOMCALLS manipulate the RSB regard-
less of execution of the target, bypassing AMD’s hardware
mitigations such as Zen 2’s chicken bit and the brand-new
Automatic IBRS feature for Zen 4.

Poisoning a single RSB entry alone, however, compli-
cates exploitation. Therefore, our proof-of-concept exploit
INCEPTION creates an infinite loop in transient execution
using a recursive PHANTOMCALL, poisoning multiple RSB
entries. Subsequent return instructions provide INCEPTION
with a long-lasting transient execution window from an
attacker-provided code location. On Zen 1(+) and Zen 2, this
return instruction is in fact the one sanitized on kernel entry
with jmp2ret, now again under transient control of the attacker
due to TTE. Our analysis of possible mitigations suggests
that a full flush of the branch predictor is necessary to mitigate
INCEPTION. Unfortunately, our analysis shows that Zen 3 and
Zen 4 do not provide hardware support for a full flush of the
branch predictor, requiring mitigations at the microcode level.

Contributions. Our contributions are as follows:

• Introducing the new TTE class and an evaluation of its
variants on Intel and AMD microarchitectures.

• Discovering PHANTOMCALL, allowing manipulation
of the RSB despite recent hardware mitigations on all
existing AMD Zen microarchitectures.

• Constructing INCEPTION by creating nested PHANTOM-
CALLs to pollute the RSB recursively. INCEPTION leaks
/etc/shadow on fully patched AMD Zen 4 systems in
40 minutes, in 6 out of 10 trials.

• Evaluation of the ibpb mitigation against INCEPTION
on Zen 1(+) and Zen 2. This mitigation introduces
between 93.1% and 239.2% overhead on Zen 1(+) and
Zen 2, depending on the specific microarchitecture. Our
analysis shows that ibpb is not a sufficient mitigation
against INCEPTION on Zen 3 and Zen 4.

Responsible disclosure. We communicated with Intel and
AMD in February 2023. INCEPTION was under embargo until
August 8, 2023 to provide adequate time for development
and testing of new mitigations that require microcode
patching. INCEPTION is tracked under CVE-2023-20569.
Further information about INCEPTION can be found at:
https://comsec.ethz.ch/inception.

2 Background

We discuss the necessary background concepts for this
paper including speculative execution, branch prediction,
control-flow hijacks and their mitigation.

2.1 Speculative execution
To prevent under-utilization of execution units due to pipeline
stalls, a continual stream of instructions must be provided by
the CPU frontend. Slow operations, such as memory requests,
that dictate the control flow of a program, are examples
of such stalls. Speculative execution is a key technique for
avoiding stalls by predicting the control flow of the program.

A control-flow edge, or branch, needs a predicted branch
target before its potential dependencies (e.g., memory loads)
have been resolved. Branches are either conditional or un-
conditional, and direct or indirect. All types of branches need
predictions to avoid stalls. In particular, unconditional indirect
(e.g., jmp [reg]) and conditional direct (e.g., cmp [reg], 0; je L)
branches that depend on slow memory operations greatly ben-
efit from early predictions. Conditional branches can be pre-
dicted in two directions: taken or non-taken (i.e., fall through).

Direction prediction may be rule-based (i.e., static). For
example, a conditional backward branch is likely a loop, thus
likely taken, whereas a conditional forward branch is likely
from an error check, thus likely non-taken (i.e., fall through).
Programs are typically run in predictable patterns, so that
over time, branch predictors that remember previous branch
resolutions can predict current branches with barely any error.

2.2 Modern branch prediction
The branch prediction unit serves predictions for all types
of branches. It predicts the direction of conditional branches,
the target of conditional and unconditional direct branches,
indirect branches, and returns.

A Branch Target Buffer (BTB) stores branch targets
associated with different branches. The indexing and structure
of BTB entries varies across CPUs. Their purpose however
is to provide a branch target given the current instruction
pointer and branch history. Both direct and indirect branch
targets are provided by the BTB. Conditional direct branches
are moreover associated with a Pattern History Table (PHT)
that is indexed by the n last branch directions [54]. Modern
CPUs are known to use other prediction structures than PHT,
such as TAGE [43,45]. Return target predictions are managed
by the Return Address Predictor or Return Address Stack
(AMD terminology) or Return Stack Buffer (RSB) (Intel
terminology). We refer to this buffer as the RSB throughout
the paper. The RSB tracks return targets alongside the
architectural program stack to provide faster return target
predictions without needing to wait for memory-dependent
return targets on the program stack. Although RSBs often
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behave like circular stacks [36], modern processors diverge
from such semantics, for example by being able to detect and
recover from incorrectly pushed and popped entries [4].

For an accurate prediction, the history of previous
branches is sometimes taken into account. This is particularly
important for indirect branches and conditional branches,
where the target may change during program execution. On
Intel CPUs, branch history is stored in a global per-thread
Branch History Buffer (BHB) as a footprint of the source and
target of the n previously taken branches [9, 30].

Branch predictors receive feedback throughout program
execution. However, it is unclear at which stage in the
processor pipeline feedback is provided. Can branch
predictors receive branch resolution feedback from branches
that have not advanced through all pipeline stages?

2.3 Speculative control-flow hijacks
Spectre attacks abuse the above-mentioned buffers to
trigger controlled mispredictions, resulting in speculative
control-flow hijacks. Spectre-PHT [30] forces the direction
of a conditional branch to be mispredicted, Spectre-BTB [30]
forces a poisoned BTB entry to be served for an indirect
branch, and Spectre-RSB [33, 36] forces a mismatch between
the return target on the program stack and RSB. While
software and hardware defenses exist to mitigate these,
researchers continue to find mitigation flaws that re-enable
these attacks [9, 37, 48, 49].

Recent work on AMD CPUs shows that branch target pre-
diction occurs at an early stage in the pipeline, before instruc-
tions are decoded [50]. This means that the type of branch
(if any) is also subject to prediction, which introduces PHAN-
TOM speculation [51], also known as Branch Type Confusion
(BTC) [6]. As such, the prediction of branch type must also be
tracked in a data structure, which is assumed to be the BTB.

2.4 Mitigating speculative control-flow hijacks
Spectre-BTB can be mitigated using retpolines [47] or
IBRS [12, 40]. Retpolines replace indirect branches with
returns, forcing the RSB to be used instead of the BTB for
predictions. IBRS is a hardware mitigation that prevents
branch targets entries learned in a lower privilege mode
(e.g., user mode) to be used in a higher one (e.g., kernel
mode). Enhanced IBRS (eIBRS) [12] and Automatic
IBRS (AutoIBRS) [40], deployed in newer Intel and AMD
processors respectively, are more efficient by not requiring
MSR writes on privilege transitions.

Spectre-RSB is mitigated through RSB stuffing. By filling
up the RSB with harmless return targets when switching
execution context, the return predictions of the victim context
can not be influenced by an attacker. Return target prediction
can also be forced into BTB prediction by underflowing the
RSB [49]. RSB stuffing can be used in combination with

call-depth tracking to prevent this on Intel CPUs [56]. Modern
Intel CPUs instead support Restricted RSB Alternative to
prevent harmful speculation on RSB underflows [25].

Because return instructions can be confused with indirect
branches and hence be served BTB predictions on AMD
systems vulnerable to PHANTOM speculation, retpolines are
insufficient. jmp2ret mitigates PHANTOM speculation on
returns by replacing all returns (including those inside ret-
polines) with direct branches to a single, protected return. On
privilege transitions, this return is sanitized (i.e., untrained)
in the BTB by confusing it with a non-branch instruction [6].

PHANTOM speculation also occurs on non-branch instruc-
tions, known as PHANTOMJMPS [50]. To mitigate this issue,
AMD revealed an undocumented MSR register bit, known
as the Spectral Chicken (Linux terminology [57]) or Sup-
pressBPOnNonBr (AMD terminology). When set, branch
prediction is limited to control-flow edges.

2.5 Discussion

The mitigations discussed above can be categorized as either
restricting or sanitizing predictions. Restricting predictions
either prevent use of certain predictions (AutoIBRS, and
eIBRS) or of an entire predictor (retpolines). Sanitizing
predictions, such as jmp2ret and RSB stuffing, sanitize
predictions before execution of vulnerable branches. The
main assumption behind both categories, is that predictions
must have been poisoned by the attacker before transitioning
to the victim context (e.g., the higher privileged kernel). The
question is whether this assumption is necessarily true, or
if branch predictions can be poisoned after switching to the
higher privilege through a confused deputy?

3 Threat Model

We consider a typical scenario where an unprivileged attacker
process aims to leak sensitive information from the kernel.
We assume the kernel to be free of software vulnerabilities,
and running on a processor that supports speculative and
out-of-order execution. Specifically, in this work we target the
Linux kernel running on x86-64 Intel and AMD processors.
We also assume the default configuration of all existing miti-
gations against transient execution attacks. These mitigations
include retpoline [3, 13], call-depth tracking [56], jmp2ret
and SuppressBPOnNonBr [6], user pointer sanitization [1],
KPTI [23], and disabling of unprivileged eBPF [38]. For
our TTE primitives, we consider CPUs from both Intel and
AMD, but our end-to-end exploit requires the processor to be
affected by PHANTOM speculation (AMD Zen 1 (+), Zen 2,
Zen 3 or Zen 4 [51]). For Zen 4, we additionally consider
Automatic IBRS, supported in Linux 6.3 and later [40].



4 Overview

To prevent transient execution attacks, mitigations restrict
or sanitize branch predictors between privilege levels. De-
spite these mitigations, an attacker can still trigger (limited)
transient execution windows under which potentially invalid
control-flow transfers may be observed by the processor.
While these limited windows do not immediately lead to infor-
mation disclosure, they may be used to perform TTE. The first
challenge that we try to address in this paper is to understand
the conditions under which TTE is successful on either the
BTB or RSB and the requirements that it puts on the attacker.

Challenge (C1). Understanding the necessary conditions
for TTE and its requirements for an attack.

Section 5 addresses this challenge by reverse engineering
the conditions under which the BTB and RSB can be trained
in transient execution. In Section 5, we focus on TTE variants
that are relevant for our end-to-end attack, and we leave a
more thorough analysis of other TTE variants to Section 8.

Our analysis shows that TTE expands the attack surface of
transient execution, but the necessary gadget are sometimes
difficult to find [26, 49]. Instead of using a kernel gadget as
our confused deputy, we use the CPU to perform TTE with
PHANTOM speculation. According to AMD however, the
SuppressBPOnNonBr bit (on-by-default in Linux) prevents
PHANTOM speculation arising from non-branch instructions
(i.e., PHANTOMJMPS) on Zen 2. Furthermore, PHANTOM
speculation does not trigger transient execution on Zen 3 and
Zen 4 [51]. This leads us to our second challenge:

Challenge (C2). Understanding the impact of PHAN-
TOM speculation on TTE, considering its mitigations
and its limited effect on newer microarchitectures.

Section 6 introduces a new PHANTOM speculation
primitive that we refer to as PHANTOMCALL. PHANTOM-
CALL enables training of the RSB in transient execution
(TTERSB) using non-branch instructions, without requiring
any execution. Because of this, PHANTOMCALL is effective
on Zen 3 and Zen 4 as well, and neither SuppressBPOnNonBR
nor Automatic IBRS prevents PHANTOMCALLS.

While this primitive enables us to poison one RSB entry
in the kernel context, practical exploitation is difficult due to
the undocumented RSB recovery mechanisms. This provides
us with the last challenge:

Challenge (C3). Practical exploitation with PHANTOM-
CALL.

Section 7 describes INCEPTION, our end-to-end exploit
using TTERSB, and PHANTOMCALL. INCEPTION creates
an infinite hardware loop without the corresponding software

1 void TTE_pht_btb (state_t *a, void (*b)()) {
2 if (*a) { /* mispredict as true */
3 b(); /* inject disclosure gadget referenced by b */
4 }
5 }

Listing 1: A code snippet vulnerable to TTEPHT-BTB

code in transient execution using recursive PHANTOMCALLS,
poisoning many RSB entries as a result. This mechanism
enables INCEPTION to hijack return instructions. There are a
number of additional practical challenges, such as bypassing
KASLR and finding disclosure gadgets, that we also discuss
in Section 7.

5 Training in Transient Execution

The common setup of a transient execution attack is a
speculation gadget that is trained to transiently execute an
incorrect control flow where memory can be leaked through
a disclosure gadget. A common disclosure gadget loads a
secret from an attacker-controlled address, which is then
encoded in a subsequent dependent memory access that
leaves a trace in the cache, observable via a cache attack
such as Flush+Reload [53] or Prime+Probe [39]. TTE has
two interesting properties: (i) the injected branch target only
ever executes transiently, meaning it can contain, beyond a
disclosure gadget, arbitrary or invalid instructions, and (ii)
the attacker can escalate a limited speculation primitive under
certain conditions.

We experiment with various transient execution windows
to see whether they can manipulate the BTB or RSB. We con-
sider four methods to trigger a transient execution path where
the BTB or RSB may be trained: (1) through conditional
branches, (2) indirect branches, (3) returns, or (4) through
Out-of-Order (OoO) execution, which causes a transient
execution path, for example after a faulting instruction. We
note that other methods are possible, for example transient
windows caused by store-to-load forwarding [28] and spec-
ulative store bypass [24], which we leave for future work. We
use TTEA-B to refer to using a transient execution triggered
by method A to train the microarchitectural buffer B. In this
section, we discuss the general method to accomplish TTE
and leave the details of the individual variants to Section 8.

5.1 BTB training in transient execution

Listing 1 demonstrates an example of a code snippet,
potentially exploitable with TTEBTB. If the condition of the
branch on line 2 holds, an indirect branch to b is executed,
which trains the BTB. If the attacker can skew the direction
of this conditional branch so that b() is executed transiently
(TTEPHT-BTB), we hypothesize that the BTB is also trained
with the attacker-controlled value b as branch target.



1 void TTE_pht_rsb (state_t *a) {
2 if (*a) { /* mispredict as true */
3 f(); /* push return target to RSB */
4 DISCLOSURE_GADGET; /* top of RSB will point here */
5 }
6 return; /* predict DISCLOSURE_GADGET as target */
7 }

Listing 2: A code snippet vulnerable to TTEPHT-RSB

To turn TTE of the BTB into arbitrary transient code
execution, two conditions must be fulfilled: (i) we can skew
the conditional branch direction, and (ii) we control b to
inject an arbitrary branch target. To furthermore leak memory,
an attacker needs additional control over at least a memory
pointer to some secret of interest. Leveraging TTE with this
example, the attacker gains an extra primitive: they can train
the indirect branch using transient execution in a preparatory
step. Afterwards, they can run the victim again and provide
an arbitrary value in b while still reaching the previously
injected branch target.

However, indirect branches are commonly replaced by
retpolines on many microarchitectures, since they are known
to be vulnerable to Spectre-BTB. Additionally, meeting
condition (ii) means the attacker already has arbitrary
transient code execution but uses it for training instead of
leaking data. More complex scenarios exist than the toy
example in Listing 1, for example caused by speculative
type confusion [29]. Regardless, TTEBTB exposes new
possibilities for the attacker, and we discuss its variants in
Section 8. Next, we discuss TTE for the RSB, that loosens
requirements from the viewpoint of an attacker.

5.2 RSB training in transient execution

Listing 2 demonstrates a piece of code that may update the
RSB in with a transiently executed call instruction triggered
by a mispredicted conditional branch (TTEPHT-RSB). This
piece of code yields some interesting results: the transiently
executed call updates the RSB only on all AMD microar-
chitectures, although unreliably. To investigate further, we
construct a more thorough experiment using TTEBTB-RSB.

Experiment setup. Figure 1 illustrates how we verify RSB
training through a mispredicted indirect branch with a training
procedure (T1) and a training in transient execution procedure
(TTE). The goal of the experiment is to determine whether
a call instruction executed in transient execution manipulates
the state of the RSB. Green nodes (Di, 0≤ i< x) are disclo-
sure gadgets that we try to inject into the RSB by transiently
executing call sites Ei, 0≤ i≤x (yellow nodes) that immedi-
ately precede the disclosure gadgets. For each Di, a different
memory load inside a reload buffer is used to indicate which
Di transiently executed. Ei calls the next call site Ei+1, in
sequence, such that Di becomes the return target of Ei+1, until
reaching Ex. Gray nodes Ex and C, are barrier gadgets to stop

A: jmp [r1]

B: jmp [r2]

r1=&B 
r2=&C

T1 TTE
r1=&C  
r2=&E0

A B C

Transient path

Architectural path

Initial
state

E0
D0

...
ExE1

D1

A B C

E0
D0

...
ExE1

D1

Initial
state

Figure 1: Injecting RSB entries in the transient execution window
of an indirect branch (TTEBTB-RSB). In T1, A is trained to execute
B. Next, in TTE, A transiently executes B, which in turn executes a
series of call gadgets Ei, each followed by a disclosure gadget Di.

1 id = 0
2 .rept N
3 call 1f
4 load (RB + id*4096), %rdi
5 1: lfence
6 pop %r8
7 id = id + 1
8 .endr

Listing 3: Pseudo-assembly priming the RSB with N different return
targets before the TTERSB experiment. Execution is measured with
a cache side-channel. N is the RSB capacity.

1 .rept N
2 push 1f
3 ret
4 1:
5 .endr

Listing 4: Inferring the RSB state by issuing N returns.

speculation using a memory barrier instruction (e.g., mfence).
We run our experiment for 0≤x≤50 to be able to compare
the results of executing different numbers of transient calls.

To recover from call instructions which are executed tran-
siently, return target predictors implement mechanisms that
restore the RSB to a consistent state [4]. This means that RSB
entries manipulated in transient execution may become in-
valid and unusable as a consequence. The Di gadgets are thus
only observable for transiently pushed entries that were not
invalidated. To also observe invalidated entries, we establish a
known state of the RSB by priming it fully using N calls pre-
ceding N additional disclosure gadgets, as shown in Listing 3,
where N is the size of the target RSB (e.g. 31 on Zen 1, Zen +
and Zen 2). We flush the x + N reload buffer (RB) entries
from the cache hierarchy before running the experiment.

We first execute T1, which trains the BTB to transiently
execute B in the TTE step. Next, we prime the RSB according
to Listing 3. We then execute TTE, which triggers a series
of calls to Ei, potentially manipulating the RSB. After
performing the experiment, we examine the RSB state. To do
this, we execute N returns, as shown in Listing 4. If the RSB
was not manipulated by TTE, we expect to have transiently
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Figure 2: An implementation of a circular RSB with a committed
top-of-the-stack pointer (shown in blue) and a speculative counterpart
(shown in red). RSB entry numbers indicate their insertion order
(0 first, 8 last). Entries depicted in red were inserted transiently. 1
shows RSB state before transient execution. 2 pushes an entry
to the RSB transiently. In 3 , the transient window is over and the
speculative pointer is restored. 4 shows the RSB state after 7 returns.

executed the primed return sites in Listing 3. If an RSB entry
was manipulated but invalidated, we expect it to no longer
be used. If an RSB entry was manipulated but not invalidated,
we expect to observe a memory access triggered by Di.

Results. The results show that manipulating the RSB with
TTEBTB-RSB is feasible on all considered AMD microar-
chitectures, but not on Intel microarchitectures (Table 1 in
Section 8 includes all our TTE results). This is in line with
the Software Optimization Guide, which states that transient
pushes and pops to the RSB may occur [4, 5]. We observe
that transiently executed calls evict the oldest entries, at
the bottom of the RSB. That means that, in the case of a
single transiently executed call, the last return will not use
its corresponding primed RSB entry. Likewise, executing two
transient calls evicts two entries at the bottom of the RSB,
causing the last two returns executed to their corresponding
RSB entries. RSB manipulation of the bottom entries could
be explained by having two RSB pointers for a circular buffer:
a committed one and a speculative one, as shown in Figure 2.
Upon misprediction, the speculative pointer restores to the
committed one, which effectively puts transiently injected
entries at the bottom of the buffer.

However, the returns associated with the corrupted entries
do not consume the injected Di targets, nor the previously
primed entries. Instead, RSB entries untouched by the
transiently executed calls are recycled. For example, in
step 4 of Figure 2, entry 1 may be predicted instead of
the overwritten entry 8. This suggests that AMD’s return
predictors implement recovery mechanisms for handling
transiently pushed entries. We find that we can bypass
these mechanisms by executing multiple calls in a transient
window. For example, on Zen 1(+) and Zen 2, this happens
as soon as we overwrite all 31 RSB entries. We will discuss
this in more detail in Section 7.1.

Observation (O1). We can corrupt return predictions on
AMD microarchitectures with TTEBTB-RSB.

On Intel microarchitectures, we were unable to poison
any RSB entry with TTE. Intel patents describe speculative
RSBs [19, 27], which could result in the behavior we observe.

We will further show in Section 8 that other transient
execution windows have a similar effect on AMD’s RSB.
However, finding exploitable gadgets similar to Listing 2 in
the victim code might be difficult. The question is whether
we can relax this constraint by abusing other properties of
AMD microarchitectures.

6 PHANTOM and TTE

AMD Zen microarchitectures are known to be vulnerable
to PHANTOM speculation, leading to additional potential
variants of TTE. PHANTOM is a class of transient execution
issues arising when the predicted branch type, stored in the
BTB, conflicts with the actual instruction [6,51]. For example,
the BTB may contain a prediction for an indirect jump, while
the actual code location contains a return, resulting in the re-
turn being predicted as an indirect branch. PHANTOM can also
occur in absence of any branch, triggering speculation from
non-branch instructions, referred to as PHANTOMJMPS [50].

Chicken out from PHANTOMJMPS. In response to the
discovery of PHANTOM, AMD revealed an undocumented
configuration of Zen 2 CPUs that can be enabled by setting
MSR bit 0xC00110E3[1], known as SuppressBPOnNonBr.
This is a chicken bit that configures the CPU’s branch target
predictor to suppress predictions for non-branch instructions.
The configuration promises that all speculative execution
on non-branch instruction is prohibited, which reduces the
attack surface of PHANTOM to arbitrary branches only. This
mitigation is currently enabled by default on Linux.

PHANTOM on Zen 3 and Zen 4. While AMD originally
claimed that Zen 3 and Zen 4 are immune to PHANTOM,
later work has shown that these microarchitectures are also
affected by PHANTOM, although only partially [51]. In
particular, transient execution due to a PHANTOMJMP is not
possible on these newer microarchitectures, but the predicted
target is still fetched and decoded.

6.1 Synergies between TTE and PHANTOM

Recalling the hard-to-find gadget in Listing 2, we want to
know whether it can be simplified using PHANTOM. Our first
observation is that a conditional branch is unnecessary if we
can trigger a call transiently using PHANTOM. Since PHAN-
TOM on Zen 1(+) and Zen 2 results in transient execution, we
can use any branch to trigger a transient call to manipulate
the RSB. On Zen 1(+), we can even hijack non-branch in-
structions. Hence, PHANTOM would significantly relax the
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Figure 3: Experiment setup to test feasibility of executing a
PHANTOMCALL in a PHANTOMJMP. Green and blue colors indicate
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constraints of the original gadget, since it can be split into two.
The first half of the gadget only needs to contain an arbitrary
instruction that can be poisoned with PHANTOM, followed by
a return. The second half, being a call followed by a disclosure
gadget, can be anywhere in the executable address space.

Training the RSB in a PHANTOM window. With PHANTOM,
the architectural branch type solely dictates the length of the
transient execution window [6], giving rise to two cases which
lead to transient execution: a short transient window, concern-
ing architectural direct branches or non-branch instructions,
and a long transient window, concerning architectural indirect
branches and returns. We are mostly interested in the cases
yielding a short transient window, since they can be triggered
on arbitrary branches on both Zen 1(+) and Zen 2.

We design an experiment to determine the feasibility of
manipulating the RSB within a PHANTOM-induced transient
window. For this, we execute an indirect branch to trigger
a PHANTOMJMP at the victim instruction using out-of-place
training. We set the target of the indirect branch to an address
that contains a call instruction. To determine whether the
PHANTOMJMP interacts with the RSB, we prime the RSB
as as shown in Listing 3 and 4.

Results. Our results show that we can manipulate the RSB
within a PHANTOM-induced window on both Zen 1(+) and
Zen 2. On Zen 1(+) the PHANTOMJMP to the call can be
triggered even on non-branch instructions, which is expected,
since mitigations against this are only available on Zen 2.

Observation (O2). We can manipulate the RSB using
PHANTOM speculation on Zen 1(+) and Zen 2.

However, PHANTOM speculation on non-branch instruc-
tions is prevented with the SuppressBPOnNonBr mitigation
on Zen 2. Likewise, on Zen 3 and Zen 4, PHANTOM specula-
tion does not allow transient execution. Section 6.2 discusses
how we bypass SuppressBPOnNonBr on Zen 2 with a new
primitive we refer to as PHANTOMCALL, and Section 6.3
discusses how minor adaptations to PHANTOMCALL makes
it effective on Zen 3 and Zen 4 as well, despite AutoIBRS.

6.2 Bypassing SuppressBPOnNonBr with
PHANTOMCALL

We hypothesize that TTE of the RSB using PHANTOM works
because of a call prediction on the PHANTOMJMP target, and
not because of the call instruction itself. We design an exper-
iment to test our hypothesis, as shown in Figure 3, with the
state of the BTB and RSB shown after each step. In training
step T1, we first execute a branch from training branch source
TJ to PHANTOMCALL source PC. This creates a BTB entry
for a branch, with its target set to PC, which only contains
NOPs. In training step T2, we execute a 3-byte wide call
instruction at call source TC, inserting a BTB entry for a call
(target not relevant). TC and PC map to the same BTB entry.
After performing steps T1 and T2, we fully prime the RSB
with distinct return sites, each issuing an identifiable memory
access, as shown in Listing 3. In step TTE, we execute the
NOP instructions at PHANTOMJMP source PJ, which collides
with the BTB entry of TJ. Thanks to step T1, we expect PC
as the predicted target of PJ. Thanks to step T2, because
there exists a call-prediction for PC, we expect the CPU to
transiently push a return target (PC+3) onto the RSB. Lastly,
we flush our reload buffer and execute return instructions
according to Listing 4. We reload our memory pointers to
determine which of the RSB entries are invalid or still intact.

The results confirm our hypothesis: the last return does
not transiently execute the primed return site, meaning we
have overwritten an RSB entry using a PHANTOMCALL
inside a PHANTOMJMP-induced speculation window (i.e.,
nested PHANTOM speculation). If there exists a call-target
prediction at our PHANTOMJMP target, we presume the
CPU does not need to decode before pushing its predicted
return target to the RSB. We therefore conclude that the
call prediction alone prematurely pushes to the RSB, before
instructions are decoded. Supporting this conclusion, we find
that the PHANTOMJMP to the PHANTOMCALL manipulates
the RSB even when both branches are injected on non-branch
instructions, despite the Zen 2 SuppressBPOnNonBr mitiga-
tion. Given this, we hypothesize that SuppressBPOnNonBr,
while suppressing transient execution of PHANTOMJMP
targets, does not suppress BTB consultation, allowing RSB
manipulation without execution.

We refer to this new primitive as PHANTOMCALL,
allowing us to manipulate the RSB from any instruction,
without any architectural call instruction on the transient path.

Observation (O3). We can corrupt an RSB entry
using a PHANTOMCALL on Zen 1(+) and Zen 2
microarchitectures, bypassing SuppressBPOnNonBr.

6.3 PHANTOMCALL on Zen 3 and Zen 4
Given that our results show that we can perform TTERSB
without any transient execution using a PHANTOMCALL,
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Figure 4: Triggering TTERSB inside a PHANTOM speculation
window on Zen 3/4. The colored boxes identify different cache lines.
Architectural and transient branches are indicated by solid black and
dashed red arrows, respectively.

we investigate whether we can use this primitive on Zen 3
and Zen 4 as well. After additional reverse engineering, we
find that TTERSB using PHANTOM on Zen 3 and Zen 4 is
effective, but only under certain circumstances. In particular,
TTERSB using PHANTOM requires both the PHANTOMJMP
and the PHANTOMCALL to be at specific memory addresses
relative to those used for BTB consultation.

To successfully trigger the call in a PHANTOMJMP target,
we consider four different cache lines as shown in Figure 4.
We inject the PHANTOMJMP on a cache line A+1, which
linearly follows the cache line of a preceding branch target.
Similarly, we place the PHANTOMCALL on a cache line B+1,
which is the cache line following that of the PHANTOMJMP
target. We hypothesize that this is necessary to delay the
decoder. The time it takes for the frontend to fetch the next
cache line and feed it to the decoder may introduce enough
delay to allow manipulation of the RSB before the decoder
can detect that predictions are incorrect.

We find that AutoIBRS does not prevent RSB manipulation
due to a PHANTOMCALL inserted in a lower privilege level.
This is in line with our observations on Zen 2, where
we bypassed the SuppressBPOnNonBr mitigation with
PHANTOMCALL. We thus hypothesize that AutoIBRS only
prevents transient execution at the target of a PHANTOMJMP,
and not consultation and manipulation of the BTB and
RSB respectively. We can also deduce this from statements
previously released by AMD [6], which mention that IBRS
is effective for branches decoded as indirect, indicating the
restriction is enforced after instructions have been decoded.

Observation (O4). PHANTOMCALL works on Zen 3
and Zen 4 as well under certain circumstances, bypassing
AutoIBRS.

PHANTOMCALLS significantly simplify the requirements
for exploitation with TTERSB. We can insert the address of
an arbitrary disclosure gadget into the RSB by injecting a
PHANTOMCALL right before it. Furthermore, by performing
this PHANTOMCALL inside a PHANTOMJMP, we can trigger
this from anywhere. We leverage these capabilities in our
end-to-end exploit, INCEPTION, which we discuss next.

7 INCEPTION

To turn PHANTOMCALL into an end-to-end exploit, we need
to overcome two challenges. First, to bypass mechanisms that
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Figure 5: The experiment setup to test the number of entries we can
pollute with a recursive PHANTOMCALL in a PHANTOMJMP. Green
and blue colors indicate two different BTB mappings.

restore the RSB, we need to overwrite multiple RSB entries,
as pointed out in Section 5.2. We thus need to construct a
chain of PHANTOMCALLS, where the last PHANTOMCALL
has to precede a disclosure gadget. In particular, on Zen 1(+)
and Zen 2 we need to overwrite all 31 RSB entries to bypass
the recovery mechanism. Second, the short transient execution
window, caused by a PHANTOMJMP, needs to somehow fit the
chain of PHANTOMCALLS to overwrite all these RSB entries.
Addressing this challenge requires new insights that we
discuss in Section 7.1 and Section 7.2. We then proceed to the
design of our end-to-end exploit INCEPTION in Section 7.3
through Section 7.7. Lastly, we evaluate INCEPTION on Zen 2
and Zen 4 in Section 7.8 and Section 7.9, respectively.

7.1 Recursive PHANTOMCALL

To turn PHANTOMCALLS into a practical exploit, we need
a large number of PHANTOMCALLS in a single transient
window. We therefore construct a chain of PHANTOMCALLS
to determine how many we can execute using a single
PHANTOMJMP. We realize that we can establish a single
PHANTOMCALL that branches into itself, i.e. a recursive loop
of PHANTOMCALLS. By avoiding changing the (transient)
instruction pointer, we assume that the CPU can manipulate
the most RSB entries in a single transient window.

Repeating the experiment described in Section 6.2, we
monitor the number of RSB entries that get corrupted by
a recursive PHANTOMCALL. However, this time, the call
at TC branches into PC, at which the PHANTOMCALL will
be triggered, thus establishing a recursive prediction. An
overview of the experiment is shown in Figure 5. Since PC
executes after TC in T2, and PC and TC map to the same BTB
entry, executing PC should invalidate the prediction from TC
to PC. To avoid this, we make sure that the indirect call in step
T2 page faults, by temporarily unmapping PC. Regardless
of the page fault, we expect the BTB to be primed with a
prediction, as shown in previous work [49]. Interestingly,
unmapping is unnecessary on Zen 1(+) and Zen 2. We believe
that this could be due to a race condition that happens to be
in our favor. The prediction associated with TC may not have
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Figure 6: Entries affected by the recursive PHANTOMCALL. Yellow
shows invalidated entries that remain unconsumed, while red indicates
poisoned entries consumed for prediction, enabling arbitrary transient
code execution. The size of the RSB is 31 on Zen 1(+) and Zen 2 (or
15 in 2T mode), while it contains 32 entries on Zen 3 and Zen 4.

updated the BTB when we are executing PC.

Results. Figure 6 shows that we can corrupt a large number
of RSB entries using our recursive PHANTOMCALL in a
PHANTOMJMP on all Zen microarchitectures. An interesting
observation we make is that the PHANTOMCALL at PC is
not invalidated after the TTE step for most of the iterations,
unlike the prediction for the PHANTOMJMP. This is beneficial
for our attack, since it allows us to trigger the recursive
PHANTOMCALL multiple times after priming the BTB.

As discussed in Section 5.2, corrupted entries are not al-
ways used for return prediction, due to the RSB recovery
mechanisms. On Zen 3 and Zen 4 however, we find that our re-
cursive PHANTOMCALL overwrites enough entries to bypass
the recovery mechanisms, as shown in Figure 6. Specifically,
on Zen 3 microarchitectures we hijack a single return instruc-
tion by first exhausting 17 uncorrupted RSB entries. On Zen 4,
we need to exhaust 8 uncorrupted RSB entries, after which we
control the next 16 return target predictions. We find that the
number of RSB entries polluted heavily relies on the exact lo-
cation at which we trigger PHANTOM speculation, the state of
the cache, the state of the BTB, and the preceding control flow.

On Zen 1(+) and Zen 2 microarchitectures, however, we
do not overwrite enough RSB entries to bypass the recovery
mechanisms. Our results in Section 5.2 showed that tran-
siently overwriting all 31 RSB entries leads to all corrupted
entries being used for prediction on these microarchitectures.
We therefore expect that overwriting all RSB entries using
a recursive PHANTOMCALL would allow us to bypass the
recovery mechanisms on Zen 1(+) and Zen 2 as well.

7.2 Dual-threaded mode

Rather than trying to achieve 31 transient recursions in the
transient window of a PHANTOMJMP, we consider whether
the capacity of the RSB can be reduced. When two sibling
threads are operating in parallel, Zen 1(+) and Zen 2 cores
switch to dual-threaded mode (2T-mode) [5], reducing the
RSB to only 15 entries per thread, instead of 31. As shown
in Figure 6, we can poison 18 entries in nested PHANTOM
speculation on Zen 1(+) and Zen 2, and we thus potentially
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Figure 7: INCEPTION visualized. The BTB and RSB state is shown
following steps T1, T2, and TTE. Green and blue colors indicate two
different BTB mappings.

control the entire RSB associated to a sibling thread under
dual-threaded mode.

We verify that the RSB capacity decreases from 31 to 15
entries for our thread while executing a workload in parallel
from the sibling thread. Repeating the experiment shown in
Figure 5 reveals that we can indeed overwrite all 15 RSB en-
tries on Zen 1(+) and Zen 2 microarchitectures. Having over-
written all entries, our transiently injected return target is used
by all following returns, as shown in Figure 6. This means that
we do not rely on deep call stacks on Zen 1(+) and Zen 2: any
return can be hijacked in dual-threaded mode by triggering
the recursive PHANTOMCALL right before it is executed.

7.3 Exploit design

We are now able to hijack return instructions by injecting arbi-
trary return targets using our recursive PHANTOMCALL on all
AMD Zen microarchitectures. Using this, we will construct
our exploit INCEPTION on Zen 1 (+), 2, and 4. INCEPTION is
not fully successful on Zen 3, as discussed later this section.

Figure 7 shows a visualization of INCEPTION together
with the resulting state of the BTB and RSB after each
training step. In the first training step T1, the attacker
executes a training branch at TJ, which collides with the BTB
entry of PHANTOMJMP source PJ. Residing in the kernel
address space, PJ is the address that initiates the recursive
PHANTOMCALL. The victim return VR is allocated after PJ
in the control flow. The target of the PHANTOMJMP is set to
PC, at which the recursive PHANTOMCALL will be triggered.
In training step T2, the attacker executes a training call at
TC that collides with PC in the BTB, which will establish the
prediction for the PHANTOMCALL. The target of this training
call at is set to PC, establishing a recursive PHANTOMCALL
prediction. Upon execution of PC, the CPU will thus
recursively inject RSB predictions to disclosure gadget G,
whose location immediately follows the PHANTOMCALL at
PC. As PC resides in kernel space, the training branches TJ
and TC will trigger page faults, which we recover from.



On Zen 3 and 4, we take the cache line placement of
the branches at TJ and TC into account. Concretely, this
means that the PHANTOMCALL in PC may be preceded
by different instructions to ensure that the start of PC and
the PHANTOMCALL fall in different cache lines. Likewise,
the PHANTOMJMP in PJ may be preceded by different
instructions, depending on the address using which the BTB
is indexed before executing PJ.

After steps T1 and T2, we invoke the kernel using a system
call to trigger the TTE step. Whenever we reach PJ, the BTB
provides the prediction to PC, and the speculative instruction
pointer is set to PC. Since there exists a prediction for a call
at PC, G is pushed to the RSB. Since the call prediction
is recursive, we will continue the loop of 1) updating the
instruction pointer, 2) consulting the BTB and 3) pushing to
the RSB. This recursion continues until the actual instruction
at the location of the PHANTOMJMP in PJ is eventually
decoded and the CPU corrects the misprediction by resetting
the instruction pointer back to PJ. Finally, in step S the victim
return at VR will take a prediction from the RSB. Since we
have overwritten RSB entries with return target G during
the TTE step, we start executing the disclosure gadget at
G, accomplishing a long speculation window in which we
control the executed instructions.

7.4 Dueling recursive PHANTOMCALLS

The desired disclosure gadget may not exist in the kernel code,
specially if the hijacked return is in a deep call stack (i.e., on
Zen 3 and Zen 4). In this case, INCEPTION can execute two
separate disclosure gadgets within the same transient window,
that together perform the desired operation, similar to [55].
INCEPTION achieves this by introducing two recursive
PHANTOMCALLS, or dueling recursive PHANTOMCALLS,
establishing a transient Return-Oriented Programming
(ROP) chain. The first recursive PHANTOMCALL trains the
RSB with the first disclosure gadget, G1, while the second
recursive PHANTOMCALL inserts the address of the second
disclosure gadget G2. As a result, some entries in the RSB
contain the address of G1, while others contain the address
of G2. If G1 ends with a return instruction, G2 potentially
executes in the same speculation window. However, for this to
work, RSB recovery mechanisms must be bypassed without
overwriting all entries, which is only possible on Zen 3 and 4.

The end goal of dueling recursive PHANTOMCALLS is to
have some (ideally one) of the newer RSB entries contain the
address of G1, and to have the other, older RSB entries contain
the address of G2. Figure 8 shows a possible progression of
the RSB state over time. 1 shows the unmodified RSB, before
the first recursive PHANTOMCALL. 2 shows the state after
triggering the first recursive PHANTOMCALL, which precedes
G1. 3 shows the state after two returns. 4 shows the state
after issuing the second recursive PHANTOMCALL, which
precedes G2. Lastly, step 5 shows the RSB state after addi-
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Figure 8: Triggering dueling recursive PHANTOMCALLS to
chain two disclosure gadgets G1 and G2 together. The arrow is the
committed top-of-the-stack pointer.

tionally two returns. The next return will transiently execute
G1, and until its return target has been resolved, subsequent
returns will keep taking predictions from the RSB, eventu-
ally leading to transient execution of G2. If G1 is idempotent
with respect to the CPU state relied on by G2 (e.g. register
or memory values), G1 can be executed more than once tran-
siently. Otherwise, we target the next return instruction, which
executes G1 once before reaching G2, as shown in step 6 .

7.5 Victim return instruction

Having designed INCEPTION, we proceed by searching for
an exploitable victim return in the Linux kernel. The first
requirement is that upon execution of the victim return, we
control the values in two registers or memory locations, V1
and V2. We use this to leak arbitrary information through the
kernel’s physmap area, similarly to previous work [20, 49].

As stated before, we can overwrite all RSB entries on
Zen 1 (+) and 2, and all of them will be used for return target
prediction. On Zen 3 and 4 we can only reach poisoned RSB
entries served for prediction after exhausting a number of
uncorrupted RSB entries. Therefore, on Zen 3 and 4, a second
requirement is to exhaust these returns after the recursive
PHANTOMCALL, before the victim return.

Previous work built an open-source framework to trace
register contents in the Linux kernel at the time of executing
a return instruction [49]. We use this framework to find
vulnerable returns that meet our requirements.

7.6 Derandomizing KASLR

As in previous work [49], we derandomize KASLR in three
steps. In all, we prime the BTB with the PHANTOMJMP and
the recursive PHANTOMCALL before issuing the system call.

1 Finding the kernel text. We use a disclosure gadget that
dereferences the attacker-controlled pointer in V1. When ex-
ecuting the system call, this load triggers only if we guess the
kernel text location right, which we infer using Prime+Probe.

2 Finding physical address mapping. To find the physical
address of our reload buffer, we trigger a transient load of
a physmap offset. We achieve this using a gadget that adds
V1 to the physmap base address and dereferences the result.



1 leave
2 xor edx,edx
3 mov esi,edx
4 mov edi,edx
5 jmp return_thunk ; jumps to return (jmp2ret mitigation)

Listing 5: The location where we trigger PHANTOM speculation in
__fdget_pos at kernel code offset 0x41db94 on Zen 1 (+) and 2. It
ends with a direct branch to the return thunk.

1 add r12,QWORD PTR [physmap]
2 mov rax,QWORD PTR [r12]

1 movzx eax,BYTE PTR [r14+0x2]
2 lea rdx,[r12+rax*2]
3 movzx r13d,WORD PTR [rdx]

Listing 6: Disclosure gadgets used on Zen 1(+) and Zen 2 for de-
randomizing KASLR (top, at offset 0xf22a44 of kernel text) and
arbitrary information leakage (bottom, at offset 0x70c4a6 of kernel
text).

Using Flush+Reload, we detect when we guess the physical
address correctly.

3 Finding physmap. We derandomize physmap using the
same gadget as in 1 . We trigger a transient load of V1, which
instead provides the reload buffer physical address added to
our physmap base address guess. Using Flush+Reload, we
detect when we guess the physmap address correctly.

7.7 Leaking kernel memory
To leak memory, we need to trigger transient execution
of a disclosure gadget that performs a secret-dependent
access in our reload buffer. We first prime the BTB with
the PHANTOMJMP and the recursive PHANTOMCALL. We
trigger execution of a disclosure gadget that dereferences
V1 and uses its result to index into the address in V2, which
points to the reload buffer. If V1 or V2 are provided by
memory locations, they first need to be loaded from memory
into registers. Using Flush+Reload, we can deduce the secret
residing at address V1.

7.8 INCEPTION on Zen 1(+) and Zen 2

Vulnerable return. We find that after issuing the system call
readv(), register R12 will hold the value we pass in RSI (i.e.,
second argument) and register R14 will hold the value we
pass in RDX (i.e., third argument) at the moment we execute
the return instruction of function __fdget_pos(). Listing 5
shows the last instructions of this function. We trigger the
PHANTOMJMP on line 2, poisoning the RSB right before
jumping to the return.

Disclosure gadgets. We could find the desired gadgets with
simple string matching against the assembly code of the
kernel text. Listing 6 shows the disclosure gadgets found.
Line 2 of Listing 6-top is used for steps 1 and 3 of breaking

1 call 0x8cfbe640
2 test eax,eax ; index BTB upon return from call
3 jg 0x8cf9040d ; trigger PhantomJMP (next cacheline)

1 call 0x8cf1bbf0
2 test eax,eax ; index BTB upon return from call
3 js 0x8cfbbc83
4 pop rbx
5 mov eax,r13d
6 pop r12
7 pop r13
8 pop r14
9 pop rbp

10 xor edx,edx ; trigger PhantomJMP (next cacheline)

Listing 7: The locations where we trigger PHANTOM specula-
tion in ip6_protocol_deliver_rcu (top, at offset 0xd905b9 from the
start of the kernel) and udpv6_queue_rcv_one_skb (bottom, at offset
0xdbbba7 from the start of the kernel text) on Zen 3 (bottom only)
and Zen 4.

KASLR. Lines 1 and 2 are together used for step 2 . Lastly,
Listing 6-bottom presents the disclosure gadget used to leak
arbitrary data.

Results. We evaluate INCEPTION on an AMD Zen 2 EPYC
7252 with microcode version 0x8301038 and 64GB of
RAM, running Linux 5.19.0-28-generic with all mitigations
deployed. We run our attack 50 times, each time leaking
4KB of randomized data. We reboot the machine every run
to re-randomize KASLR. Of the 50 runs, we successfully
break KASLR in 48 cases, in a median time of 5.5 seconds.
In those cases, INCEPTION leaks data at a rate of 126 bytes/s,
with an accuracy of 89.9%.

We furthermore show that INCEPTION is capable of
locating secrets in the physical memory. Specifically, we
let INCEPTION search for /etc/shadow to leak the root
password hash. We run INCEPTION in parallel on all 8
available cores, where each instance starts searching at a
different physical address. We try to locate /etc/shadow 10
times and reboot the machine after every attempt. Our results
show that we are able to successfully leak the root password
hash in all 10 runs, in a median of 11 minutes and 38 seconds.

7.9 INCEPTION on Zen 3 and Zen 4

Vulnerable return. We target the sendto() system call,
controlling memory locations using our message buffer,
whose address we pass in RSI (i.e. second argument). We
find that upon execution of the return in do_softirq.part.0(),
our message buffer is reachable using the address in RBX.
Likewise, our message buffer is pointed to by the R13 register
upon execution of the return instructions of ip6_local_out()
and ip6_send_skb().

Listing 7-top shows the location where we trigger
the PHANTOMJMPS to our recursive PHANTOMCALL.
Specifically, we trigger the PHANTOMJMP on the jg
instruction, shown on Line 3. We find that we reliably



1 mov rax,QWORD PTR [rbx+0x58]
2 mov r13,QWORD PTR [rax+0x8] ; Load kernel text
3 mov rax,QWORD PTR [rbx+0x18]
4 mov r12d,DWORD PTR [rax+0x20] ; Load kernel text + 4096
5 mov rax,QWORD PTR [rbx+0x30]
6 shr r12d,0x8
7 and r12d,0xff00
8 mov rsi,QWORD PTR [rax+0x10] ; Load kernel text + 8192

1 mov rax,QWORD PTR [rbx+0x48] ; Load physmap guess addr
2 mov rdi,QWORD PTR [rax+0xc0] ; Load physmap guess

1 mov rsi,QWORD PTR [rbx+0x48] ; Load secret addr
2 lea eax,[rdx+0x2] ; rdx == 0
3 shl r14d,cl
4 mov rcx,QWORD PTR [rbx+0x60] ; Load reload buffer addr
5 and edx,DWORD PTR [rbx+0x40]
6 movzx eax,BYTE PTR [rsi+rax*1] ; Load the secret
7 xor eax,r14d ; XORs secret
8 and eax,DWORD PTR [rbx+0x74] ; ANDs secret
9 mov DWORD PTR [rbx+0x68],eax

10 movzx r14d,WORD PTR [rcx+rax*2] ; Leaks the data

Listing 8: Disclosure gadgets used on Zen 4 for derandomizing
KASLR (top and mid, at offset 0xb0a720 and 0x97ef01 of kernel
text respectively) and arbitrary information leakage (bottom, at offset
0x701d74 of kernel text).

hijack the return in do_softirq.part.0() on Zen 4, during
which the address of our message buffer is held by RBX.
On Zen 3, however, we only control this return in a small
percentage of the iterations. Therefore, on Zen 3 we trigger
the PHANTOMJMP to our recursive PHANTOMCALL in the
udpv6_queue_rcv_one_skb() function, specifically on the
xor on Line 10 in Listing 7-bottom. We find that we reliably
hijack the return of either ip6_local_out() or ip6_send_skb(),
during which our message buffer address is stored in R13.

Disclosure gadgets. On Zen 3, we are unable to find a
disclosure gadget that uses the address in R13, even using
tools from previous work [49], or when considering dueling
recursive PHANTOMCALLS. Hence, we leave finding the
disclosure gadget for the Zen 3 exploit as future work. We
note however, that other kernel versions may include working
disclosure gadgets.

On Zen 4, we successfully found the disclosure gadgets
shown in Listing 8. To increase the Prime+Probe signal in
step 1 of breaking KASLR, out gadget loads 3 different
offsets of our guessed kernel text region, as shown in
Listing 8-top. To find the physmap base (i.e., step 3 of
breaking KASLR), we use the disclosure gadget shown in
Listing 8-mid. Listing 8-bottom shows the arbitrary data
disclosure gadget, found using tools of previous work [49].

Dueling recursive PHANTOMCALLS. We do not find a
disclosure gadget that leaks the physical address of our
reload buffer using a location in our message buffer, i.e.,
step 2 of breaking KASLR. We therefore leverage dueling
recursive PHANTOMCALLS to complete this step, using
the two disclosure gadgets shown in Listing 9. The second
recursive PHANTOMCALL is triggered by a PHANTOMJMP
on the instruction at Line 10 of Listing 7-bottom.

1 mov rax,QWORD PTR [rbx+rax*8+0x20] ; Load phys guess addr
2 mov rbx,QWORD PTR [rbp-0x8]
3 leave
4 xor edx,edx
5 mov ecx,edx
6 mov esi,edx
7 mov edi,edx
8 ret ; return into gadget below

1 add rax,QWORD PTR [physmap] ; Adds physmap base
2 mov QWORD PTR [rax],rdx ; Loads from physmap

Listing 9: Disclosure gadgets used on Zen 4 for finding the physical
address of the reload buffer by loading the guess from memory (top,
at offset 0xbf6dc6 of kernel text) and adding the physmap base to it,
and dereferencing it (bottom, at offset 0xc0407 of kernel text).

Results. We evaluate INCEPTION on an AMD Zen 4 (Ryzen
7 7700X), with microcode version 0xa601201 and 16GB of
RAM, running Linux 5.19.0-28-generic with all mitigations
enabled. We run our attack 50 times, each time leaking
1KB of randomized data after a reboot. Of the 50 runs, we
successfully break KASLR in 45 cases, using a median time
of 168 seconds. In those cases, INCEPTION leaks data at a
rate of 39 bytes/s, with an accuracy of 93.5%.

To find /etc/shadow, we again run INCEPTION in parallel
on all 8 available cores. We attempt to locate /etc/shadow
10 times, each with a timeout of 3 hours, and reboot the
machine after every attempt. Our results show that we are
able to successfully leak the root password hash in 6 of the
10 runs, in a median of 40 minutes.

8 Alternative TTE variants

We have demonstrated how a variant of TTE can be leveraged
on AMD systems to leak arbitrary data. In this section, we
will discuss the security impact of other potential variants of
TTE. We then systematically explore what TTE variants can
be triggered on various Intel and AMD microarchitectures.
We expect our exploration to motivate future work that looks
for exploitable transient execution gadgets and effective
mitigations that cover these new attack surfaces.

8.1 Exposing new attack surfaces with TTE

We lay out three scenarios that would allow arbitrary
transient code execution despite mitigations, if the target
microarchitecture allows for specific cases of TTE.

Firstly, conditional branches in the kernel may be fol-
lowed by call instructions. We previously showed that on
AMD, transiently executed call instructions triggered by
BTB-misprediction can manipulate the state of the RSB.
Therefore, being able to skew the direction of a conditional
branch, the attacker may be able to inject an existing return
site in the kernel (i.e., TTEPHT-RSB). On AMD Zen 3 and 4,
we found that we do not need to overwrite all RSB entries
to reliably trigger misprediction to transiently injected return
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Figure 9: TTE using five different methods. The leak gadgets
(D, green) and the training calls in (d) and (e) (Ei, yellow) are
never architecturally executed. A barrier (C, gray) is used to stop
speculation. Dashed red arrows indicate transiently executed paths.

targets. If a return target contains a disclosure gadget, this
would allow an adversary to leak arbitrary data.

Secondly, on newer Intel microarchitectures with eIBRS,
BHI [9] has shown that, although kernel branch predictions
are isolated from user mode, an attacker can still influence
the selection of previously used branch targets in privileged
mode. Hence, to exploit BHI, the disclosure gadget must be a
previously used branch target. TTE loosens this requirement.
Instead of needing a disclosure gadget, we can use an indirect
branch at a previously used branch target, which we in turn
leverage to inject a disclosure gadget (i.e., TTEBTB-BTB).

Lastly, conditional branch targets in the kernel may contain
indirect branches when retpolines are disabled (e.g., on Intel
CPUs that support eIBRS). While transient out-of-bound
memory accesses are prevented by index masking [52], spec-
ulative type confusions may bypass such checks [29]. That is,
if an attacker can skew the direction of a conditional branch,
it may allow them to execute an indirect branch transiently.
If the destination of the indirect branch is attacker-controlled,
this would result in arbitrary transient execution whenever the
indirect branch is executed architecturally as also discussed
in Section 5.1 (i.e., TTEPHT-BTB). Note that through BHI,
the injected branch target may be reused by executing a
different indirect branch in the kernel. Having established the
scenarios in which TTE would bypass existing mitigations,
we now evaluate different variants of TTE.

8.2 Testing for TTE variants
We discussed TTEPHT-BTB and TTEBTB-RSB in Section 5.
We now explore other possible variants of TTE. Figure 9
describes the experiments that we designed to test for
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Ryzen 5 1600X Zen 1 2017 3 3 3 3 3 3 3
Ryzen 5 2600X Zen + 2018 3 3 3 3 3 3 -
EPYC 7252 Zen 2 2019 3 3 3 3 3 3 3
Ryzen 5 5600G Zen 3 2019 3 3 3 - 3 3 3
EPYC 7413 Zen 3 2021 3 3 3 - 3 3 3
Ryzen 7 7700X Zen 4 2022 3 3 3 - 3 3 3
i7-8700K Coffee Lake 2017 3 3 3 3 - - -
i9-9900K Coffee Lake R 2018 3 3 3 3 - - -
Xeon Silver 4314 Ice Lake 2021 3 3 3 3 - - -
i7-10700K Comet Lake 2020 3 3 3 3 - - -
i7-11700K Rocket Lake 2021 3 3 3 3 - - -
i7-12700K (P-core) Golden Cove 2022 3 3 3 3 - - -
i7-12700K (E-core) Gracemont 2022 - - - - - - -
i7-13700K (P-core) Raptor Cove 2022 3 3 3 3 - - -
i7-13700K (E-core) Gracemont 2022 - - - - - - -

Table 1: CPUs that are vulnerable speculative training of the BTB,
i.e., TTE*-BTB , and of the RSB, i.e., TTE*-RSB .

these other variants. Similar to experiments in Section 5,
code locations A and B are used to manipulate the branch
predictors, C is a barrier target and D is a disclosure gadget.

TTEBTB experiments. To test for TTEBTB-BTB, we first train
the branch predictor to branch from A to B in a preparatory
training step T. In the training in transient execution step
TTE, we transiently execute B by changing the architectural
branch target in A to the barrier target C. However, the
previously injected B will be predicted, and we provide it
with D as branch target. To test for TTERSB-BTB, we train the
RSB to return to the instruction immediately following the
call in A. We prevent this from architecturally executing by
overwriting the actual return target on the stack (sp) with C.
We expect the jmp rret in A to transiently execute with the
branch target D. Finally, to test for TTEOOO-BTB, the training
branch source follows a load instruction that faults in the
TTE step, because we pass it a null pointer. Because of OoO,
the branch is transiently executed regardless. The CPU defers
handling the fault to a later stage in the pipeline.

TTERSB experiments. To test for TTEPHT-RSB, we rely on
conditional forward branches being predicted as non-taken by
default. Therefore, in the TTE step we speculatively execute
jmp E0, which starts executing calls transiently. Likewise, to
test for TTERSB-RSB, we again overwrite the architectural re-
turn target on the stack (sp) with C. We expect the gadgets Ei
following A to transiently execute, pushing their return targets
(Di) to the RSB. Testing TTEOOO-RSB is challenging, since
an invalid memory access as done for TTEOOO-BTB would re-
quire kernel-level page-fault handling, which trashes the RSB
state. We therefore excluded this experiment for the RSB.

Results. Table 1 shows the results of running all TTE
variants on the CPUs we have available in our lab. We note
that certain experiments show weaker (yet distinct) signal
on certain microarchitectures. This is a common artifact of



constructing generic experiments, which can be overcome
by fine-tuning them for the given microarchitecture. The
results show that training of BTB in transient execution is
feasible in most scenarios and microarchitectures. Exceptions
are TTEOOO-BTB on the more recent AMD CPUs and
TTE*-BTB on energy-efficient Intel cores embedded next
to the high-performance cores in recent Intel processors.
The results further show that all AMD CPUs in our lab are
susceptible to the training of the RSB in transient execution,
although the injected entry is not always used, as discussed
in Section 5.2. On Intel, we are unable to transiently train
the RSB on any of the considered microarchitectures.

Discussion. Our results show that the previously described
attack scenarios (TTEPHT-RSB on AMD, TTEBTB-BTB
on Intel, and TTEPHT-BTB on both) are realistic on the
microarchitectures that we considered, and future mitigations
should consider their attack surfaces.

9 Mitigation

We discuss mitigation strategies against INCEPTION in this
section. Our analysis shows that a complete mitigation of
INCEPTION requires hardware modification for stopping
TTE, but the attack surface can be reduced by flushing the
branch predictor state on privilege transitions on certain mi-
croarchitectures. Unfortunately, this introduces a significant
performance penalty as shown by our evaluation. We first
present our analysis of possible mitigations before discussing
flushing branch prediction state and its performance impact.

9.1 Analysis of possible mitigations

Synchronization. CPU vendors recommend serializing
instructions, such as lfence, to stop transient execution
of malicious control flow. While synchronization can stop
the TTEPHT-* variants, it is insufficient against INCEPTION
since PHANTOM speculation enables hijacks of arbitrary
instructions.

Address Space Isolation (ASI). There is an ongoing effort
to prevent secrets from being present in the kernel address
space as part of a broader industry effort for a more principled
mitigation of transient execution attacks. However, currently
ASI may only reduce the attack surface; the entire address
space must still be mapped in to handle many interactions,
where microarchitectural buffer flushes are necessary [44].
Unfortunately, adequate flushing mechanisms are at the time
of writing not available, as we find in Section 9.2.

Avoid transient training. Updating branch predictors using
transient control flow is the root cause of TTE. If branch
predictors were only updated at retirement, our INCEPTION
would be unsuccessful. There might exist undocumented
MSR registers that control the behavior of the CPU frontend,

such that early branch predictor updates are prevented from
being dispatched. This would mitigate all TTE attacks. At
time of writing, we are unaware whether such a functionality
exists on affected CPUs. AMD has previously disclosed such
undocumented MSR registers that can be accessed to toggle
features or reconfigure CPU properties. SuppressBPOnNonBr
MSR bit in AMD documents, for mitigating PHAN-
TOMJMPS [50], is one such example [6]. Counter-intuitively
and unfortunately, INCEPTION works using PHANTOMJMP,
regardless setting this bit, as we discussed in Section 6.

Speculative BPU structures. By designing dedicated spec-
ulative variants of branch predictor structures, predictions
do not become visible outside of the transient window
in which they were inserted. As an example, our results
on Intel microarchitectures suggest that they implement
a speculative RSB. By using speculative variants of all
branch predictor structures, TTE attacks can be prevented by
discarding the transiently updated structure. However, while
the RSB typically contains only 16 or 32 entries, the BTB
typically contain thousands of entries. Creating a speculative
counterpart for every predictor structure is thus a costly
operation, and unlikely to be implemented in practice.

Isolating the branch predictor state. Some existing
hardware mitigations, such as Intel eIBRS, stop the branch
predictions learned in a lower privilege mode from being
used in a higher one. While this reduces the attack surface
of TTE, and in particular INCEPTION, other TTE variants
remain possible in principle, as discussed in Section 8.1.
Investigating the feasibility of such attacks is an interesting
direction for future research. For mitigating INCEPTION on
affected AMD CPUs without eIBRS, a complete flushing of
the branch predictor state is an alternative option.

9.2 Full predictor buffer sanitization
Creative spot mitigations continue to fall short in face of
newer attacks. For example, retpoline [47] is bypassed
by Retbleed [49], and now jmp2ret [6] by INCEPTION.
Furthermore, these mitigations introduce ubiquitous source
code changes and configuration parameters, which affect the
maintainability of the OS kernel. Instead of additional spot
mitigations, issuing IBPB on privilege level elevation may
provide an in-depth mitigation against PHANTOM speculation
and INCEPTION, however with a high performance cost. The
Xen Project Security Team anticipated that jmp2ret was
inadequate and enable IBPB-on-entry by default for the Xen
hypervisor to mitigate PHANTOM vulnerabilities [46]. Using
IBPB-on-entry rests on the assumption that all potentially
harmful branch prediction state is sanitized.

We evaluate the performance impact of IBPB-on-entry
on Linux using the UnixBench test suite1. We run the test
suite 5 times with and without the IBPB-on-entry enabled.

1https://github.com/kdlucas/byte-unixbench

https://github.com/kdlucas/byte-unixbench


Performance overhead IBPB effectMicro-
architecture

Model Microcode
single-core multi-core cycles (median) flush direct flush indir

Zen 1 Ryzen 5 1600X 0x8001137 239.2 % / 234.3 % ∗ 198.4 % / 216.9 % ∗ 8,803 cycles 3 3

Zen + Ryzen 5 2600X 0x800820d 226.6 % / 205.0 % ∗ 183.1 % / 204.0 % ∗ 8,196 cycles 3 3

Zen 2 Ryzen 5 3600X 0x8701021 130.1 % 95.2 % 1,306 cycles 3 3

Zen 2 EPYC 7252 0x8301038 128.6 % 93.1 % 1,306 cycles 3 3

Zen 3 Ryzen 5 5600G 0xa50000c 35.05 % 29.35 % 738 cycles 7 3

Zen 4 Ryzen 7 7700X 0xa601201 59.90 % 87.33 % 962 cycles 7 3
∗ : Simultaneous Multi-Threading (SMT) disabled

Table 2: Performance overhead of single- and multi-core benchmarks with the IBPB-on-entry mitigation, including the cost of issuing one
IBPB. We benchmark with and without SMT enabled where relevant. IBPB only concerns indirect branches on Zen 3 and 4.

We compute median results for each of the 12 tests in the
test suite, from which we then derive a cumulative geometric
mean. The final result is a score analogous to number of oper-
ations per time unit. Hence, we denote performance overhead
as scorebaseline/scoreibpb − 1. Furthermore, we measure the
median number of clock cycles for issuing IBPB (using the
precise APREF clock cycle counter [7]) over 1 M samples.

Table 2 shows the results of our benchmarks. Because
Zen 1 and Zen + do not have STIBP support, for a complete
mitigation, we also benchmark with SMT disabled. An
attacker could otherwise poison the BTB from a sibling
thread after the IBPB has been issued. Without disabling
SMT, these parts are also vulnerable to existing attacks, like
Retbleed. However, SMT is left enabled on Linux regardless.

IBPB is an expensive operation, most particular for
Zen 1(+), but it is necessary for a complete mitigation of
INCEPTION. Surprisingly, for Zen 3 and Zen 4, IBPB is
substantially cheaper, and has suspiciously low performance
impact. This observation led us to furthermore check the
scope of IBPB on the evaluated systems. We discover that
IBPB, which sanitized branches of all types on Zen 1(+) and
Zen 2, no longer does so for Zen 3 and Zen 4. To determine
the impact of this for mitigating INCEPTION, we execute an
architectural direct recursive call, while catching the stack
overflow fault. Our results show that this primes the BTB
with a direct recursive PHANTOMCALL which is not flushed
by IBPB. Consequently, we conclude that INCEPTION can
circumvent IBPB-on-entry on Zen 3 and Zen 4 systems by
injecting all PHANTOMJMP and PHANTOMCALL predictions
using direct branches instead of indirect ones. AMD does
not recommended IBPB-on-entry as a mitigation against
INCEPTION, which likely is for this reason.

10 Related work

The confinement problem is a known issue in computer
security since the 1970s [34]. 20 years later, Kocher was
among the first to consider this problem in the context of
microarchitectural timing attacks [31]. Over the past few
decades, microarchitectural side channels have been studied
on the CPU caches [16, 22, 39, 41, 53], µop caches [42],

execution units [8,10,21,32] and branch predictors [2,17,18].

Transient execution attacks. Kocher et al. [30] showed that
a mispredicted branch combined with a CPU cache side
channel can be used to leak arbitrary memory, resulting in
Spectre attacks. Spectre variant 1 (also known as Spectre-
PHT) bypasses array bounds checks through mispredicted
conditional branches and Spectre variant 2 (also known
as Spectre-BTB) injects malicious branch targets into the
BTB for indirect branch instructions. In addition, Lipp et
al. [35] showed that OoO pipelines in modern CPUs execute
instructions following a faulting instruction, which could
result in transient use of unauthorized memory if present in
the L1d cache. These are the two main categories transient
execution attacks as Canella et al. categorized them, and
they furthermore categorized branch predictor training
methods as in-place and out-of-place [11]. Following Spectre,
Maisuradze et al. [36], Koruyeh et al [33], and Wikner et
al. [48] demonstrated Spectre attacks via the RSB. Similar
to [48] and [36], INCEPTION works by overflowing the RSB.
However, unlike previous attacks, INCEPTION does so in a
transient execution window which expands the attack surface
of Spectre. RSB training in transient execution was explained
however not used in [33]. BTB training in transient execution
was used by [49], but the purpose was to suppress page faults,
and not to increase the attack surface.

Spectre attack arms-race. To mitigate Spectre-BTB attacks
against the kernel, Turner et al. invented retpolines [47], and
AMD invented lfence-retpoline [3]. Intel invented IBRS, and
enhanced IBRS for newer CPUs, to prevent use of branches
injected from a lower privilege level to be used at a higher
one [12, 40]. These defenses have all been broken. Milburn
et al. [37] showed that lfence-retpolines are vulnerable to
Spectre-BTB, because certain workloads on the sibling
thread could extend the speculation window of the victim.
Barberis et al. [9] presented BHI, a confused-deputy attack
against the BTB, forcing branch target injection within the
privileged context to bypass the eIBRS mitigation. Wikner
and Razavi [49] showed that the RSB-backed return target
predictor could be bypassed to use the branch target predictor
instead, bypassing the deployed retpoline mitigations



with their Retbleed attack. Moreover, they showed that
AMD CPUs vulnerable to Retbleed are also vulnerable
to PHANTOMJMPS [51]. In this paper we introduced
PHANTOMCALLS, and showed that they can be transiently
executed inside a PHANTOMJMP to manipulate the RSB.

To mitigate Retbleed and BHI on Intel CPUs, Linux
combines (enhanced) IBRS and retpolines. AMD, who is
unaffected by BHI, proposed jmp2ret to mitigate Retbleed [6].
This paper shows that jmp2ret can be broken with recursive
PHANTOM speculations that cause the RSB to overflow.

11 Conclusion

We introduced Training in Transient Execution (TTE) in this
paper. TTE expands the attack surface of transient control-
flow hijacks by enabling the attacker to train the BTB and
RSB in the kernel context. We further introduced PHANTOM-
CALL, a new PHANTOM primitive that enables TTE without
relying on complex gadgets in the kernel, by using the CPU
as a confused deputy. Our end-to-end exploit, called INCEP-
TION, uses a recursive PHANTOMCALL to create an infinite
hardware loop in transient execution that poisons many RSB
entries with an attacker-controlled return address. In 6 out of
10 trials, INCEPTION can leak the contents of /etc/shadow
in 40 minutes on AMD Zen 4 despite all existing and
recent hardware and software mitigations against speculative
control-flow hijacks. We expect our insights to motivate
future work to explore TTE’s new attack surfaces further and
consider efficient mitigations that protect against them.
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