Mathematicians Discover Prime Conspiracy

coderman coderman at gmail.com
Mon Mar 14 01:42:37 PDT 2016


Mathematicians Discover Prime Conspiracy

A previously unnoticed property of prime numbers seems to violate a
longstanding assumption about how they behave.

By: Erica Klarreich	
March 13, 2016

Two mathematicians have uncovered a simple, previously unnoticed
property of prime numbers — those numbers that are divisible only by 1
and themselves. Prime numbers, it seems, have decided preferences
about the final digits of the primes that immediately follow them.

Among the first billion prime numbers, for instance, a prime ending in
9 is almost 65 percent more likely to be followed by a prime ending in
1 than another prime ending in 9. In a paper posted online today,
Kannan Soundararajan and Robert Lemke Oliver of Stanford University
present both numerical and theoretical evidence that prime numbers
repel other would-be primes that end in the same digit, and have
varied predilections for being followed by primes ending in the other
possible final digits.

“We’ve been studying primes for a long time, and no one spotted this
before,” said Andrew Granville, a number theorist at the University of
Montreal and University College London. “It’s crazy.”

The discovery is the exact opposite of what most mathematicians would
have predicted, said Ken Ono, a number theorist at Emory University in
Atlanta.  When he first heard the news, he said, “I was floored. I
thought, ‘For sure, your program’s not working.’”

This conspiracy among prime numbers seems, at first glance, to violate
a longstanding assumption in number theory: that prime numbers behave
much like random numbers. Most mathematicians would have assumed,
Granville and Ono agreed, that a prime should have an equal chance of
being followed by a prime ending in 1, 3, 7 or 9 (the four possible
endings for all prime numbers except 2 and 5).

“I can’t believe anyone in the world would have guessed this,”
Granville said. Even after having seen Lemke Oliver and
Soundararajan’s analysis of their phenomenon, he said, “it still seems
like a strange thing.”

Yet the pair’s work doesn’t upend the notion that primes behave
randomly so much as point to how subtle their particular mix of
randomness and order is. “Can we redefine what ‘random’ means in this
context so that once again, [this phenomenon] looks like it might be
random?” Soundararajan said. “That’s what we think we’ve done.”

Prime Preferences

Soundararajan was drawn to study consecutive primes after hearing a
lecture at Stanford by the mathematician Tadashi Tokieda, of the
University of Cambridge, in which he mentioned a counterintuitive
property of coin-tossing: If Alice tosses a coin until she sees a head
followed by a tail, and Bob tosses a coin until he sees two heads in a
row, then on average, Alice will require four tosses while Bob will
require six tosses (try this at home!), even though head-tail and
head-head have an equal chance of appearing after two coin tosses.

Soundararajan wondered if similarly strange phenomena appear in other
contexts. Since he has studied the primes for decades, he turned to
them — and found something even stranger than he had bargained for.
Looking at prime numbers written in base 3 — in which roughly half the
primes end in 1 and half end in 2 — he found that among primes smaller
than 1,000, a prime ending in 1 is more than twice as likely to be
followed by a prime ending in 2 than by another prime ending in 1.
Likewise, a prime ending in 2 prefers to be followed a prime ending in
1.

Soundararajan showed his findings to postdoctoral researcher Lemke
Oliver, who was shocked. He immediately wrote a program that searched
much farther out along the number line — through the first 400 billion
primes. Lemke Oliver again found that primes seem to avoid being
followed by another prime with the same final digit. The primes
“really hate to repeat themselves,” Lemke Oliver said.

Lemke Oliver and Soundararajan discovered that this sort of bias in
the final digits of consecutive primes holds not just in base 3, but
also in base 10 and several other bases; they conjecture that it’s
true in every base. The biases that they found appear to even out,
little by little, as you go farther along the number line — but they
do so at a snail’s pace. “It’s the rate at which they even out which
is surprising to me,” said James Maynard, a number theorist at the
University of Oxford. When Soundararajan first told Maynard what the
pair had discovered, “I only half believed him,” Maynard said. “As
soon as I went back to my office, I ran a numerical experiment to
check this myself.”

Lemke Oliver and Soundararajan’s first guess for why this bias occurs
was a simple one: Maybe a prime ending in 3, say, is more likely to be
followed by a prime ending in 7, 9 or 1 merely because it encounters
numbers with those endings before it reaches another number ending in
3. For example, 43 is followed by 47, 49 and 51 before it hits 53, and
one of those numbers, 47, is prime.

But the pair of mathematicians soon realized that this potential
explanation couldn’t account for the magnitude of the biases they
found. Nor could it explain why, as the pair found, primes ending in 3
seem to like being followed by primes ending in 9 more than 1 or 7. To
explain these and other preferences, Lemke Oliver and Soundararajan
had to delve into the deepest model mathematicians have for random
behavior in the primes.

Random Primes

Prime numbers, of course, are not really random at all — they are
completely determined. Yet in many respects, they seem to behave like
a list of random numbers, governed by just one overarching rule: The
approximate density of primes near any number is inversely
proportional to how many digits the number has.

In 1936, Swedish mathematician Harald Cramér explored this idea using
an elementary model for generating random prime-like numbers: At every
whole number, flip a weighted coin — weighted by the prime density
near that number — to decide whether to include that number in your
list of random “primes.” Cramér showed that this coin-tossing model
does an excellent job of predicting certain features of the real
primes, such as how many to expect between two consecutive perfect
squares.

Despite its predictive power, Cramér’s model is a vast
oversimplification. For instance, even numbers have as good a chance
of being chosen as odd numbers, whereas real primes are never even,
apart from the number 2. Over the years, mathematicians have developed
refinements of Cramér’s model that, for instance, bar even numbers and
numbers divisible by 3, 5, and other small primes.

These simple coin-tossing models tend to be very useful rules of thumb
about how prime numbers behave. They accurately predict, among other
things, that prime numbers shouldn’t care what their final digit is —
and indeed, primes ending in 1, 3, 7 and 9 occur with roughly equal
frequency.

Yet similar logic seems to suggest that primes shouldn’t care what
digit the prime after them ends in. It was probably mathematicians’
overreliance on the simple coin-tossing heuristics that made them miss
the biases in consecutive primes for so long, Granville said. “It’s
easy to take too much for granted — to assume that your first guess is
true.”

The primes’ preferences about the final digits of the primes that
follow them can be explained, Soundararajan and Lemke Oliver found,
using a much more refined model of randomness in primes, something
called the prime k-tuples conjecture. Originally stated by
mathematicians G. H. Hardy and J. E. Littlewood in 1923, the
conjecture provides precise estimates of how often every possible
constellation of primes with a given spacing pattern will appear. A
wealth of numerical evidence supports the conjecture, but so far a
proof has eluded mathematicians.

The prime k-tuples conjecture subsumes many of the most central open
problems in prime numbers, such as the twin primes conjecture, which
posits that there are infinitely many pairs of primes — such as 17 and
19 — that are only two apart. Most mathematicians believe the twin
primes conjecture not so much because they keep finding more twin
primes, Maynard said, but because the number of twin primes they’ve
found fits so neatly with what the prime k-tuples conjecture predicts.

In a similar way, Soundararajan and Lemke Oliver have found that the
biases they uncovered in consecutive primes come very close to what
the prime k-tuples conjecture predicts. In other words, the most
sophisticated conjecture mathematicians have about randomness in
primes forces the primes to display strong biases. “I have to rethink
how I teach my class in analytic number theory now,” Ono said.

At this early stage, mathematicians say, it’s hard to know whether
these biases are isolated peculiarities, or whether they have deep
connections to other mathematical structures in the primes or
elsewhere. Ono predicts, however, that mathematicians will immediately
start looking for similar biases in related contexts, such as prime
polynomials — fundamental objects in number theory that can’t be
factored into simpler polynomials.

And the finding will make mathematicians look at the primes themselves
with fresh eyes, Granville said. “You could wonder, what else have we
missed about the primes?”

---

https://www.quantamagazine.org/20160313-mathematicians-discover-prime-conspiracy/




More information about the cypherpunks mailing list