Air Force Turns 747 Into Holster for Giant Laser

Steve Schear schear at lvcm.com
Tue Jul 24 23:31:55 PDT 2001


>At 1:43 AM +0300 7/24/01, Sampo Syreeni wrote:
>
> >But I also think the question Choate posed is a valid one: what happens when
> >the target is *not* a ballistic missile, but people, equipment and vehicles
> >on the ground, normal aircraft, or air-to-air missiles? One would think that
> >the lower velocity differentials and expected distance-to-target make aiming
> >much easier, and that effective counter-measures would be significantly more
> >difficult to erect, considering that such conventional targets have
> >properties very different from those of ballistic missiles (e.g. aircraft
> >raise questions of aerodynamics and payload efficiency, wearable materials
> >with albedos high enough are difficult to come up with, rotation and
> >aerodynamic engineering cannot be used to dissipate the heat generated by a
> >hit, people/cars/tanks/whathaveyou often need to be difficult to spot using
> >aerial and satellite imaging, and so on).
> >
> >Such weapons capability could be *quite* useful, especially if the 747 can
> >be effectively defended against anti-aircraft missiles, and the laser has a
> >range and targeting capability on par with anti-ballistic missile
> >applications. Hits on critical infrastructure, control over a nation's
> >airspace, death-from-above FUD, that sort of thing.
> >
>
>         IANALS (laser specialist), but I am given to understand that with
>the high energy demands of these types of lasers, and the problems with
>getting good energy levels through airborne dust, clouds, etc (and especially
>in combat areas where dust and other airborne particles are rather common)
>make lasers less than ideal against ground or low flying targets.

=========================
 From US Pat 5,345,238, Satellite signature suppression shield

If a high energy laser (HEL) is being used to attack the shield, the laser 
must irradiate the cone with an energy above 10 watts per square centimeter 
normal for more than two minutes continuously to damage the gold coating. 
Occasional short term hits will do no damage except by lasers with a much 
higher energy than currently considered practical. Higher laser energy 
levels will do damage in less time, but the signature suppression levels 
are low enough, that closed loop tracking of the satellite is impractical 
at altitudes above 100 km. FIG. 6 shows the time required for vaporization 
of the metal film over the balloon skin as a function of the aspect angle. 
Direct irradiation with a 10 W/cm.sup.2 laser beam was used. The dotted 
line in the figure represents a 10 micron gold film over a 0.5 mm Kapton 
skin. The solid line represents a 10 micron aluminum film over a 0.5 mm 
Mylar skin.
==========================
So if the exterior of the missile had characteristics similar to the shield 
above it might deter direct damage from a HEL.

I haven't done the path loss calculations but suffice it to say acquiring 
and maintaining beam lock and delivering several Watts/cm at distances of 
100 km is a daunting challenge.  Due to Raleigh scattering some pretty big 
aperture mirrors are needed to keep beam divergence sufficiently small 
(non-Gaussian optics, for example second order Bessel, could also help but 
complicate optical design and efficiency.)

steve





More information about the cypherpunks-legacy mailing list