[ot] Automated Influence with Causality Modeling
https://en.m.wikipedia.org/wiki/Uplift_modelling Implementations include 5 python libraries. I found UpliftML in a 2021 review of recommended python libraries. Uplift modelling *Uplift modelling*, also known as *incremental modelling*, *true lift modelling*, or *net modelling* is a predictive modelling <https://en.m.wikipedia.org/wiki/Predictive_modelling> technique that directly models the incremental impact of a treatment (such as a direct marketing action) on an individual's behaviour. Uplift modelling has applications in customer relationship management <https://en.m.wikipedia.org/wiki/Customer_relationship_management> for up-sell, cross-sell and retention modelling. It has also been applied to political election and personalised medicine <https://en.m.wikipedia.org/wiki/Personalised_medicine>. Unlike the related Differential Prediction concept in psychology, Uplift Modelling assumes an active agent. Contents - <https://en.m.wikipedia.org/wiki/Uplift_modelling#Introduction> - <https://en.m.wikipedia.org/wiki/Uplift_modelling#Measuring_uplift> - <https://en.m.wikipedia.org/wiki/Uplift_modelling#Traditional_response_modelling> - <https://en.m.wikipedia.org/wiki/Uplift_modelling#Return_on_investment> - <https://en.m.wikipedia.org/wiki/Uplift_modelling#Removal_of_negative_effects> - <https://en.m.wikipedia.org/wiki/Uplift_modelling#Application_to_A/B_and_multivariate_testing> - <https://en.m.wikipedia.org/wiki/Uplift_modelling#History_of_uplift_modelling> - <https://en.m.wikipedia.org/wiki/Uplift_modelling#Implementations> - <https://en.m.wikipedia.org/wiki/Uplift_modelling#In_Python> - <https://en.m.wikipedia.org/wiki/Uplift_modelling#Other_languages> - <https://en.m.wikipedia.org/wiki/Uplift_modelling#Datasets> - <https://en.m.wikipedia.org/wiki/Uplift_modelling#Notes_and_references> - <https://en.m.wikipedia.org/wiki/Uplift_modelling#See_also> - <https://en.m.wikipedia.org/wiki/Uplift_modelling#External_links> IntroductionEdit <https://en.m.wikipedia.org/w/index.php?title=Uplift_modelling&action=edit§ion=1> Uplift modelling uses a randomised scientific control <https://en.m.wikipedia.org/wiki/Control_group> to not only measure the effectiveness of an action but also to build a predictive model that predicts the incremental response to the action. The response could be a binary variable (for example, a website visit)[1] <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_note-:0-1> or a continuous variable (for example, customer revenue).[2] <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_note-2> Uplift modelling is a data mining <https://en.m.wikipedia.org/wiki/Data_mining> technique that has been applied predominantly in the financial services, telecommunications and retail direct marketing industries to up-sell <https://en.m.wikipedia.org/wiki/Up-selling>, cross-sell <https://en.m.wikipedia.org/wiki/Cross-selling>, churn <https://en.m.wikipedia.org/wiki/Churn_rate> and retention <https://en.m.wikipedia.org/wiki/Customer_retention> activities. Measuring upliftEdit <https://en.m.wikipedia.org/w/index.php?title=Uplift_modelling&action=edit§ion=2> The uplift of a marketing campaign is usually defined as the difference in response rate between a *treated* group and a randomized *control* group. This allows a marketing team to isolate the effect of a marketing action and measure the effectiveness or otherwise of that individual marketing action. Honest marketing teams will only take credit for the incremental effect of their campaign. However, many marketers define lift (rather than uplift) as the difference in response rate between treatment and control, so uplift modeling can be defined as improving (upping) lift through predictive modeling. The table below shows the details of a campaign showing the number of responses and calculated response rate for a hypothetical marketing campaign. This campaign would be defined as having a response rate uplift of 5%. It has created 50,000 incremental responses (100,000 - 50,000). GroupNumber of CustomersResponsesResponse Rate Treated 1,000,000 100,000 10% Control 1,000,000 50,000 5% Traditional response modellingEdit <https://en.m.wikipedia.org/w/index.php?title=Uplift_modelling&action=edit§ion=3> Traditional response modelling typically takes a group of *treated* customers and attempts to build a predictive model that separates the likely responders from the non-responders through the use of one of a number of predictive modelling <https://en.m.wikipedia.org/wiki/Predictive_modelling> techniques. Typically this would use decision trees <https://en.m.wikipedia.org/wiki/Decision_tree_learning> or regression analysis <https://en.m.wikipedia.org/wiki/Regression_analysis>. This model would only use the treated customers to build the model. In contrast uplift modeling uses both the treated and control customers to build a predictive model that focuses on the incremental response. To understand this type of model it is proposed that there is a fundamental segmentation that separates customers into the following groups (their names were suggested by N. Radcliffe and explained in [3] <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_note-3>) - *The Persuadables* : customers who only respond to the marketing action because they were targeted - *The Sure Things* : customers who would have responded whether they were targeted or not - *The Lost Causes* : customers who will not respond irrespective of whether or not they are targeted - *The Do Not Disturbs or Sleeping Dogs* : customers who are less likely to respond because they were targeted The only segment that provides true incremental responses is the *Persuadables*. Uplift modelling provides a scoring technique that can separate customers into the groups described above. Traditional response modelling often targets the *Sure Things* being unable to distinguish them from the *Persuadables*. Return on investmentEdit <https://en.m.wikipedia.org/w/index.php?title=Uplift_modelling&action=edit§ion=4> Because uplift modelling focuses on incremental responses only, it provides very strong return on investment cases when applied to traditional demand generation and retention activities. For example, by only targeting the persuadable customers in an outbound marketing <https://en.m.wikipedia.org/wiki/Marketing_communications> campaign, the contact costs and hence the return per unit spend can be dramatically improved. Removal of negative effectsEdit <https://en.m.wikipedia.org/w/index.php?title=Uplift_modelling&action=edit§ion=5> One of the most effective uses of uplift modelling is in the removal of negative effects from retention campaigns. Both in the telecommunications and financial services industries often retention campaigns can trigger customers to cancel a contract or policy. Uplift modelling allows these customers, the Do Not Disturbs, to be removed from the campaign. Application to A/B and multivariate testingEdit <https://en.m.wikipedia.org/w/index.php?title=Uplift_modelling&action=edit§ion=6> It is rarely the case that there is a single treatment and control group. Often the "treatment" can be a variety of simple variations of a message or a multi-stage contact strategy that is classed as a single treatment. In the case of A/B <https://en.m.wikipedia.org/wiki/A/B_testing> or multivariate testing <https://en.m.wikipedia.org/wiki/Multivariate_testing_in_marketing>, uplift modelling can help in understanding whether the variations in tests provide any significant uplift compared to other targeting criteria such as behavioural or demographic indicators. History of uplift modellingEdit <https://en.m.wikipedia.org/w/index.php?title=Uplift_modelling&action=edit§ion=7> The first appearance of *true response modelling* appears to be in the work of Radcliffe and Surry.[4] <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_note-4> Victor Lo also published on this topic in *The True Lift Model* (2002),[5] <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_note-5> and later Radcliffe again with *Using Control Groups to Target on Predicted Lift: Building and Assessing Uplift Models* (2007).[6] <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_note-6> Radcliffe also provides a very useful frequently asked questions (FAQ) section on his web site, Scientific Marketer.[7] <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_note-7> Lo (2008) provides a more general framework, from program design to predictive modeling to optimization, along with future research areas.[8] <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_note-8> Independently uplift modelling has been studied by Piotr Rzepakowski. Together with Szymon Jaroszewicz he adapted information theory <https://en.m.wikipedia.org/wiki/Information_theory> to build multi class uplift decision trees <https://en.m.wikipedia.org/wiki/Decision_trees> and published the paper in 2010.[9] <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_note-uplift-trees-9> And later in 2011 they extended the algorithm to multiple treatment case.[10] <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_note-multiple-treatment-uplift-trees-10> Similar approaches have been explored in personalised medicine <https://en.m.wikipedia.org/wiki/Personalised_medicine>.[11] <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_note-11>[12] <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_note-SAYL-12> Szymon Jaroszewicz and Piotr Rzepakowski (2014) designed uplift methodology for survival analysis <https://en.m.wikipedia.org/wiki/Survival_analysis> and applied it to randomized controlled trial analysis.[13] <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_note-uplift-survival-analysis-13> Yong (2015) combined a mathematical optimization algorithm via dynamic programming with machine learning methods to optimally stratify patients. [14] <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_note-14> Uplift modelling is a special case of the older psychology concept of Differential Prediction.[15] <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_note-RDP-15> In contrast to differential prediction, uplift modelling assumes an active agent, and uses the uplift measure as an optimization metric. Uplift modeling has been recently extended and incorporated into diverse machine learning <https://en.m.wikipedia.org/wiki/Machine_learning> algorithms, like Inductive Logic Programming <https://en.m.wikipedia.org/wiki/Inductive_Logic_Programming>,[15] <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_note-RDP-15> Bayesian Network <https://en.m.wikipedia.org/wiki/Bayesian_Network>,[16] <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_note-16> Statistical relational learning <https://en.m.wikipedia.org/wiki/Statistical_relational_learning>,[12] <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_note-SAYL-12> Support Vector Machines <https://en.m.wikipedia.org/wiki/Support_Vector_Machines>, [17] <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_note-17>[18] <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_note-18> Survival Analysis <https://en.m.wikipedia.org/wiki/Survival_Analysis>[13] <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_note-uplift-survival-analysis-13> and Ensemble learning <https://en.m.wikipedia.org/wiki/Ensemble_learning>. [19] <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_note-19> Even though uplift modeling is widely applied in marketing practice (along with political elections), it has rarely appeared in marketing literature. Kane, Lo and Zheng (2014) published a thorough analysis of three data sets using multiple methods in a marketing journal and provided evidence that a newer approach (known as the Four Quadrant Method) worked quite well in practice.[20] <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_note-20> Lo and Pachamanova (2015) extended uplift modeling to prescriptive analytics for multiple treatment situations and proposed algorithms to solve large deterministic optimization problems and complex stochastic optimization problems where estimates are not exact.[21] <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_note-21> Recent research analyses the performance of various state-of-the-art uplift models in benchmark studies using large data amounts.[22] <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_note-22>[1] <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_note-:0-1> A detailed description of uplift modeling, its history, the way uplift models are built, differences to classical model building as well as uplift-specific evaluation techniques, a comparison of various software solutions and an explanation of different economical scenarios can be found here.[23] <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_note-23> ImplementationsEdit <https://en.m.wikipedia.org/w/index.php?title=Uplift_modelling&action=edit§ion=8>In PythonEdit <https://en.m.wikipedia.org/w/index.php?title=Uplift_modelling&action=edit§ion=9> - CausalML <https://github.com/uber/causalml> - EconML <https://github.com/microsoft/EconML> - UpliftML <https://github.com/bookingcom/upliftml> - PyLift <https://github.com/wayfair/pylift> - scikit-uplift <https://github.com/maks-sh/scikit-uplift> Other languagesEdit <https://en.m.wikipedia.org/w/index.php?title=Uplift_modelling&action=edit§ion=10> - uplift package <https://cran.r-project.org/web/packages/uplift/index.html> for R <https://en.m.wikipedia.org/wiki/R_%28programming_language%29> - JMP <https://en.m.wikipedia.org/wiki/JMP_%28statistical_software%29> by SAS - Portrait Uplift by Pitney Bowes <https://en.m.wikipedia.org/wiki/Pitney_Bowes> - Uplift node for KNIME <https://en.m.wikipedia.org/wiki/KNIME> by Dymatrix - Uplift Modelling in Miró <http://www.stochasticsolutions.com/miro/> by Stochastic Solutions <http://www.stochasticsolutions.com/> DatasetsEdit <https://en.m.wikipedia.org/w/index.php?title=Uplift_modelling&action=edit§ion=11> - Hillstrom Email Marketing dataset <https://blog.minethatdata.com/2008/05/best-answer-e-mail-analytics-challenge.html> - Criteo Uplift Prediction dataset <http://ailab.criteo.com/criteo-uplift-prediction-dataset/> - Lenta Uplift Modeling Dataset <https://www.uplift-modeling.com/en/latest/api/datasets/fetch_lenta.html#lenta-uplift-modeling-dataset> - X5 RetailHero Uplift Modeling Dataset <https://www.uplift-modeling.com/en/latest/api/datasets/fetch_x5.html#x5-retailhero-uplift-modeling-dataset> - MegaFon Uplift Competition Dataset <https://www.uplift-modeling.com/en/latest/api/datasets/fetch_megafon.html#megafon-uplift-competition-dataset> Notes and referencesEdit <https://en.m.wikipedia.org/w/index.php?title=Uplift_modelling&action=edit§ion=12> 1. ^ *a* <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_ref-:0_1-0> *b* <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_ref-:0_1-1> Devriendt, Floris; Moldovan, Darie; Verbeke, Wouter (2018). "A literature survey and experimental evaluation of the state-of-the-art in uplift modeling: A stepping stone toward the development of prescriptive analytics". *Big Data*. *6* (1): 13–41. doi <https://en.m.wikipedia.org/wiki/Doi_%28identifier%29>: 10.1089/big.2017.0104 <https://doi.org/10.1089%2Fbig.2017.0104>. 2. *^ <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_ref-2>* Gubela, Robin M.; Lessmann, Stefan; Jaroszewicz, Szymon (2020). "Response transformation and profit decomposition for revenue uplift modeling". *European Journal of Operational Research*. *283* (2): 647–661. doi <https://en.m.wikipedia.org/wiki/Doi_%28identifier%29>: 10.1016/j.ejor.2019.11.030 <https://doi.org/10.1016%2Fj.ejor.2019.11.030> . 3. *^ <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_ref-3>* N. Radcliffe (2007). *Identifying who can be saved and who will be driven away by retention activity*. Stochastic Solution Limited 4. *^ <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_ref-4>* Radcliffe, N. J.; and Surry, P. D. (1999); *Differential response analysis: Modelling true response by isolating the effect of a single action*, in *Proceedings of Credit Scoring and Credit Control VI*, Credit Research Centre, University of Edinburgh Management School 5. *^ <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_ref-5>* Lo, V. S. Y. (2002); *The True Lift Model*, ACM SIGKDD Explorations Newsletter, Vol. 4, No. 2, 78–86, available at http://www.sigkdd.org/sites/default/files/issues/4-2-2002-12/lo.pdf Archived <https://web.archive.org/web/20150120003523/http://www.sigkdd.org/sites/default/files/issues/4-2-2002-12/lo.pdf> 2015-01-20 at the Wayback Machine <https://en.m.wikipedia.org/wiki/Wayback_Machine> 6. *^ <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_ref-6>* Radcliffe, N. J. (2007); *Using Control Groups to Target on Predicted Lift: Building and Assessing Uplift Models*, Direct Marketing Analytics Journal, Direct Marketing Association 7. *^ <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_ref-7>* The Scientific Marketer FAQ on Uplift Modelling <http://scientificmarketer.com/2007/09/uplift-modelling-faq.html> 8. *^ <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_ref-8>* Lo, V. S.Y. (2008) “New Opportunities in Marketing Data Mining.” In Encyclopedia of Data Warehousing and Mining, 2nd edition, edited by Wang (2008), Idea Group Publishing. 9. *^ <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_ref-uplift-trees_9-0>* Rzepakowski, Piotr; Jaroszewicz, Szymon (2010). *Decision trees for uplift modeling*. *In Proceedings of the 10th IEEE International Conference on Data Mining (ICDM'10)*. Sydney, Australia. pp. 441–450. doi <https://en.m.wikipedia.org/wiki/Doi_%28identifier%29>: 10.1109/ICDM.2010.62 <https://doi.org/10.1109%2FICDM.2010.62>. ISBN <https://en.m.wikipedia.org/wiki/ISBN_%28identifier%29> 978-1-4244-9131-5 <https://en.m.wikipedia.org/wiki/Special:BookSources/978-1-4244-9131-5>. 10. *^ <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_ref-multiple-treatment-uplift-trees_10-0>* Rzepakowski, Piotr; Jaroszewicz, Szymon (2011). "Decision trees for uplift modeling with single and multiple treatments" <https://doi.org/10.1007%2Fs10115-011-0434-0>. *Knowledge and Information Systems*. *32* (2): 303–327. doi <https://en.m.wikipedia.org/wiki/Doi_%28identifier%29>: 10.1007/s10115-011-0434-0 <https://doi.org/10.1007%2Fs10115-011-0434-0>. 11. *^ <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_ref-11>* Cai, T.; Tian, L.; Wong, P. H.; and Wei, L. J. (2009); *Analysis of Randomized Comparative Clinical Trial Data for Personalized Treatment Selections*, Harvard University Biostatistics Working Paper Series, Paper 97 12. ^ *a* <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_ref-SAYL_12-0> *b* <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_ref-SAYL_12-1> Nassif, Houssam; Kuusisto, Finn; Burnside, Elizabeth S; Page, David; Shavlik, Jude; Santos Costa, Vitor (2013). *Score As You Lift (SAYL): A Statistical Relational Learning Approach to Uplift Modeling*. *European Conference on Machine Learning (ECML'13)*. Lecture Notes in Computer Science. *8190*. Prague. pp. 595–611. doi <https://en.m.wikipedia.org/wiki/Doi_%28identifier%29>: 10.1007/978-3-642-40994-3_38 <https://doi.org/10.1007%2F978-3-642-40994-3_38>. ISBN <https://en.m.wikipedia.org/wiki/ISBN_%28identifier%29> 978-3-642-38708-1 <https://en.m.wikipedia.org/wiki/Special:BookSources/978-3-642-38708-1>. PMC <https://en.m.wikipedia.org/wiki/PMC_%28identifier%29> 4492311 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4492311>. PMID <https://en.m.wikipedia.org/wiki/PMID_%28identifier%29> 26158122 <https://pubmed.ncbi.nlm.nih.gov/26158122>. 13. ^ *a* <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_ref-uplift-survival-analysis_13-0> *b* <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_ref-uplift-survival-analysis_13-1> Jaroszewicz, Szymon; Rzepakowski, Piotr (2014). "Uplift modeling with survival data" <http://cci.drexel.edu/hi/hi-kdd2014/morning_4.pdf> (PDF) . *ACM SIGKDD Workshop on Health Informatics (HI KDD'14)*. New York, USA. 14. *^ <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_ref-14>* Yong, F.H. (2015), "Quantitative Methods for Stratified Medicine," PhD Dissertation, Department of Biostatistics, Harvard T.H. Chan School of Public Health, http://dash.harvard.edu/bitstream/handle/1/17463130/YONG-DISSERTATION-2015.p... . 15. ^ *a* <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_ref-RDP_15-0> *b* <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_ref-RDP_15-1> Nassif, Houssam; Santos Costa, Vitor; Burnside, Elizabeth S; Page, David (2012). *Relational Differential Prediction*. *European Conference on Machine Learning (ECML'12)*. Lecture Notes in Computer Science. *7523*. Bristol, UK. pp. 617–632. doi <https://en.m.wikipedia.org/wiki/Doi_%28identifier%29>: 10.1007/978-3-642-33460-3_45 <https://doi.org/10.1007%2F978-3-642-33460-3_45>. ISBN <https://en.m.wikipedia.org/wiki/ISBN_%28identifier%29> 978-3-642-33459-7 <https://en.m.wikipedia.org/wiki/Special:BookSources/978-3-642-33459-7>. 16. *^ <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_ref-16>* Nassif, Houssam; Wu, Yirong; Page, David; Burnside, Elizabeth (2012). "Logical Differential Prediction Bayes Net, Improving Breast Cancer Diagnosis for Older Women" <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540455>. *American Medical Informatics Association Symposium (AMIA'12)*. *2012*: 1330–1339. PMC <https://en.m.wikipedia.org/wiki/PMC_%28identifier%29> 3540455 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540455>. PMID <https://en.m.wikipedia.org/wiki/PMID_%28identifier%29> 23304412 <https://pubmed.ncbi.nlm.nih.gov/23304412>. 17. *^ <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_ref-17>* Kuusisto, Finn; Santos Costa, Vitor; Nassif, Houssam; Burnside, Elizabeth; Page, David; Shavlik, Jude (2014). *Support Vector Machines for Differential Prediction*. *European Conference on Machine Learning (ECML'14)*. Lecture Notes in Computer Science. *8725*. Nancy, France. pp. 50–65. doi <https://en.m.wikipedia.org/wiki/Doi_%28identifier%29>: 10.1007/978-3-662-44851-9_4 <https://doi.org/10.1007%2F978-3-662-44851-9_4>. ISBN <https://en.m.wikipedia.org/wiki/ISBN_%28identifier%29> 978-3-662-44850-2 <https://en.m.wikipedia.org/wiki/Special:BookSources/978-3-662-44850-2>. PMC <https://en.m.wikipedia.org/wiki/PMC_%28identifier%29> 4492338 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4492338>. PMID <https://en.m.wikipedia.org/wiki/PMID_%28identifier%29> 26158123 <https://pubmed.ncbi.nlm.nih.gov/26158123>. 18. *^ <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_ref-18>* Zaniewicz, Lukasz; Jaroszewicz, Szymon (2013). "Support Vector Machines for Uplift Modeling". *The First IEEE ICDM Workshop on Causal Discovery*. Dallas, Texas. 19. *^ <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_ref-19>* Sołtys, Michał; Jaroszewicz, Szymon; Rzepakowski, Piotr (2015). "Ensemble methods for uplift modeling" <https://doi.org/10.1007%2Fs10618-014-0383-9>. *Data Mining and Knowledge Discovery*. *29* (6): 1531–1559. doi <https://en.m.wikipedia.org/wiki/Doi_%28identifier%29>: 10.1007/s10618-014-0383-9 <https://doi.org/10.1007%2Fs10618-014-0383-9>. 20. *^ <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_ref-20>* Kane, K.; Lo, V.S.Y.; Zheng, J. (2014). "Mining for the Truly Responsive Customers and Prospects Using True-Lift Modeling: Comparison of New and Existing Methods". *Journal of Marketing Analytics*. *2* (4): 218–238. doi <https://en.m.wikipedia.org/wiki/Doi_%28identifier%29>: 10.1057/jma.2014.18 <https://doi.org/10.1057%2Fjma.2014.18>. 21. *^ <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_ref-21>* Lo, V.S.Y.; Pachamanova, D. (2015). "From Predictive Uplift Modeling to Prescriptive Uplift Analytics: A Practical Approach to Treatment Optimization While Accounting for Estimation Risk". *Journal of Marketing Analytics*. *3* (2): 79–95. doi <https://en.m.wikipedia.org/wiki/Doi_%28identifier%29>:10.1057/jma.2015.5 <https://doi.org/10.1057%2Fjma.2015.5>. 22. *^ <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_ref-22>* Gubela, Robin M.; Bequé, Artem; Lessmann, Stefan; Gebert, Fabian (2019). "Conversion Uplift in E-Commerce: A Systematic Benchmark of Modeling Strategies". *International Journal of Information Technology & Decision Making*. *18* (3): 747-791. doi <https://en.m.wikipedia.org/wiki/Doi_%28identifier%29>: 10.1142/S0219622019500172 <https://doi.org/10.1142%2FS0219622019500172>. 23. *^ <https://en.m.wikipedia.org/wiki/Uplift_modelling#cite_ref-23>* R. Michel, I. Schnakenburg, T. von Martens (2019). „Targeting Uplift“. Springer, ISBN <https://en.m.wikipedia.org/wiki/International_Standard_Book_Number> 978-3-030-22625-1 <https://en.m.wikipedia.org/wiki/Special:BookSources/978-3-030-22625-1> See alsoEdit <https://en.m.wikipedia.org/w/index.php?title=Uplift_modelling&action=edit§ion=13> - Lift (data mining) <https://en.m.wikipedia.org/wiki/Lift_%28data_mining%29> External linksEdit <https://en.m.wikipedia.org/w/index.php?title=Uplift_modelling&action=edit§ion=14> - Abby Johnson explains how it works in this video broadcast <http://videos.smallbusinessnewz.com/2011/01/05/how-uplift-modeling-boosts-marketing-efforts/> - Introductory white paper with full references <http://www.predictiveanalyticsworld.com/signup-uplift-whitepaper.php> - Eric Siegel: Uplift Modeling <http://www.predictiveanalyticsworld.com/pdf/YTW03080USEN/Uplift-Modeling-Optimizes-Marketing-Decisions-White-Paper.pdf> - User guide for uplift modelling on uplift-modeling.com <https://www.uplift-modeling.com/en/latest/user_guide/index.html> Last edited 19 days ago <https://en.m.wikipedia.org/wiki/Special:History/Uplift_modelling> by WikiCleanerBot <https://en.m.wikipedia.org/wiki/User:WikiCleanerBot> [image: Wikipedia] - Content is available under CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0/> unless otherwise noted. - Privacy policy <https://foundation.wikimedia.org/wiki/Privacy_policy> - - Terms of Use <https://m.wikimediafoundation.org/wiki/Terms_of_Use> - Desktop <https://en.wikipedia.org/w/index.php?title=Uplift_modelling&mobileaction=toggle_view_desktop>
participants (1)
-
k