would the case for no data travel require that both particles exist in the same space and time?
also, if measuring a quantum object changes it, can you not measure twice or similar using the measurements to both derive its original state and return it to its original state?

(yep, now the schoolboy physicists are getting involved :D )


On 5 August 2016 06:58:15 BST, juan <juan.g71@gmail.com> wrote:
On Fri, 05 Aug 2016 07:19:19 +0200
Bastiani Fortress <bastianifortress@yandex.com> wrote:

As i can remember, the point was when two particles are entangled,
they bear the same quantum state, and they simultaneously shift their
states önce either of them is "observed".

OK.

So you know that the other
twin is in the same state, but you cannot code it at will,

Not sure what you mean by "code it".


and since
you don't know its first state without having "observed" it, you
cannot determine whether the other twin has been observed or not

And now I'm even more confused =P

But let's go back to your first sentence. You have a couple of
'entangled' particles. Trying to measure particle 'A' triggers
a change in particle 'B' - is that what you are saying?

If that's the case, then you do have 'information transfer' -
one bit.


(that would be 1 bit of data streaming).

This is what i remember from what i read years ago, please correct me
if i'm wrong.