
GNU Guix topmost-level modules
version 1.4.0rc2, updated updated

This manual is for GNU Guix topmost-level modules (version 1.4.0rc2, updated updated)

Copyright copyright holder

permissions

i

Short Contents

1 (gnu artwork) . 1
2 (gnu bootloader) . 2
3 (gnu ci) . 4
4 (gnu compression) . 5
5 (gnu home) . 6
6 (gnu image) . 7
7 (gnu installer) . 9
8 (gnu machine) . 10
9 (gnu packages) . 11

10 (gnu) . 14

11 (gnu services) . 15

12 (gnu system) . 19
13 (gnu tests) . 23

14 (guix android-repo-download) . 25

15 (guix avahi) . 26

16 (guix base16) . 27
17 (guix base32) . 28

18 (guix base64) . 29

19 (guix build-system) . 30

20 (guix bzr-download) . 31
21 (guix cache) . 32

22 (guix channels) . 33

23 (guix ci) . 36
24 (guix colors) . 39

25 (guix combinators) . 41
26 (guix config) . 42

27 (guix cpio) . 43
28 (guix cpu) . 44
29 (guix cve) . 45
30 (guix cvs-download) . 46
31 (guix deprecation) . 47

32 (guix derivations) . 48
33 (guix describe) . 53

ii

34 (guix diagnostics) . 54
35 (guix discovery) . 56
36 (guix docker) . 57
37 (guix download) . 58

38 (guix elf) . 59
39 (guix ftp-client) . 67
40 (guix gexp) . 68

41 (guix git-authenticate) . 76
42 (guix git-download) . 78
43 (guix git) . 79

44 (guix glob) . 81

45 (guix gnu-maintenance) . 82

46 (guix gnupg) . 84
47 (guix grafts) . 85

48 (guix graph) . 86

49 (guix hash) . 88

50 (guix hg-download) . 89
51 (guix http-client) . 90

52 (guix i18n) . 92

53 (guix inferior) . 93

54 (guix ipfs) . 96
55 (guix least-authority) . 97

56 (guix licenses) . 98
57 (guix lint) . 103

58 (guix man-db) . 106
59 (guix memoization) . 107

60 (guix modules) . 108

61 (guix monad-repl) . 109
62 (guix monads) . 110
63 (guix narinfo) . 113

64 (guix nar) . 115

65 (guix openpgp) . 116
66 (guix packages) . 118
67 (guix pki) . 126

iii

68 (guix platform) . 128
69 (guix profiles) . 129

70 (guix profiling) . 135

71 (guix progress) . 136
72 (guix quirks) . 138
73 (guix read-print) . 139
74 (guix records) . 141

75 (guix remote) . 143
76 (guix repl) . 144
77 (guix) . 145

78 (guix scripts) . 146

79 (guix search-paths) . 148

80 (guix self) . 150

81 (guix serialization) . 151

82 (guix sets) . 153

83 (guix ssh) . 154

84 (guix status) . 156
85 (guix store) . 158

86 (guix substitutes) . 168

87 (guix svn-download) . 169

88 (guix swh) . 170
89 (guix transformations) . 174

90 (guix ui) . 175
91 (guix upstream) . 180

92 (guix utils) . 182
93 (guix workers) . 188

1

1 (gnu artwork)

1.1 Overview

Common place for the definition of the Guix artwork repository.

1.2 Usage

[Variable]%artwork-repository

2

2 (gnu bootloader)

2.1 Overview

2.2 Usage

[Special Form]menu-entry

[Special Form]menu-entry?

[Special Form]menu-entry-label

[Special Form]menu-entry-device

[Special Form]menu-entry-linux

[Special Form]menu-entry-linux-arguments

[Special Form]menu-entry-initrd

[Special Form]menu-entry-device-mount-point

[Special Form]menu-entry-multiboot-kernel

[Special Form]menu-entry-multiboot-arguments

[Special Form]menu-entry-multiboot-modules

[Special Form]menu-entry-chain-loader

[Function]menu-entry->sexp entry
Return ENTRY serialized as an sexp.

[Function]sexp->menu-entry sexp
Turn SEXP, an sexp as returned by ’menu-entry->sexp’, into a <menu-entry> record.

[Special Form]bootloader

[Special Form]bootloader?

[Special Form]bootloader-name

[Special Form]bootloader-package

[Special Form]bootloader-installer

[Special Form]bootloader-disk-image-installer

[Special Form]bootloader-configuration-file

[Special Form]bootloader-configuration-file-generator

[Special Form]bootloader-configuration

[Special Form]bootloader-configuration?

[Special Form]bootloader-configuration-bootloader

[Special Form]bootloader-configuration-target

Chapter 2: (gnu bootloader) 3

[Function]bootloader-configuration-targets config

[Special Form]bootloader-configuration-menu-entries

[Special Form]bootloader-configuration-default-entry

[Special Form]bootloader-configuration-timeout

[Special Form]bootloader-configuration-keyboard-layout

[Special Form]bootloader-configuration-theme

[Special Form]bootloader-configuration-terminal-outputs

[Special Form]bootloader-configuration-terminal-inputs

[Special Form]bootloader-configuration-serial-unit

[Special Form]bootloader-configuration-serial-speed

[Special Form]bootloader-configuration-device-tree-support?

[Variable]%bootloaders

[Function]lookup-bootloader-by-name name
Return the bootloader called NAME.

[Function]efi-bootloader-chain files final-bootloader [#:hooks] [#:installer]
Define a bootloader chain with FINAL-BOOTLOADER as the final bootloader and
certain directories and files from the store given in the list of FILES.

FILES may contain file like objects produced by functions like plain-file, local-file,
etc., or package contents produced with file-append. They will be collected inside a
directory collection/ inside a generated bootloader profile, which will be passed to the
INSTALLER.

If a directory name in FILES ends with ’/’, then the directory content instead of the
directory itself will be symlinked into the collection/ directory.

The procedures in the HOOKS list can be used to further modify the bootloader
profile. It is possible to pass a single function instead of a list.

If the INSTALLER argument is used, then this function will be called to install the
bootloader. Otherwise the installer of the FINAL-BOOTLOADER will be called.

4

3 (gnu ci)

3.1 Overview

This file defines build jobs for Cuirass.

3.2 Usage

[Function]derivation->job name drv [#:max-silent-time] [#:timeout]
Return a Cuirass job called NAME and describing DRV.

MAX-SILENT-TIME and TIMEOUT are build options passed to the daemon when
building the derivation.

[Function]image->job store image [#:name] [#:system]
Return the job for IMAGE on SYSTEM. If NAME is passed, use it as job name,
otherwise use the IMAGE name.

[Variable]%core-packages

[Function]arguments->systems arguments
Return the systems list from ARGUMENTS.

[Function]cuirass-jobs store arguments
Register Cuirass jobs.

5

4 (gnu compression)

4.1 Overview

4.2 Usage

[Special Form]compressor

[Special Form]compressor?

[Special Form]compressor-name

[Special Form]compressor-extension

[Special Form]compressor-command

[Variable]%compressors

[Function]lookup-compressor name
Return the compressor object called NAME. Error out if it could not be found.

6

5 (gnu home)

5.1 Overview

5.2 Usage

[Special Form]home-environment

[Special Form]home-environment?

[Special Form]this-home-environment
Return the record being defined. This macro may only be used in the context of the
definition of a thunked field.

[Function]home-environment-derivation he
Return a derivation that builds home environment.

[Special Form]home-environment-user-services

[Special Form]home-environment-essential-services

[Function]home-environment-services he
Return all the services of home environment.

[Special Form]home-environment-location

[Function]home-environment-with-provenance he config-file
Return a variant of HE that stores its own provenance information, including
CONFIG-FILE, if available. This is achieved by adding an instance of
HOME-PROVENANCE-SERVICE-TYPE to its services.

[Function]home-generation-base file
If FILE is a Home generation GC root such as "guix-home-42-link", return its corre-
sponding base—e.g., "guix-home". Otherwise return #f.

This is similar to the ’generation-profile’ procedure but applied to Home generations.

7

6 (gnu image)

6.1 Overview

6.2 Usage

[Special Form]partition

[Special Form]partition?

[Variable]partition-device
[unbound!]

[Special Form]partition-size

[Special Form]partition-offset

[Special Form]partition-file-system

[Special Form]partition-file-system-options

[Special Form]partition-label

[Special Form]partition-uuid

[Special Form]partition-flags

[Special Form]partition-initializer

[Special Form]image

[Special Form]image?

[Special Form]image-name

[Special Form]image-format

[Special Form]image-platform

[Special Form]image-size

[Special Form]image-operating-system

[Special Form]image-partition-table-type

[Special Form]image-partitions

[Special Form]image-compression?

[Special Form]image-volatile-root?

[Special Form]image-shared-store?

[Special Form]image-shared-network?

[Special Form]image-substitutable?

[Special Form]image-type

[Special Form]image-type?

Chapter 6: (gnu image) 8

[Special Form]image-type-name

[Special Form]image-type-constructor

[Function]os->image os [#:type]
Use the image constructor from TYPE, an <image-type> record to turn the given OS,
an <operating-system> record into an image and return it.

[Function]os+platform->image os platform [#:type]
Use the image constructor from TYPE, an <image-type> record to turn the given OS,
an <operating-system> record into an image targeting PLATFORM, a <platform>

record and return it.

9

7 (gnu installer)

7.1 Overview

7.2 Usage

[Function]installer-program [#:dry-run?]
Return a file-like object that runs the given INSTALLER.

[Function]installer-steps [#:dry-run?]

[Function]run-installer [#:dry-run?]
To run the installer from Guile without building it:

./pre-inst-env guile -c '((@@ (gnu installer) run-installer) #:dry-run? #t)'

when using #:dry-run? #t, no root access is required and the LOCALE, KEYMAP,

and PARTITION pages are skipped.

10

8 (gnu machine)

8.1 Overview

This module provides the types used to declare individual machines in a

heterogeneous Guix deployment. The interface allows users to specify system

configurations and the means by which resources should be provisioned on a

per-host basis.

8.2 Usage

[Special Form]environment-type

[Special Form]environment-type?

[Special Form]environment-type-name

[Special Form]environment-type-description

[Special Form]environment-type-location

[Special Form]machine

[Special Form]machine?

[Function]machine-operating-system machine
Return the operating system of MACHINE.

[Special Form]machine-environment

[Special Form]machine-configuration

[Function]machine-display-name machine
Return the host-name identifying MACHINE.

[Function]deploy-machine machine
Monadic procedure transferring the new system’s OS closure to the remote MA-
CHINE, activating it on MACHINE and switching MACHINE to the new generation.

[Function]roll-back-machine machine
Monadic procedure rolling back to the previous system generation on MACHINE.
Return the number of the generation that was current before switching and the new
generation number.

[Function]machine-remote-eval machine exp
Evaluate EXP, a gexp, on MACHINE. Ensure that all the elements EXP refers to are
built and deployed to MACHINE beforehand.

[Variable]&deploy-error

[Function]deploy-error? obj

[Function]deploy-error-should-roll-back obj

[Function]deploy-error-captured-args obj

11

9 (gnu packages)

9.1 Overview

General utilities for the software distribution---i.e., the modules under

(gnu packages ...).

9.2 Usage

[Function]search-patch file-name
Search the patch FILE-NAME. Raise an error if not found.

[Special Form]search-patches file-name ...
Return the list of absolute file names corresponding to each FILE-NAME found in
%PATCH-PATH.

[Function]search-auxiliary-file file-name
Search the auxiliary FILE-NAME. Return #f if not found.

[Variable]%patch-path

[Variable]%auxiliary-files-path

[Variable]%package-module-path

[Variable]%default-package-module-path

[Function]cache-is-authoritative?
Return true if the pre-computed package cache is authoritative. It is not authoritative
when entries have been added via GUIX PACKAGE PATH or ’-L’ flags.

[Function]fold-packages proc init [modules] [#:select?]
Call (PROC PACKAGE RESULT) for each available package defined in one of MOD-
ULES that matches SELECT?, using INIT as the initial value of RESULT. It is
guaranteed to never traverse the same package twice.

[Function]fold-available-packages proc init
Fold PROC over the list of available packages. For each available package,

PROC is called along these lines:

(PROC NAME VERSION RESULT

#:outputs OUTPUTS

#:location LOCATION

...)

PROC can use #:allow-other-keys to ignore the bits it's not interested in.

When a package cache is available, this procedure does not actually load any

package module.

Chapter 9: (gnu packages) 12

[Special Form]find-newest-available-packages

[Function]find-packages-by-name name [version]
Return the list of packages with the given NAME. If VERSION is not #f, then only
return packages whose version is prefixed by VERSION, sorted in decreasing version
order.

[Function]find-package-locations name [version]
Return a list of version/location pairs corresponding to each package matching NAME
and VERSION.

[Function]find-best-packages-by-name name version
If version is #f, return the list of packages named NAME with the highest version
numbers; otherwise, return the list of packages named NAME and at VERSION.

[Function]specification->package spec
Return a package matching SPEC. SPEC may be a package name, or a package name
followed by an at-sign and a version number. If the version number is not present,
return the preferred newest version.

[Function]specification->package+output spec [output]
Return the package and output specified by SPEC, or #f and #f; SPEC may

optionally contain a version number and an output name, as in these examples:

guile

guile@@2.0.9

guile:debug

guile@@2.0.9:debug

If SPEC does not specify a version number, return the preferred newest

version; if SPEC does not specify an output, return OUTPUT.

When OUTPUT is false and SPEC does not specify any output, return #f as the

output.

[Function]specification->location spec
Return the location of the highest-numbered package matching SPEC, a

specification such as "guile@@2" or "emacs".

[Function]specifications->manifest specs
Given SPECS, a list of specifications such as "emacs@@25.2" or

"guile:debug", return a profile manifest.

[Function]specifications->packages specs
Given SPECS, a list of specifications such as "emacs@@25.2" or

"guile:debug", return a list of package/output tuples.

[Function]package-unique-version-prefix name version
Search among all the versions of package NAME that are available, and return the
shortest unambiguous version prefix to designate VERSION. If only one version of
the package is available, return the empty string.

Chapter 9: (gnu packages) 13

[Function]generate-package-cache directory
Generate under DIRECTORY a cache of all the available packages.

The primary purpose of the cache is to speed up package lookup by name such that
we don’t have to traverse and load all the package modules, thereby also reducing the
memory footprint.

14

10 (gnu)

10.1 Overview

This composite module re-exports core parts the (gnu ...) public modules.

10.2 Usage

[Special Form]use-package-modules module ...

[Special Form]use-service-modules module ...

[Special Form]use-system-modules module ...

15

11 (gnu services)

11.1 Overview

11.2 Usage

[Special Form]service-extension

[Special Form]service-extension?

[Special Form]service-extension-target

[Special Form]service-extension-compute

[Special Form]service-type

[Special Form]service-type?

[Special Form]service-type-name

[Special Form]service-type-extensions

[Special Form]service-type-compose

[Special Form]service-type-extend

[Special Form]service-type-default-value

[Special Form]service-type-description

[Special Form]service-type-location

[Variable]%service-type-path

[Function]fold-service-types proc seed [modules]
For each service type exported by one of MODULES, call (PROC RESULT). SEED
is used as the initial value of RESULT.

[Function]lookup-service-types name
Return the list of services with the given NAME (a symbol).

[Special Form]service type value
[Special Form]service type

Return a service instance of TYPE. The service value is VALUE or, if omitted,
TYPE’s default value.

[Special Form]service?

[Special Form]service-kind

[Special Form]service-value

[Function]service-parameters s

[Function]simple-service name target value
Return a service that extends TARGET with VALUE. This works by creating a
singleton service type NAME, of which the returned service is an instance.

Chapter 11: (gnu services) 16

[Special Form]modify-services services clauses ...
Modify the services listed in SERVICES according to CLAUSES and return

the resulting list of services. Each clause must have the form:

(TYPE VARIABLE => BODY)

where TYPE is a service type, such as 'guix-service-type', and VARIABLE is an

identifier that is bound within BODY to the value of the service of that

TYPE.

Clauses can also remove services of a given type:

(delete TYPE)

Consider this example:

(modify-services %base-services

(guix-service-type config =>

(guix-configuration

(inherit config)

(use-substitutes? #f)

(extra-options '("--gc-keep-derivations"))))

(mingetty-service-type config =>

(mingetty-configuration

(inherit config)

(motd (plain-file "motd" "Hi there!"))))

(delete udev-service-type))

It changes the configuration of the GUIX-SERVICE-TYPE instance, and that of

all the MINGETTY-SERVICE-TYPE instances, and it deletes instances of the

UDEV-SERVICE-TYPE.

This is a shorthand for (filter-map (lambda (svc) ...) %base-services).

[Function]service-back-edges services
Return a procedure that, when passed a <service>, returns the list of <service> objects
that depend on it.

[Function]instantiate-missing-services services
Return SERVICES, a list, augmented with any services targeted by extensions and
missing from SERVICES. Only service types with a default value can be instantiated;
other missing services lead to a ’&missing-target-service-error’.

[Function]fold-services services [#:target-type]
Fold SERVICES by propagating their extensions down to the root of type TARGET-
TYPE; return the root service adjusted accordingly.

Chapter 11: (gnu services) 17

[Function]service-error? obj

[Function]missing-value-service-error? obj

[Function]missing-value-service-error-type obj

[Function]missing-value-service-error-location obj

[Function]missing-target-service-error? obj

[Function]missing-target-service-error-service obj

[Function]missing-target-service-error-target-type obj

[Function]ambiguous-target-service-error? obj

[Function]ambiguous-target-service-error-service obj

[Function]ambiguous-target-service-error-target-type obj

[Variable]system-service-type

[Variable]provenance-service-type

[Function]sexp->system-provenance sexp
Parse SEXP, an s-expression read from /run/current-system/provenance or similar,
and return two values: the list of channels listed therein, and the OS configuration
file or #f.

[Function]system-provenance system
Given SYSTEM, the file name of a system generation, return two values: the list
of channels SYSTEM is built from, and its configuration file. If that information is
missing, return the empty list (for channels) and possibly #false (for the configuration
file).

[Variable]boot-service-type

[Variable]cleanup-service-type

[Variable]activation-service-type

[Function]activation-service->script service
Return as a monadic value the activation script for SERVICE, a service of
ACTIVATION-SCRIPT-TYPE.

[Variable]%linux-bare-metal-service

[Variable]%hurd-rc-script

[Variable]%hurd-startup-service

[Variable]special-files-service-type

[Function]extra-special-file file target
Use TARGET as the "special file" FILE. For example, TARGET might be

(file-append coreutils "/bin/env")

and FILE could be "/usr/bin/env".

Chapter 11: (gnu services) 18

[Variable]etc-service-type

[Function]etc-directory service
Return the directory for SERVICE, a service of type ETC-SERVICE-TYPE.

[Variable]setuid-program-service-type

[Variable]profile-service-type

[Variable]firmware-service-type

[Variable]gc-root-service-type

[Variable]linux-builder-service-type

[Special Form]linux-builder-configuration

[Special Form]linux-builder-configuration?

[Special Form]linux-builder-configuration-kernel

[Special Form]linux-builder-configuration-modules

[Variable]linux-loadable-module-service-type

[Variable]%boot-service

[Variable]%activation-service

[Function]etc-service files
Return a new service of ETC-SERVICE-TYPE that populates /etc with FILES.
FILES must be a list of name/file-like object pairs.

[Function]delete []
- Scheme Procedure: delete item lst

Return a newly-created copy of LST with elements `equal?' to ITEM

removed. This procedure mirrors `member': `delete' compares

elements of LST against ITEM with `equal?'.

19

12 (gnu system)

12.1 Overview

This module supports whole-system configuration.

12.2 Usage

[Special Form]operating-system

[Special Form]operating-system?

[Special Form]this-operating-system
Return the record being defined. This macro may only be used in the context of the
definition of a thunked field.

[Special Form]operating-system-bootloader

[Function]operating-system-services os
Return all the services of OS, including "essential" services.

[Special Form]operating-system-essential-services

[Function]operating-system-default-essential-services os
Return the list of essential services for OS. These are special services that implement
part of what’s declared in OS are responsible for low-level bookkeeping.

[Special Form]operating-system-user-services

[Special Form]operating-system-packages

[Special Form]operating-system-host-name

[Special Form]operating-system-hosts-file

[Special Form]operating-system-hurd

[Special Form]operating-system-kernel

[Function]operating-system-kernel-file os
Return an object representing the absolute file name of the kernel image of OS.

[Function]operating-system-kernel-arguments os root-device [#:version]
Return all the kernel arguments, including the ones not specified directly by the user.
VERSION should match that of the target <boot-parameters> record object that will
contain the kernel parameters.

[Special Form]operating-system-label

[Function]operating-system-default-label os
Return the default label for OS, as it will appear in the bootloader menu entry.

[Special Form]operating-system-initrd-modules

[Special Form]operating-system-initrd

[Special Form]operating-system-users

Chapter 12: (gnu system) 20

[Special Form]operating-system-groups

[Special Form]operating-system-issue

[Special Form]operating-system-timezone

[Special Form]operating-system-locale

[Special Form]operating-system-locale-definitions

[Special Form]operating-system-locale-libcs

[Special Form]operating-system-mapped-devices

[Special Form]operating-system-file-systems

[Function]operating-system-store-file-system os
Return the file system that contains the store of OS.

[Function]operating-system-user-mapped-devices os
Return the subset of mapped devices that can be installed in user-land–i.e., those not
needed during boot.

[Function]operating-system-boot-mapped-devices os
Return the subset of mapped devices that must be installed during boot, from the
initrd.

[Function]operating-system-bootloader-crypto-devices os

[Function]operating-system-activation-script os
Return the activation script for OS—i.e., the code that "activates" the stateful part
of OS, including user accounts and groups, special directories, etc.

[Function]operating-system-user-accounts os
Return the list of user accounts of OS.

[Function]operating-system-shepherd-service-names os
Return the list of Shepherd service names for OS.

[Special Form]operating-system-user-kernel-arguments

[Special Form]operating-system-firmware

[Special Form]operating-system-keyboard-layout

[Special Form]operating-system-name-service-switch

[Special Form]operating-system-pam-services

[Special Form]operating-system-setuid-programs

[Special Form]operating-system-skeletons

[Special Form]operating-system-sudoers-file

[Special Form]operating-system-swap-devices

Chapter 12: (gnu system) 21

[Special Form]operating-system-kernel-loadable-modules

[Special Form]operating-system-location

[Function]operating-system-derivation os
Return a derivation that builds OS.

[Function]operating-system-profile os
Return a derivation that builds the system profile of OS.

[Function]operating-system-bootcfg os [old-entries]
Return the bootloader configuration file for OS. Use OLD-ENTRIES, a list of <menu-
entry>, to populate the "old entries" menu.

[Function]operating-system-etc-directory os
Return that static part of the /etc directory of OS.

[Function]operating-system-locale-directory os
Return the directory containing the locales compiled for the definitions listed in OS.
The C library expects to find it under /run/current-system/locale.

[Function]operating-system-boot-script os
Return the boot script for OS—i.e., the code started by the initrd once we’re running
in the final root.

[Function]operating-system-uuid os [type]
Compute UUID object with a deterministic "UUID" for OS, of the given TYPE (one
of ’iso9660 or ’dce). Return a UUID object.

[Function]system-linux-image-file-name [target]
Return the basename of the kernel image file for TARGET.

[Function]operating-system-with-gc-roots os roots
Return a variant of OS where ROOTS are registered as GC roots.

[Function]operating-system-with-provenance os [config-file]
Return a variant of OS that stores its own provenance information, including
CONFIG-FILE, if available. This is achieved by adding an instance of
PROVENANCE-SERVICE-TYPE to its services.

[Function]hurd-default-essential-services os

[Special Form]boot-parameters

[Special Form]boot-parameters?

[Special Form]boot-parameters-label

[Special Form]boot-parameters-root-device

[Special Form]boot-parameters-bootloader-name

[Special Form]boot-parameters-bootloader-menu-entries

[Special Form]boot-parameters-store-crypto-devices

[Special Form]boot-parameters-store-device

Chapter 12: (gnu system) 22

[Special Form]boot-parameters-store-directory-prefix

[Special Form]boot-parameters-store-mount-point

[Special Form]boot-parameters-locale

[Special Form]boot-parameters-kernel

[Special Form]boot-parameters-kernel-arguments

[Special Form]boot-parameters-initrd

[Special Form]boot-parameters-multiboot-modules

[Special Form]boot-parameters-version

[Variable]%boot-parameters-version

[Function]read-boot-parameters port
Read boot parameters from PORT and return the corresponding <boot-parameters>
object. Raise an error if the format is unrecognized.

[Function]read-boot-parameters-file system
Read boot parameters from SYSTEM’s (system or generation) "parameters" file and
returns the corresponding <boot-parameters> object or #f if the format is unrecog-
nized. The object has its kernel-arguments extended in order to make it bootable.

[Function]boot-parameters->menu-entry conf
Return a <menu-entry> instance given CONF, a <boot-parameters> instance.

[Function]local-host-aliases host-name
Return aliases for HOST-NAME, to be used in /etc/hosts.

[Variable]%root-account

[Variable]%setuid-programs

[Variable]%sudoers-specification

[Variable]%base-packages

[Variable]%base-packages-artwork

[Variable]%base-packages-interactive

[Variable]%base-packages-linux

[Variable]%base-packages-networking

[Special Form]%base-packages-disk-utilities

[Variable]%base-packages-utils

[Variable]%base-firmware

[Variable]%default-kernel-arguments

23

13 (gnu tests)

13.1 Overview

This module provides the infrastructure to run operating system tests.

The most important part of that is tools to instrument the OS under test,

essentially allowing it to run in a virtual machine controlled by the host

system--hence the name "marionette".

13.2 Usage

[Special Form]marionette-configuration

[Special Form]marionette-configuration?

[Special Form]marionette-configuration-device

[Special Form]marionette-configuration-imported-modules

[Special Form]marionette-configuration-requirements

[Variable]marionette-service-type

[Function]marionette-operating-system os [#:imported-modules]
[#:extensions] [#:requirements]

Return a marionetteed variant of OS such that OS can be used as a marionette in a
virtual machine–i.e., controlled from the host system. The marionette service in the
guest is started after the Shepherd services listed in REQUIREMENTS. The packages
in the list EXTENSIONS are made available from the backdoor REPL.

[Special Form]define-os-with-source (os source) (use-modules modules ...)
(operating-system fields ...)

Define two variables: OS containing the given operating system, and SOURCE con-
taining the source to define OS as an sexp.

This is convenient when we need both the <operating-system> object so we can in-
stantiate it, and the source to create it so we can store in in a file in the system under
test.

[Variable]%simple-os

[Special Form]simple-operating-system user-services ...
Return an operating system that includes USER-SERVICES in addition to %BASE-
SERVICES.

[Special Form]system-test

[Special Form]system-test?

[Special Form]system-test-name

[Special Form]system-test-value

[Special Form]system-test-description

[Special Form]system-test-location

Chapter 13: (gnu tests) 24

[Function]fold-system-tests proc seed
Invoke PROC on each system test, passing it the test and the previous result.

[Function]all-system-tests
Return the list of system tests.

25

14 (guix android-repo-download)

14.1 Overview

An <origin> method that fetches a specific commit from an Android repo

repository.

The repository's manifest (URL and revision) can be specified with a

<android-repo-reference> object.

14.2 Usage

[Special Form]android-repo-reference

[Special Form]android-repo-reference?

[Special Form]android-repo-reference-manifest-url

[Variable]android-repo-reference-revision
[unbound!]

[Function]android-repo-fetch ref hash-algo hash [name] [#:system] [#:guile]
[#:git-repo]

Return a fixed-output derivation that fetches REF, an <android-repo-reference> ob-
ject. The output is expected to have recursive hash HASH of type HASH-ALGO (a
symbol). Use NAME as the file name, or a generic name if unset.

[Function]android-repo-version version revision
Return the version string for packages using android-repo-download.

[Function]android-repo-file-name name version
Return the file-name for packages using android-repo-download.

26

15 (guix avahi)

15.1 Overview

15.2 Usage

[Special Form]avahi-service

[Special Form]avahi-service?

[Special Form]avahi-service-name

[Special Form]avahi-service-type

[Special Form]avahi-service-interface

[Special Form]avahi-service-local-address

[Special Form]avahi-service-address

[Special Form]avahi-service-port

[Special Form]avahi-service-txt

[Function]avahi-publish-service-thread name [#:type] [#:port]
[#:stop-loop?] [#:timeout] [#:txt]

Publish the service TYPE using Avahi, for the given PORT, on all interfaces and for
all protocols. Also, advertise the given TXT record list.

This procedure starts a new thread running the Avahi event loop. It exits when
STOP-LOOP? procedure returns true.

[Function]avahi-browse-service-thread proc [#:types] [#:ignore-local?]
[#:family] [#:stop-loop?] [#:timeout]

Browse services which type is part of the TYPES list, using Avahi. The search is
restricted to services with the given FAMILY. Each time a service is found or removed,
PROC is called and passed as argument the corresponding AVAHI-SERVICE record.
If a service is available on multiple network interfaces, it will only be reported on the
first interface found.

This procedure starts a new thread running the Avahi event loop. It exits when
STOP-LOOP? procedure returns true.

27

16 (guix base16)

16.1 Overview

16.2 Usage

[Function]bytevector->base16-string bv
Return the hexadecimal representation of BV’s contents.

[Function]base16-string->bytevector s
Return the bytevector whose hexadecimal representation is string S.

28

17 (guix base32)

17.1 Overview

A generic, customizable to convert bytevectors to/from a base32

representation.

17.2 Usage

[Function]bytevector-quintet-length bv
Return the number of quintets (including truncated ones) available in BV.

[Function]bytevector->base32-string bv
Return a base32 encoding of BV using BASE32-CHARS as the alphabet.

[Function]bytevector->nix-base32-string bv
Return a base32 encoding of BV using BASE32-CHARS as the alphabet.

[Function]base32-string->bytevector s
Return the binary representation of base32 string S as a bytevector.

[Function]nix-base32-string->bytevector s
Return the binary representation of base32 string S as a bytevector.

[Variable]%nix-base32-charset

[Variable]%rfc4648-base32-charset

[Variable]&invalid-base32-character

[Function]invalid-base32-character? obj

[Function]invalid-base32-character-value obj

[Function]invalid-base32-character-string obj

29

18 (guix base64)

18.1 Overview

18.2 Usage

[Function]base64-encode bv

[Function]base64-decode str

[Variable]base64-alphabet

[Variable]base64url-alphabet

[Function]get-delimited-base64 port

[Function]put-delimited-base64 port type bv line-length

30

19 (guix build-system)

19.1 Overview

19.2 Usage

[Special Form]build-system

[Special Form]build-system?

[Special Form]build-system-name

[Special Form]build-system-description

[Special Form]build-system-lower

[Special Form]bag

[Special Form]bag?

[Special Form]bag-name

[Special Form]bag-system

[Special Form]bag-target

[Special Form]bag-build-inputs

[Special Form]bag-host-inputs

[Special Form]bag-target-inputs

[Special Form]bag-outputs

[Special Form]bag-arguments

[Special Form]bag-build

[Function]make-bag build-system name [#:source] [#:inputs] [#:native-inputs]
[#:outputs] [#:arguments] [#:system] [#:target]

Ask BUILD-SYSTEM to return a ’bag’ for NAME, with the given SOURCE, IN-
PUTS, NATIVE-INPUTS, OUTPUTS, and additional ARGUMENTS. If TARGET
is not #f, it must be a string with the GNU triplet of a cross-compilation target.

This is the mechanism by which a package is "lowered" to a bag, which is the inter-
mediate representation just above derivations.

[Function]build-system-with-c-toolchain bs toolchain
Return a variant of BS, a build system, that uses TOOLCHAIN instead of the default
GNU C/C++ toolchain. TOOLCHAIN must be a list of inputs (label/package tuples)
providing equivalent functionality, such as the ’gcc-toolchain’ package.

31

20 (guix bzr-download)

20.1 Overview

An <origin> method that fetches a specific revision from a Bazaar

repository. The repository URL and revision identifier are specified with

a <bzr-reference> object.

20.2 Usage

[Special Form]bzr-reference

[Special Form]bzr-reference?

[Special Form]bzr-reference-url

[Special Form]bzr-reference-revision

[Function]bzr-fetch ref hash-algo hash [name] [#:system] [#:guile] [#:bzr]
Return a fixed-output derivation that fetches REF, a <bzr-reference> object. The
output is expected to have recursive hash HASH of type HASH-ALGO (a symbol).
Use NAME as the file name, or a generic name if #f.

32

21 (guix cache)

21.1 Overview

This module provides tools to manage a simple on-disk cache consisting of

individual files.

21.2 Usage

[Function]obsolete? date now ttl
Return #t if DATE is obsolete compared to NOW + TTL seconds.

[Function]delete-file* file
Like ’delete-file’, but does not raise an error when FILE does not exist.

[Function]file-expiration-time ttl [timestamp]
Return a procedure that, when passed a file, returns its "expiration time" computed
as its timestamp + TTL seconds. Call TIMESTAMP to obtain the relevant timestamp
from the result of ’stat’.

[Function]remove-expired-cache-entries entries [#:now]
[#:entry-expiration] [#:delete-entry]

Given ENTRIES, a list of file names, remove those whose expiration time, as returned
by ENTRY-EXPIRATION, has passed. Use DELETE-ENTRY to delete them.

[Function]maybe-remove-expired-cache-entries cache cache-entries
[#:entry-expiration] [#:delete-entry] [#:cleanup-period]

Remove expired narinfo entries from the cache if deemed necessary. Call CACHE-
ENTRIES with CACHE to retrieve the list of cache entries.

ENTRY-EXPIRATION must be a procedure that, when passed an entry, returns
the expiration time of that entry in seconds since the Epoch. DELETE-ENTRY is
a procedure that removes the entry passed as an argument. Finally, CLEANUP-
PERIOD denotes the minimum time between two cache cleanups.

33

22 (guix channels)

22.1 Overview

This module implements "channels." A channel is usually a source of

package definitions. There's a special channel, the 'guix' channel, that

provides all of Guix, including its commands and its documentation.

User-defined channels are expected to typically provide a bunch of .scm

files meant to be added to the '%package-search-path'.

This module provides tools to fetch and update channels from a Git

repository and to build them.

22.2 Usage

[Special Form]channel

[Special Form]channel?

[Special Form]channel-name

[Special Form]channel-url

[Special Form]channel-branch

[Special Form]channel-commit

[Special Form]channel-introduction

[Special Form]channel-location

[Special Form]channel-introduction?

[Function]make-channel-introduction commit signer
Return a new channel introduction: COMMIT is the introductory where authentica-
tion starts, and SIGNER is the OpenPGP fingerprint (a bytevector) of the signer of
that commit.

[Special Form]channel-introduction-first-signed-commit

[Special Form]channel-introduction-first-commit-signer

[Function]openpgp-fingerprint->bytevector str
Convert STR, an OpenPGP fingerprint (hexadecimal string with whitespace), to the
corresponding bytevector.

[Special Form]openpgp-fingerprint
Convert STR, an OpenPGP fingerprint (hexadecimal string with whitespace), to the
corresponding bytevector.

[Variable]%default-guix-channel

[Variable]%default-channels

[Function]guix-channel? channel
Return true if CHANNEL is the ’guix’ channel.

Chapter 22: (guix channels) 34

[Function]repository->guix-channel directory [#:introduction]
Look for a Git repository in DIRECTORY or its ancestors and return a channel that
uses that repository and the commit HEAD currently points to; use INTRODUC-
TION as the channel’s introduction. Return #f if no Git repository could be found
at DIRECTORY or one of its ancestors.

[Special Form]channel-instance?

[Special Form]channel-instance-channel

[Special Form]channel-instance-commit

[Special Form]channel-instance-checkout

[Function]authenticate-channel channel checkout commit
[#:keyring-reference-prefix]

Authenticate the given COMMIT of CHANNEL, available at CHECKOUT, a direc-
tory containing a CHANNEL checkout. Raise an error if authentication fails.

[Function]latest-channel-instances store channels [#:current-channels]
[#:authenticate?] [#:validate-pull]

Return a list of channel instances corresponding to the latest checkouts of CHAN-
NELS and the channels on which they depend.

When AUTHENTICATE? is true, authenticate the subset of CHANNELS that has
a "channel introduction".

CURRENT-CHANNELS is the list of currently used channels. It is compared against
the newly-fetched instances of CHANNELS, and VALIDATE-PULL is called for each
channel update and can choose to emit warnings or raise an error, depending on the
policy it implements.

[Function]checkout->channel-instance checkout [#:commit] [#:url] [#:name]
Return a channel instance for CHECKOUT, which is assumed to be a checkout of
COMMIT at URL. Use NAME as the channel name.

[Function]latest-channel-derivation [channels] [#:current-channels]
[#:validate-pull]

Return as a monadic value the derivation that builds the profile for the latest in-
stances of CHANNELS. CURRENT-CHANNELS and VALIDATE-PULL are passed
to ’latest-channel-instances’.

[Function]channel-instance->sexp instance
Return an sexp representation of INSTANCE, a channel instance.

[Function]channel-instances->manifest instances [#:system]
Return a profile manifest with entries for all of INSTANCES, a list of channel in-
stances. By default, build for the current system, or SYSTEM if specified.

[Variable]%channel-profile-hooks

[Function]channel-instances->derivation instances
Return the derivation of the profile containing INSTANCES, a list of channel in-
stances.

Chapter 22: (guix channels) 35

[Function]ensure-forward-channel-update channel start commit relation
Raise an error if RELATION is not ’ancestor, meaning that START is not an ancestor
of COMMIT, unless CHANNEL specifies a commit.

This procedure implements a channel update policy meant to be used as a #:validate-
pull argument.

[Function]profile-channels profile
Return the list of channels corresponding to entries in PROFILE. If PROFILE is not
a profile created by ’guix pull’, return the empty list.

[Function]manifest-entry-channel entry
Return the channel ENTRY corresponds to, or #f if that information is missing or
unreadable. ENTRY must be an entry created by ’channel-instances->manifest’, with
the ’source’ property.

[Function]sexp->channel sexp [name]
Read SEXP, a provenance sexp as created by ’channel-instance->sexp’; use NAME as
the channel name if SEXP does not specify it. Return #f if the sexp does not have
the expected structure.

[Function]channel->code channel [#:include-introduction?]
Return code (an sexp) to build CHANNEL. When INCLUDE-INTRODUCTION? is
true, include its introduction, if any.

[Special Form]channel-news-entry?

[Special Form]channel-news-entry-commit

[Special Form]channel-news-entry-tag

[Special Form]channel-news-entry-title

[Special Form]channel-news-entry-body

[Function]channel-news-for-commit channel new [old]
Return a list of <channel-news-entry> for CHANNEL between commits OLD and
NEW. When OLD is omitted or is #f, return all the news entries of CHANNEL.

36

23 (guix ci)

23.1 Overview

This module provides a client to the HTTP interface of the Hydra and

Cuirass continuous integration (CI) tools.

23.2 Usage

[Special Form]build-product?

[Special Form]build-product-id

[Special Form]build-product-type

[Special Form]build-product-file-size

[Special Form]build-product-path

[Special Form]build?

[Special Form]build-id

[Special Form]build-derivation

[Special Form]build-evaluation

[Special Form]build-system

[Special Form]build-status

[Special Form]build-timestamp

[Special Form]build-start-time

[Special Form]build-stop-time

[Function]build-duration build
Return the duration in seconds of BUILD.

[Special Form]build-products

[Special Form]checkout?

[Special Form]checkout-commit

[Special Form]checkout-channel

[Special Form]evaluation?

[Special Form]evaluation-id

[Special Form]evaluation-spec

[Special Form]evaluation-complete?

[Special Form]evaluation-checkouts

Chapter 23: (guix ci) 37

[Special Form]job?

[Special Form]job-build-id

[Special Form]job-status

[Special Form]job-name

[Special Form]history?

[Special Form]history-evaluation

[Special Form]history-checkouts

[Special Form]history-jobs

[Variable]%query-limit

[Function]queued-builds url [limit]
Return the list of queued derivations on URL.

[Function]latest-builds url [limit] [#:evaluation] [#:system] [#:job]
[#:jobset] [#:status]

Return the latest builds performed by the CI server at URL. If EVALUATION is an
integer, restrict to builds of EVALUATION. If SYSTEM is true (a system string such
as "x86 64-linux"), restrict to builds for SYSTEM.

[Function]evaluation url evaluation
Return the given EVALUATION performed by the CI server at URL.

[Function]evaluation-jobs url evaluation-id
Return the list of jobs of evaluation EVALUATION-ID.

[Function]build url id
Look up build ID at URL and return it. Raise &http-get-error if it is not found (404).

[Function]job-build url job
Return the build associated with JOB.

[Function]jobs-history url jobs [#:specification] [#:limit]
Return the job history for the SPECIFICATION jobs which names are part of the
JOBS list, from the CI server at URL. Limit the history to the latest LIMIT evalua-
tions.

[Function]latest-evaluations url [limit] [#:spec]
Return the latest evaluations performed by the CI server at URL. If SPEC is passed,
only consider the evaluations for the given SPEC specification.

[Function]evaluations-for-commit url commit [limit]
Return the evaluations among the latest LIMIT evaluations that have COMMIT as
one of their inputs.

Chapter 23: (guix ci) 38

[Function]channel-with-substitutes-available chan url
Return a channel inheriting from CHAN but which commit field is set to the lat-
est commit with available substitutes for the Guix package definitions at URL. The
current system is taken into account.

If no commit with available substitutes were found, the commit field is set to false
and a warning message is printed.

39

24 (guix colors)

24.1 Overview

This module provides tools to produce colored output using ANSI escapes.

24.2 Usage

[Special Form]color colors ...
Return a list of color attributes that can be passed to ’colorize-string’.

[Special Form]color?

[Function]coloring-procedure color
Return a procedure that applies COLOR to the given string.

[Function]colorize-string str color
Return a copy of STR colorized using ANSI escape sequences according to COLOR.
At the end of the returned string, the color attributes are reset such that subsequent
output will not have any colors in effect.

[Function]highlight str [port]
Return STR with extra ANSI color attributes if PORT supports it.

[Function]highlight/warn str [port]
Return STR with extra ANSI color attributes if PORT supports it.

[Function]dim str [port]
Return STR with extra ANSI color attributes if PORT supports it.

[Function]colorize-full-matches rules
Return a procedure that, given a string, colorizes according to RULES. RULES must
be a list of regexp/color pairs; the whole match of a regexp is colorized with the
corresponding color.

[Special Form]color-rules (regexp colors ...) ...
Return a procedure that colorizes the string it is passed according to

the given rules. Each rule has the form:

(REGEXP COLOR1 COLOR2 ...)

where COLOR1 specifies how to colorize the first submatch of REGEXP, and so

on.

[Function]color-output? port
Return true if we should write colored output to PORT.

[Function]isatty?* port

[Function]supports-hyperlinks? [port]
Return true if PORT is a terminal that supports hyperlink escapes.

Chapter 24: (guix colors) 40

[Function]file-hyperlink file [text]
Return TEXT with escapes for a hyperlink to FILE.

[Function]hyperlink uri text
Return a string that denotes a hyperlink using an OSC escape sequence as documented
at <https://gist.github.com/egmontkob/eb114294efbcd5adb1944c9f3cb5feda>.

41

25 (guix combinators)

25.1 Overview

This module provides useful combinators that complement SRFI-1 and

friends.

25.2 Usage

[Function]fold2 proc seed1 seed2 lst

[Function]fold-tree proc init children roots
Call (PROC NODE RESULT) for each node in the tree that is reachable from
ROOTS, using INIT as the initial value of RESULT. The order in which nodes are
traversed is not specified, however, each node is visited only once, based on an eq?
check. Children of a node to be visited are generated by calling (CHILDREN NODE),
the result of which should be a list of nodes that are connected to NODE in the tree,
or ’() or #f if NODE is a leaf node.

[Function]fold-tree-leaves proc init children roots
Like fold-tree, but call (PROC NODE RESULT) only for leaf nodes.

[Special Form]compile-time-value exp
Evaluate the given expression at compile time. The expression must evaluate to a
simple datum.

[Special Form]procedure-call-location

[Special Form]define-compile-time-procedure (proc (arg pred) ...) body ...
Define PROC as a macro such that, if every actual argument in a "call" matches
PRED, then BODY is evaluated at macro-expansion time. BODY must return a
single value in a type that has read syntax–e.g., numbers, strings, lists, etc.

BODY can refer to ’procedure-call-location’, which is bound to a source property alist
corresponding to the call site.

This macro is meant to be used primarily for small procedures that validate or process
its arguments in a way that may be equally well performed at macro-expansion time.

42

26 (guix config)

26.1 Overview

Compile-time configuration of Guix. When adding a substitution variable

here, make sure to equip (guix scripts pull) to substitute it.

26.2 Usage

[Variable]%guix-package-name

[Variable]%guix-version

[Variable]%guix-bug-report-address

[Variable]%guix-home-page-url

[Variable]%channel-metadata

[Variable]%storedir

[Variable]%localstatedir

[Variable]%sysconfdir

[Variable]%store-directory

[Variable]%state-directory

[Variable]%store-database-directory

[Variable]%config-directory

[Variable]%system

[Variable]%gzip

[Variable]%bzip2

[Variable]%xz

43

27 (guix cpio)

27.1 Overview

This module implements the cpio "new ASCII" format, bit-for-bit identical

to GNU cpio with the '-H newc' option.

27.2 Usage

[Special Form]cpio-header?

[Function]make-cpio-header [#:inode] [#:mode] [#:uid] [#:gid] [#:nlink]
[#:mtime] [#:size] [#:dev] [#:rdev] [#:name-size]

Return a new cpio file header.

[Function]file->cpio-header file [file-name] [#:stat]
Return a cpio header corresponding to the info returned by STAT for FILE, using
FILE-NAME as its file name.

[Function]file->cpio-header* file [file-name] [#:stat]
Similar to ’file->cpio-header’, but return a header with a zeroed modification time,
inode number, UID/GID, etc. This allows archives to be produced in a deterministic
fashion.

[Function]special-file->cpio-header* file device-type device-major
device-minor permission-bits [file-name]

Create a character or block device header.

DEVICE-TYPE is either ’char-special or ’block-special.

The number of hard links is assumed to be 1.

[Function]write-cpio-header obj port

[Function]read-cpio-header port

[Function]write-cpio-archive files port [#:file->header]
Write to PORT a cpio archive in "new ASCII" format containing all of FILES.

The archive written to PORT is intended to be bit-identical to what GNU cpio pro-
duces with the ’-H newc’ option.

44

28 (guix cpu)

28.1 Overview

This module provides tools to determine the micro-architecture supported

by the CPU and to map it to a name known to GCC's '-march'.

28.2 Usage

[Function]current-cpu

[Special Form]cpu?

[Special Form]cpu-architecture

[Special Form]cpu-vendor

[Special Form]cpu-family

[Special Form]cpu-model

[Special Form]cpu-flags

[Function]cpu->gcc-architecture cpu
Return the architecture name, suitable for GCC’s ’-march’ flag, that corresponds to
CPU, a record as returned by ’current-cpu’.

45

29 (guix cve)

29.1 Overview

This modules provides the tools to fetch, parse, and digest part of the

Common Vulnerabilities and Exposures (CVE) feeds provided by the US NIST

at <https://nvd.nist.gov/vuln/data-feeds>.

29.2 Usage

[Function]json->cve-items json
Parse JSON, an input port or a string, and return a list of <cve-item> records.

[Special Form]cve-item?

[Special Form]cve-item-cve

[Special Form]cve-item-configurations

[Special Form]cve-item-published-date

[Special Form]cve-item-last-modified-date

[Special Form]cve?

[Special Form]cve-id

[Special Form]cve-data-type

[Special Form]cve-data-format

[Special Form]cve-references

[Special Form]cve-reference?

[Special Form]cve-reference-url

[Special Form]cve-reference-tags

[Special Form]vulnerability?

[Special Form]vulnerability-id

[Special Form]vulnerability-packages

[Function]json->vulnerabilities json
Parse JSON, an input port or a string, and return the list of vulnerabilities found
therein.

[Function]current-vulnerabilities [#:timeout]
Return the current list of Common Vulnerabilities and Exposures (CVE) as pub-
lished by the US NIST. TIMEOUT specifies the timeout in seconds for connection
establishment.

[Function]vulnerabilities->lookup-proc vulnerabilities
Return a lookup procedure built from VULNERABILITIES that takes a package
name and optionally a version number. When the version is omitted, the lookup
procedure returns a list of vulnerabilities; otherwise, it returns a list of vulnerabilities
affecting the given package version.

46

30 (guix cvs-download)

30.1 Overview

An <origin> method that fetches a specific revision or date from a CVS

repository. The CVS-ROOT-DIRECTORY, MODULE and REVISION are specified

with a <cvs-reference> object. REVISION should be specified as either a

date string in ISO-8601 format (e.g. "2012-12-21") or a CVS tag.

30.2 Usage

[Special Form]cvs-reference

[Special Form]cvs-reference?

[Special Form]cvs-reference-root-directory

[Special Form]cvs-reference-module

[Special Form]cvs-reference-revision

[Function]cvs-fetch ref hash-algo hash [name] [#:system] [#:guile] [#:cvs]
Return a fixed-output derivation that fetches REF, a <cvs-reference> object. The
output is expected to have recursive hash HASH of type HASH-ALGO (a symbol).
Use NAME as the file name, or a generic name if #f.

47

31 (guix deprecation)

31.1 Overview

Provide a mechanism to mark bindings as deprecated.

31.2 Usage

[Special Form]define-deprecated
Define a deprecated variable or procedure, along these lines:

(define-deprecated foo bar 42)

(define-deprecated old new)

(define-deprecated (baz x y) qux (qux y x))

This will write a deprecation warning to GUIX-WARNING-PORT.

[Special Form]define-deprecated/public body ...
Like ’define/deprecated’, but export all the newly introduced bindings.

[Special Form]define-deprecated/alias deprecated replacement
Define as an alias a deprecated variable, procedure, or macro, along

these lines:

(define-deprecated/alias nix-server? store-connection?)

where 'nix-server?' is the deprecated name for 'store-connection?'.

This will write a deprecation warning to GUIX-WARNING-PORT.

[Special Form]define-deprecated/public-alias deprecated replacement
Like define-deprecated/alias, but exporting DEPRECATED. It is assumed, that RE-
PLACEMENT is already public.

[Function]warn-about-old-daemon

[Function]warn-about-deprecation variable properties [#:replacement]

48

32 (guix derivations)

32.1 Overview

32.2 Usage

[Variable]<derivation>

[Special Form]derivation?

[Special Form]derivation-outputs

[Special Form]derivation-inputs

[Special Form]derivation-sources

[Special Form]derivation-system

[Special Form]derivation-builder

[Special Form]derivation-builder-arguments

[Special Form]derivation-builder-environment-vars

[Special Form]derivation-file-name

[Function]derivation-prerequisites drv [cut?]
Return the list of derivation-inputs required to build DRV, recursively.

CUT? is a predicate that is passed a derivation-input and returns true to eliminate the
given input and its dependencies from the search. An example of such a predicate is
’valid-derivation-input?’; when it is used as CUT?, the result is the set of prerequisites
of DRV not already in valid.

[Function]derivation-build-plan store inputs [#:mode] [#:substitutable-info]
Given INPUTS, a list of derivation-inputs, return two values: the list of derivations to
build, and the list of substitutable items that, together, allow INPUTS to be realized.

SUBSTITUTABLE-INFO must be a one-argument procedure similar to that returned
by ’substitution-oracle’.

[Special Form]derivation-prerequisites-to-build

[Variable]<derivation-output>

[Special Form]derivation-output?

[Special Form]derivation-output-path

[Special Form]derivation-output-hash-algo

[Special Form]derivation-output-hash

[Special Form]derivation-output-recursive?

[Variable]<derivation-input>

[Special Form]derivation-input?

Chapter 32: (guix derivations) 49

[Function]derivation-input drv [outputs]
Return a <derivation-input> for the OUTPUTS of DRV.

[Function]derivation-input-path input
Return the file name of the derivation INPUT refers to.

[Special Form]derivation-input-derivation

[Special Form]derivation-input-sub-derivations

[Function]derivation-input-output-paths input
Return the list of output paths corresponding to INPUT, a <derivation-input>.

[Function]derivation-input-output-path input
Return the output file name of INPUT. If INPUT has more than one outputs, an
error is raised.

[Function]valid-derivation-input? store input
Return true if INPUT is valid–i.e., if all the outputs it requests are in the store.

[Variable]&derivation-error

[Function]derivation-error? obj

[Function]derivation-error-derivation obj

[Variable]&derivation-missing-output-error

[Function]derivation-missing-output-error? obj

[Function]derivation-missing-output obj

[Function]derivation-name drv
Return the base name of DRV.

[Function]derivation-output-names drv
Return the names of the outputs of DRV.

[Function]fixed-output-derivation? drv
Return #t if DRV is a fixed-output derivation, such as the result of a download with
a fixed hash (aka. ‘fetchurl’).

[Function]offloadable-derivation? drv
Return true if DRV can be offloaded, false otherwise.

[Function]substitutable-derivation? drv
Return #t if DRV can be substituted.

[Function]derivation-input-fold proc seed inputs [#:cut?]
Perform a breadth-first traversal of INPUTS, calling PROC on each input with the
current result, starting from SEED. Skip recursion on inputs that match CUT?.

Chapter 32: (guix derivations) 50

[Function]substitution-oracle store inputs-or-drv [#:mode]
Return a one-argument procedure that, when passed a store file name, returns a
’substitutable?’ if it’s substitutable and #f otherwise.

The returned procedure knows about all substitutes for all the derivation inputs or
derivations listed in INPUTS-OR-DRV, *except* those that are already valid (that
is, it won’t bother checking whether an item is substitutable if it’s already on disk);
it also knows about their prerequisites, unless they are themselves substitutable.

Creating a single oracle (thus making a single ’substitutable-path-info’ call) and
reusing it is much more efficient than calling ’has-substitutes?’ or similar repeatedly,
because it avoids the costs associated with launching the substituter many times.

[Function]derivation-hash drv
Return the hash of DRV, modulo its fixed-output inputs, as a bytevector.

[Function]derivation-properties drv

[Function]read-derivation drv-port [read-derivation-from-file]
Read the derivation from DRV-PORT and return the corresponding <derivation> ob-
ject. Call READ-DERIVATION-FROM-FILE to read derivations declared as inputs
of the derivation being parsed.

Most of the time you’ll want to use ’read-derivation-from-file’, which caches things as
appropriate and is thus more efficient.

[Function]read-derivation-from-file file
Read the derivation in FILE, a ’.drv’ file, and return the corresponding <derivation>
object.

[Function]write-derivation drv port
Write the ATerm-like serialization of DRV to PORT. See Section 2.4 of Eelco Dolstra’s
PhD dissertation for an overview of a previous version of that form.

[Function]derivation->output-path drv [output]
Return the store path of its output OUTPUT. Raise a ’&derivation-missing-output-
error’ condition if OUTPUT is not an output of DRV.

[Function]derivation->output-paths drv
Return the list of name/path pairs of the outputs of DRV.

[Function]derivation-path->output-path path [output]
Read the derivation from PATH (‘/gnu/store/xxx.drv’), and return the store path of
its output OUTPUT.

[Function]derivation-path->output-paths path
Read the derivation from PATH (‘/gnu/store/xxx.drv’), and return the list of
name/path pairs of its outputs.

Chapter 32: (guix derivations) 51

[Function]derivation store name builder args [#:system] [#:env-vars]
[#:inputs] [#:sources] [#:outputs] [#:hash] [#:hash-algo] [#:recursive?]
[#:references-graphs] [#:allowed-references] [#:disallowed-references]
[#:leaked-env-vars] [#:local-build?] [#:substitutable?] [#:properties]
[#:%deprecation-warning?]

Build a derivation with the given arguments, and return the resulting <derivation> ob-
ject. When HASH and HASH-ALGO are given, a fixed-output derivation is created—
i.e., one whose result is known in advance, such as a file download. If, in addition,
RECURSIVE? is true, then that fixed output may be an executable file or a directory
and HASH must be the hash of an archive containing this output.

When REFERENCES-GRAPHS is true, it must be a list of file name/store path
pairs. In that case, the reference graph of each store path is exported in the build
environment in the corresponding file, in a simple text format.

When ALLOWED-REFERENCES is true, it must be a list of store items or outputs
that the derivation’s outputs may refer to. Likewise, DISALLOWED-REFERENCES,
if true, must be a list of things the outputs may not refer to.

When LEAKED-ENV-VARS is true, it must be a list of strings denoting environment
variables that are allowed to "leak" from the daemon’s environment to the build
environment. This is only applicable to fixed-output derivations–i.e., when HASH
is true. The main use is to allow variables such as "http proxy" to be passed to
derivations that download files.

When LOCAL-BUILD? is true, declare that the derivation is not a good candidate
for offloading and should rather be built locally. This is the case for small derivations
where the costs of data transfers would outweigh the benefits.

When SUBSTITUTABLE? is false, declare that substitutes of the derivation’s output
should not be used.

PROPERTIES must be an association list describing "properties" of the derivation.
It is kept as-is, uninterpreted, in the derivation.

[Function]raw-derivation . args
Build a derivation with the given arguments, and return the resulting <derivation> ob-
ject. When HASH and HASH-ALGO are given, a fixed-output derivation is created—
i.e., one whose result is known in advance, such as a file download. If, in addition,
RECURSIVE? is true, then that fixed output may be an executable file or a directory
and HASH must be the hash of an archive containing this output.

When REFERENCES-GRAPHS is true, it must be a list of file name/store path
pairs. In that case, the reference graph of each store path is exported in the build
environment in the corresponding file, in a simple text format.

When ALLOWED-REFERENCES is true, it must be a list of store items or outputs
that the derivation’s outputs may refer to. Likewise, DISALLOWED-REFERENCES,
if true, must be a list of things the outputs may not refer to.

When LEAKED-ENV-VARS is true, it must be a list of strings denoting environment
variables that are allowed to "leak" from the daemon’s environment to the build
environment. This is only applicable to fixed-output derivations–i.e., when HASH

Chapter 32: (guix derivations) 52

is true. The main use is to allow variables such as "http proxy" to be passed to
derivations that download files.

When LOCAL-BUILD? is true, declare that the derivation is not a good candidate
for offloading and should rather be built locally. This is the case for small derivations
where the costs of data transfers would outweigh the benefits.

When SUBSTITUTABLE? is false, declare that substitutes of the derivation’s output
should not be used.

PROPERTIES must be an association list describing "properties" of the derivation.
It is kept as-is, uninterpreted, in the derivation.

[Function]invalidate-derivation-caches!
Invalidate internal derivation caches. This is mostly useful for long-running processes
that know what they’re doing. Use with care!

[Function]map-derivation store drv mapping [#:system]
Given MAPPING, a list of pairs of derivations, return a derivation based on DRV
where all the ’car’s of MAPPING have been replaced by its ’cdr’s, recursively.

[Function]build-derivations store derivations [mode]
Build DERIVATIONS, a list of <derivation> or <derivation-input> objects, .drv file
names, or derivation/output pairs, using the specified MODE.

[Function]built-derivations . args
Build DERIVATIONS, a list of <derivation> or <derivation-input> objects, .drv file
names, or derivation/output pairs, using the specified MODE.

[Function]file-search-error? obj

[Function]file-search-error-file-name obj

[Function]file-search-error-search-path obj

[Function]search-path* path file

[Function]module->source-file-name module
Return the file name corresponding to MODULE, a Guile module name (a list of
symbols.)

[Special Form]build-expression->derivation

[Variable]%guile-for-build

53

33 (guix describe)

33.1 Overview

This module provides supporting code to allow a Guix instance to find, at

run time, which profile it's in (profiles created by 'guix pull'). That

allows it to read meta-information about itself (e.g., repository URL and

commit ID) and to find other channels available in the same profile. It's

a bit like ELPA's pkg-info.el.

33.2 Usage

[Function]current-profile

[Function]current-profile-date
Return the creation date of the current profile (produced by ’guix pull’), as a number
of seconds since the Epoch, or #f if it could not be determined.

[Function]current-profile-entries

[Function]current-channels

[Function]package-path-entries
Return two values: the list of package path entries to be added to the package search
path, and the list to be added to %LOAD-COMPILED-PATH. These entries are
taken from the ’guix pull’ profile the calling process lives in, when applicable.

[Function]package-provenance package
Return the provenance of PACKAGE as an sexp for use as the ’provenance’ property
of manifest entries, or #f if it could not be determined.

[Function]package-channels package
Return the list of channels providing PACKAGE or an empty list if it could not be
determined.

[Function]manifest-entry-with-provenance entry
Return ENTRY with an additional ’provenance’ property if it’s not already there.

[Function]manifest-entry-provenance entry
Return the list of channels ENTRY comes from. Return the empty list if that infor-
mation is missing.

54

34 (guix diagnostics)

34.1 Overview

This module provides the tools to report diagnostics to the user in a

consistent way: errors, warnings, and notes.

34.2 Usage

[Special Form]warning

[Special Form]info

[Special Form]report-error

[Special Form]leave args ...
Emit an error message and exit.

[Variable]<location>

[Function]location file line column
Return the <location> object for the given FILE, LINE, and COLUMN.

[Special Form]location?

[Special Form]location-file

[Special Form]location-line

[Special Form]location-column

[Function]source-properties->location loc
Return a location object based on the info in LOC, an alist as returned by Guile’s
‘source-properties’, ‘frame-source’, ‘current-source-location’, etc.

[Function]location->source-properties loc
Return the source property association list based on the info in LOC, a location
object.

[Function]location->string loc
Return a human-friendly, GNU-standard representation of LOC.

[Function]location->hyperlink location
Return a string corresponding to LOCATION, with escapes for a hyperlink.

[Variable]&error-location

[Function]error-location? obj

[Function]error-location obj

[Special Form]formatted-message
Return a ’&formatted-message’ error condition.

Chapter 34: (guix diagnostics) 55

[Function]formatted-message? obj

[Function]formatted-message-string obj

[Function]formatted-message-arguments obj

[Variable]&fix-hint

[Function]fix-hint? obj

[Function]condition-fix-hint obj

[Variable]guix-warning-port

[Variable]program-name

[Special Form]define-with-syntax-properties
Define BINDING to be a syntax form replacing each VALUE-IDENTIFIER and
SYNTAX-PROPERTIES-IDENTIFIER in body by the syntax and syntax-properties,
respectively, of each ensuing syntax object.

56

35 (guix discovery)

35.1 Overview

This module provides tools to discover Guile modules and the variables

they export.

35.2 Usage

[Function]scheme-files directory
Return the list of Scheme files found under DIRECTORY, recursively. The returned
list is sorted in alphabetical order. Return the empty list if DIRECTORY is not
accessible.

[Function]scheme-modules directory [sub-directory] [#:warn]
Return the list of Scheme modules available under DIRECTORY. Optionally, narrow
the search to SUB-DIRECTORY.

WARN is called when a module could not be loaded. It is passed the module name
and the exception key and arguments.

[Function]scheme-modules* directory [sub-directory]
Return the list of module names found under SUB-DIRECTORY in DIRECTORY.
This is a source-only variant that does not try to load files.

[Function]fold-modules proc init path [#:warn]
Fold over all the Scheme modules present in PATH, a list of directories. Call (PROC
MODULE RESULT) for each module that is found.

[Function]all-modules path [#:warn]
Return the list of package modules found in PATH, a list of directories to
search. Entries in PATH can be directory names (strings) or (DIRECTORY
. SUB-DIRECTORY) pairs, in which case modules are searched for beneath
SUB-DIRECTORY. Modules are listed in the order they appear on the path.

[Function]fold-module-public-variables proc init modules
Call (PROC OBJECT RESULT) for each variable exported by one of MODULES,
using INIT as the initial value of RESULT. It is guaranteed to never traverse the
same object twice.

[Function]fold-module-public-variables* proc init modules
Call (PROC MODULE SYMBOL VARIABLE RESULT) for each variable exported
by one of MODULES, using INIT as the initial value of RESULT. It is guaranteed to
never traverse the same object twice.

57

36 (guix docker)

36.1 Overview

36.2 Usage

[Function]build-docker-image image paths prefix [#:repository] [#:extra-files]
[#:transformations] [#:system] [#:database] [#:entry-point]
[#:environment] [#:compressor] [#:creation-time]

Write to IMAGE a Docker image archive containing the given PATHS. PREFIX
must be a store path that is a prefix of any store paths in PATHS. REPOSITORY
is a descriptive name that will show up in "REPOSITORY" column of the output of
"docker images".

When DATABASE is true, copy it to /var/guix/db in the image and create
/var/guix/gcroots and friends.

When ENTRY-POINT is true, it must be a list of strings; it is stored as the entry
point in the Docker image JSON structure.

ENVIRONMENT must be a list of name/value pairs. It specifies the environment
variables that must be defined in the resulting image.

EXTRA-FILES must be a list of directives for ’evaluate-populate-directive’ describing
non-store files that must be created in the image.

TRANSFORMATIONS must be a list of (OLD -> NEW) tuples describing how to
transform the PATHS. Any path in PATHS that begins with OLD will be rewritten
in the Docker image so that it begins with NEW instead. If a path is a non-empty
directory, then its contents will be recursively added, as well.

SYSTEM is a GNU triplet (or prefix thereof) of the system the binaries in PATHS are
for; it is used to produce metadata in the image. Use COMPRESSOR, a command
such as ’("gzip" "-9n"), to compress IMAGE. Use CREATION-TIME, a SRFI-19
time-utc object, as the creation time in metadata.

58

37 (guix download)

37.1 Overview

Produce fixed-output derivations with data fetched over HTTP or FTP.

37.2 Usage

[Variable]%mirrors

[Variable]%disarchive-mirrors

[Variable]%download-fallback-test

[Function]url-fetch/executable url hash-algo hash [name] [#:system]
[#:guile]

Like ’url-fetch’, but make the downloaded file executable.

[Function]url-fetch/tarbomb url hash-algo hash [name] [#:system] [#:guile]
Similar to ’url-fetch’ but unpack the file from URL in a directory of its own. This
helper makes it easier to deal with "tar bombs".

[Function]url-fetch/zipbomb url hash-algo hash [name] [#:system] [#:guile]
Similar to ’url-fetch’ but unpack the zip file at URL in a directory of its own. This
helper makes it easier to deal with "zip bombs".

[Function]download-to-store store url [name] [#:log] [#:recursive?]
[#:verify-certificate?]

Download from URL to STORE, either under NAME or URL’s basename if omitted.
Write progress reports to LOG. RECURSIVE? has the same effect as the same-named
parameter of ’add-to-store’. VERIFY-CERTIFICATE? determines whether or not to
validate HTTPS server certificates.

[Function]url-fetch url hash-algo hash [name] [#:system] [#:guile]
[#:executable?]

Return a fixed-output derivation that fetches data from URL (a string, or a list of
strings denoting alternate URLs), which is expected to have hash HASH of type
HASH-ALGO (a symbol). By default, the file name is the base name of URL; option-
ally, NAME can specify a different file name. When EXECUTABLE? is true, make
the downloaded file executable.

When one of the URL starts with mirror://, then its host part is interpreted as the
name of a mirror scheme, taken from %MIRROR-FILE.

Alternatively, when URL starts with file://, return the corresponding file name in the
store.

59

38 (guix elf)

38.1 Overview

This file was taken from the Guile 2.1 branch, where it is known as

(system vm elf), and renamed to (guix elf). It will be unneeded when Guix

switches to Guile 2.1/2.2.

A module to read and write Executable and Linking Format (ELF)

files.

This module exports a number of record types that represent the

various parts that make up ELF files. Fundamentally this is the

main header, the segment headers (program headers), and the section

headers. It also exports bindings for symbolic constants and

utilities to parse and write special kinds of ELF sections.

See elf(5) for more information on ELF.

38.2 Usage

[Function]has-elf-header? bv

[Special Form]elf?

[Special Form]elf-bytes

[Special Form]elf-word-size

[Special Form]elf-byte-order

[Special Form]elf-abi

[Special Form]elf-type

[Special Form]elf-machine-type

[Special Form]elf-entry

[Special Form]elf-phoff

[Special Form]elf-shoff

[Special Form]elf-flags

[Special Form]elf-ehsize

[Special Form]elf-phentsize

[Special Form]elf-phnum

[Special Form]elf-shentsize

[Special Form]elf-shnum

Chapter 38: (guix elf) 60

[Special Form]elf-shstrndx

[Variable]ELFOSABI_NONE

[Variable]ELFOSABI_HPUX

[Variable]ELFOSABI_NETBSD

[Variable]ELFOSABI_GNU

[Variable]ELFOSABI_SOLARIS

[Variable]ELFOSABI_AIX

[Variable]ELFOSABI_IRIX

[Variable]ELFOSABI_FREEBSD

[Variable]ELFOSABI_TRU64

[Variable]ELFOSABI_MODESTO

[Variable]ELFOSABI_OPENBSD

[Variable]ELFOSABI_ARM_AEABI

[Variable]ELFOSABI_ARM

[Variable]ELFOSABI_STANDALONE

[Variable]ET_NONE

[Variable]ET_REL

[Variable]ET_EXEC

[Variable]ET_DYN

[Variable]ET_CORE

[Variable]EM_NONE

[Variable]EM_SPARC

[Variable]EM_386

[Variable]EM_MIPS

[Variable]EM_PPC

[Variable]EM_PPC64

[Variable]EM_ARM

[Variable]EM_SH

[Variable]EM_SPARCV9

[Variable]EM_IA_64

[Variable]EM_X86_64

[Function]elf-header-len word-size

[Function]elf-header-shoff-offset word-size

Chapter 38: (guix elf) 61

[Function]write-elf-header bv elf

[Special Form]elf-segment?

[Special Form]elf-segment-index

[Special Form]elf-segment-type

[Special Form]elf-segment-offset

[Special Form]elf-segment-vaddr

[Special Form]elf-segment-paddr

[Special Form]elf-segment-filesz

[Special Form]elf-segment-memsz

[Special Form]elf-segment-flags

[Special Form]elf-segment-align

[Function]elf-program-header-len word-size

[Function]write-elf-program-header bv offset byte-order word-size seg

[Variable]PT_NULL

[Variable]PT_LOAD

[Variable]PT_DYNAMIC

[Variable]PT_INTERP

[Variable]PT_NOTE

[Variable]PT_SHLIB

[Variable]PT_PHDR

[Variable]PT_TLS

[Variable]PT_NUM

[Variable]PT_LOOS

[Variable]PT_GNU_EH_FRAME

[Variable]PT_GNU_STACK

[Variable]PT_GNU_RELRO

[Variable]PF_R

[Variable]PF_W

[Variable]PF_X

[Special Form]elf-section?

[Special Form]elf-section-index

[Special Form]elf-section-name

[Special Form]elf-section-type

Chapter 38: (guix elf) 62

[Special Form]elf-section-flags

[Special Form]elf-section-addr

[Special Form]elf-section-offset

[Special Form]elf-section-size

[Special Form]elf-section-link

[Special Form]elf-section-info

[Special Form]elf-section-addralign

[Special Form]elf-section-entsize

[Function]elf-section-header-len word-size

[Function]elf-section-header-addr-offset word-size

[Function]elf-section-header-offset-offset word-size

[Function]write-elf-section-header bv offset byte-order word-size sec

[Special Form]elf-symbol?

[Special Form]elf-symbol-name

[Special Form]elf-symbol-value

[Special Form]elf-symbol-size

[Special Form]elf-symbol-info

[Special Form]elf-symbol-other

[Special Form]elf-symbol-shndx

[Function]elf-symbol-binding sym

[Function]elf-symbol-type sym

[Function]elf-symbol-visibility sym

[Function]elf-symbol-len word-size

[Function]elf-symbol-value-offset word-size

[Function]write-elf-symbol bv offset byte-order word-size sym

[Variable]SHN_UNDEF

[Variable]SHT_NULL

[Variable]SHT_PROGBITS

[Variable]SHT_SYMTAB

[Variable]SHT_STRTAB

[Variable]SHT_RELA

[Variable]SHT_HASH

[Variable]SHT_DYNAMIC

Chapter 38: (guix elf) 63

[Variable]SHT_NOTE

[Variable]SHT_NOBITS

[Variable]SHT_REL

[Variable]SHT_SHLIB

[Variable]SHT_DYNSYM

[Variable]SHT_INIT_ARRAY

[Variable]SHT_FINI_ARRAY

[Variable]SHT_PREINIT_ARRAY

[Variable]SHT_GROUP

[Variable]SHT_SYMTAB_SHNDX

[Variable]SHT_NUM

[Variable]SHT_LOOS

[Variable]SHT_HIOS

[Variable]SHT_LOPROC

[Variable]SHT_HIPROC

[Variable]SHT_LOUSER

[Variable]SHT_HIUSER

[Variable]SHF_WRITE

[Variable]SHF_ALLOC

[Variable]SHF_EXECINSTR

[Variable]SHF_MERGE

[Variable]SHF_STRINGS

[Variable]SHF_INFO_LINK

[Variable]SHF_LINK_ORDER

[Variable]SHF_OS_NONCONFORMING

[Variable]SHF_GROUP

[Variable]SHF_TLS

[Variable]DT_NULL

[Variable]DT_NEEDED

[Variable]DT_PLTRELSZ

[Variable]DT_PLTGOT

[Variable]DT_HASH

[Variable]DT_STRTAB

Chapter 38: (guix elf) 64

[Variable]DT_SYMTAB

[Variable]DT_RELA

[Variable]DT_RELASZ

[Variable]DT_RELAENT

[Variable]DT_STRSZ

[Variable]DT_SYMENT

[Variable]DT_INIT

[Variable]DT_FINI

[Variable]DT_SONAME

[Variable]DT_RPATH

[Variable]DT_SYMBOLIC

[Variable]DT_REL

[Variable]DT_RELSZ

[Variable]DT_RELENT

[Variable]DT_PLTREL

[Variable]DT_DEBUG

[Variable]DT_TEXTREL

[Variable]DT_JMPREL

[Variable]DT_BIND_NOW

[Variable]DT_INIT_ARRAY

[Variable]DT_FINI_ARRAY

[Variable]DT_INIT_ARRAYSZ

[Variable]DT_FINI_ARRAYSZ

[Variable]DT_RUNPATH

[Variable]DT_FLAGS

[Variable]DT_ENCODING

[Variable]DT_PREINIT_ARRAY

[Variable]DT_PREINIT_ARRAYSZ

[Variable]DT_NUM

[Variable]DT_LOGUILE

[Variable]DT_GUILE_GC_ROOT

[Variable]DT_GUILE_GC_ROOT_SZ

[Variable]DT_GUILE_ENTRY

Chapter 38: (guix elf) 65

[Variable]DT_GUILE_VM_VERSION

[Variable]DT_GUILE_FRAME_MAPS

[Variable]DT_HIGUILE

[Variable]DT_LOOS

[Variable]DT_HIOS

[Variable]DT_LOPROC

[Variable]DT_HIPROC

[Function]string-table-ref bv offset

[Variable]STB_LOCAL

[Variable]STB_GLOBAL

[Variable]STB_WEAK

[Variable]STB_NUM

[Variable]STB_LOOS

[Variable]STB_GNU
[unbound!]

[Variable]STB_HIOS

[Variable]STB_LOPROC

[Variable]STB_HIPROC

[Variable]STT_NOTYPE

[Variable]STT_OBJECT

[Variable]STT_FUNC

[Variable]STT_SECTION

[Variable]STT_FILE

[Variable]STT_COMMON

[Variable]STT_TLS

[Variable]STT_NUM

[Variable]STT_LOOS

[Variable]STT_GNU
[unbound!]

[Variable]STT_HIOS

[Variable]STT_LOPROC

[Variable]STT_HIPROC

Chapter 38: (guix elf) 66

[Variable]STV_DEFAULT

[Variable]STV_INTERNAL

[Variable]STV_HIDDEN

[Variable]STV_PROTECTED

[Variable]NT_GNU_ABI_TAG

[Variable]NT_GNU_HWCAP

[Variable]NT_GNU_BUILD_ID

[Variable]NT_GNU_GOLD_VERSION

[Function]parse-elf bv

[Function]elf-segment elf n

[Function]elf-segments elf

[Function]elf-section elf n

[Function]elf-sections elf

[Function]elf-section-by-name elf name

[Function]elf-sections-by-name elf

[Function]elf-symbol-table-len section

[Function]elf-symbol-table-ref elf section n [strtab]

[Function]parse-elf-note elf section

[Special Form]elf-note-name

[Special Form]elf-note-desc

[Special Form]elf-note-type

[Function]make-elf [#:bytes] [#:byte-order] [#:word-size] [#:abi] [#:type]
[#:machine-type] [#:entry] [#:phoff] [#:shoff] [#:flags] [#:ehsize]
[#:phentsize] [#:phnum] [#:shentsize] [#:shnum] [#:shstrndx]

[Function]make-elf-section [#:index] [#:name] [#:type] [#:flags] [#:addr]
[#:offset] [#:size] [#:link] [#:info] [#:addralign] [#:entsize]

[Function]make-elf-segment [#:index] [#:type] [#:offset] [#:vaddr] [#:paddr]
[#:filesz] [#:memsz] [#:flags] [#:align]

[Function]make-elf-symbol [#:name] [#:value] [#:size] [#:binding] [#:type]
[#:info] [#:visibility] [#:other] [#:shndx]

67

39 (guix ftp-client)

39.1 Overview

Simple FTP client (RFC 959).

39.2 Usage

[Special Form]ftp-connection?

[Special Form]ftp-connection-addrinfo

[Function]connect* s sockaddr [timeout]
When TIMEOUT is omitted or #f, this procedure is equivalent to ’connect’. When
TIMEOUT is a number, it is the (possibly inexact) maximum number of seconds to
wait for the connection to succeed.

[Function]ftp-open host [port] [#:timeout] [#:username] [#:password]
Open an FTP connection to HOST on PORT (a service-identifying string, or a TCP
port number), and return it.

When TIMEOUT is not #f, it must be a (possibly inexact) number denoting the max-
imum duration in seconds to wait for the connection to complete; passed TIMEOUT,
an ETIMEDOUT error is raised.

[Function]ftp-close conn

[Function]ftp-chdir conn dir
Change to directory DIR.

[Function]ftp-size conn file
Return the size in bytes of FILE.

[Function]ftp-list conn [directory] [#:timeout]

[Function]ftp-retr conn file [directory] [#:timeout]
Retrieve FILE from DIRECTORY (or, if omitted, the current directory) from FTP
connection CONN. Return a binary port to that file. The returned port must be
closed before CONN can be used for other purposes.

68

40 (guix gexp)

40.1 Overview

This module implements "G-expressions", or "gexps". Gexps are like

S-expressions (sexps), with two differences:

1. References (un-quotations) to derivations or packages in a gexp are

replaced by the corresponding output file name; in addition, the

'ungexp-native' unquote-like form allows code to explicitly refer to

the native code of a given package, in case of cross-compilation;

2. Gexps embed information about the derivations they refer to.

Gexps make it easy to write to files Scheme code that refers to store

items, or to write Scheme code to build derivations.

40.2 Usage

[Special Form]gexp

[Special Form]gexp?

[Function]sexp->gexp sexp
Turn SEXP into a gexp without any references.

Using this is a way for the caller to tell that SEXP doesn’t need to be scanned for
file-like objects, thereby reducing processing costs. This is particularly useful if SEXP
is a long list or a deep tree.

[Special Form]with-imported-modules modules body ...
Mark the gexps defined in BODY... as requiring MODULES in their execution envi-
ronment.

[Special Form]with-extensions extensions body ...
Mark the gexps defined in BODY... as requiring EXTENSIONS in their execution
environment.

[Special Form]let-system (system target) exp0 exp ...
[Special Form]let-system system exp0 exp ...

Introduce a system binding in a gexp. The simplest form is:

(let-system system

(cond ((string=? system "x86_64-linux") ...)

(else ...)))

which binds SYSTEM to the currently targeted system. The second form is

similar, but it also shows the cross-compilation target:

Chapter 40: (guix gexp) 69

(let-system (system target)

...)

Here TARGET is bound to the cross-compilation triplet or #f.

[Function]gexp->approximate-sexp gexp
Return the S-expression corresponding to GEXP, but do not lower anything. As a
result, the S-expression will be approximate if GEXP has references.

[Function]gexp-input thing [output] [#:native?]
Return a new <gexp-input> for the OUTPUT of THING; NATIVE? determines
whether this should be considered a "native" input or not.

[Special Form]gexp-input?

[Special Form]gexp-input-thing

[Special Form]gexp-input-output

[Special Form]gexp-input-native?

[Special Form]assume-valid-file-name file
This is a syntactic keyword to tell ’local-file’ that it can assume that the given file
name is valid, even if it’s not a string literal, and thus not warn about it.

[Special Form]local-file
Return an object representing local file FILE to add to the store; this object can be
used in a gexp. If FILE is a relative file name, it is looked up relative to the source file
where this form appears. FILE will be added to the store under NAME–by default
the base name of FILE.

When RECURSIVE? is true, the contents of FILE are added recursively; if FILE des-
ignates a flat file and RECURSIVE? is true, its contents are added, and its permission
bits are kept.

When RECURSIVE? is true, call (SELECT? FILE STAT) for each directory entry,
where FILE is the entry’s absolute file name and STAT is the result of ’lstat’; exclude
entries for which SELECT? does not return true.

This is the declarative counterpart of the ’interned-file’ monadic procedure. It is
implemented as a macro to capture the current source directory where it appears.

[Special Form]local-file?

[Special Form]local-file-file

[Function]local-file-absolute-file-name file
Return the absolute file name for FILE, a <local-file> instance. A ’system-error’
exception is raised if FILE could not be found.

[Special Form]local-file-name

[Special Form]local-file-recursive?

[Special Form]local-file-select?

Chapter 40: (guix gexp) 70

[Function]plain-file name content
Return an object representing a text file called NAME with the given CONTENT (a
string) to be added to the store.

This is the declarative counterpart of ’text-file’.

[Special Form]plain-file?

[Special Form]plain-file-name

[Special Form]plain-file-content

[Function]computed-file name gexp [#:guile] [#:local-build?] [#:options]
Return an object representing the store item NAME, a file or directory computed
by GEXP. When LOCAL-BUILD? is #t (the default), it ensures the corresponding
derivation is built locally. OPTIONS may be used to pass additional arguments to
’gexp->derivation’.

This is the declarative counterpart of ’gexp->derivation’.

[Special Form]computed-file?

[Special Form]computed-file-name

[Special Form]computed-file-gexp

[Special Form]computed-file-options

[Function]program-file name gexp [#:guile] [#:module-path]
Return an object representing the executable store item NAME that runs GEXP.
GUILE is the Guile package used to execute that script. Imported modules of GEXP
are looked up in MODULE-PATH.

This is the declarative counterpart of ’gexp->script’.

[Special Form]program-file?

[Special Form]program-file-name

[Special Form]program-file-gexp

[Special Form]program-file-guile

[Special Form]program-file-module-path

[Function]scheme-file name gexp [#:splice?] [#:set-load-path?]
Return an object representing the Scheme file NAME that contains GEXP.

This is the declarative counterpart of ’gexp->file’.

[Special Form]scheme-file?

[Special Form]scheme-file-name

[Special Form]scheme-file-gexp

[Function]file-append base . suffix
Return a <file-append> object that expands to the concatenation of BASE and SUF-
FIX.

Chapter 40: (guix gexp) 71

[Special Form]file-append?

[Special Form]file-append-base

[Special Form]file-append-suffix

[Special Form]raw-derivation-file

[Special Form]raw-derivation-file?

[Special Form]with-parameters ((param value) ...) body ...
Bind each PARAM to the corresponding VALUE for the extent during which BODY

is lowered. Consider this example:

(with-parameters ((%current-system "x86_64-linux"))

coreutils)

It returns a <parameterized> object that ensures %CURRENT-SYSTEM is set to

x86_64-linux when COREUTILS is lowered.

[Special Form]parameterized?

[Function]load-path-expression modules [path] [#:extensions] [#:system]
[#:target] [#:guile]

Return as a monadic value a gexp that sets ’%load-path’ and ’%load-compiled-path’
to point to MODULES, a list of module names. MODULES are searched for in PATH.
Return #f when MODULES and EXTENSIONS are empty. Assume MODULES are
compiled with GUILE.

[Function]gexp-modules gexp
Return the list of Guile module names GEXP relies on. If (gexp? GEXP) is false,
meaning that GEXP is a plain Scheme object, return the empty list.

[Function]lower-gexp exp [#:module-path] [#:system] [#:target] [#:graft?]
[#:guile-for-build] [#:effective-version] [#:deprecation-warnings]

Note: This API is subject to change; use at your own risk!

Lower EXP, a gexp, instantiating it for SYSTEM and TARGET. Return a <lowered-
gexp> ready to be used.

Lowered gexps are an intermediate representation that’s useful for applications that
deal with gexps outside in a way that is disconnected from derivations–e.g., code
evaluated for its side effects.

[Special Form]lowered-gexp?

[Special Form]lowered-gexp-sexp

[Special Form]lowered-gexp-inputs

[Special Form]lowered-gexp-sources

[Special Form]lowered-gexp-guile

[Special Form]lowered-gexp-load-path

Chapter 40: (guix gexp) 72

[Special Form]lowered-gexp-load-compiled-path

[Function]with-build-variables inputs outputs body
Return a gexp that surrounds BODY with a definition of the legacy ’%build-inputs’,
’%outputs’, and ’%output’ variables based on INPUTS, a list of name/gexp-input
tuples, and OUTPUTS, a list of strings.

[Function]input-tuples->gexp inputs [#:native?]
Given INPUTS, a list of label/gexp-input tuples, return a gexp that expands to an
input alist.

[Function]outputs->gexp outputs
Given OUTPUTS, a list of output names, return a gexp that expands to an output
alist.

[Function]gexp->derivation name exp [#:system] [#:target] [#:hash]
[#:hash-algo] [#:recursive?] [#:env-vars] [#:modules] [#:module-path]
[#:guile-for-build] [#:effective-version] [#:graft?] [#:references-graphs]
[#:allowed-references] [#:disallowed-references] [#:leaked-env-vars]
[#:local-build?] [#:substitutable?] [#:properties]
[#:deprecation-warnings] [#:script-name]

Return a derivation NAME that runs EXP (a gexp) with GUILE-FOR-BUILD (a

derivation) on SYSTEM; EXP is stored in a file called SCRIPT-NAME. When

TARGET is true, it is used as the cross-compilation target triplet for

packages referred to by EXP.

MODULES is deprecated in favor of 'with-imported-modules'. Its meaning is to

make MODULES available in the evaluation context of EXP; MODULES is a list of

names of Guile modules searched in MODULE-PATH to be copied in the store,

compiled, and made available in the load path during the execution of

EXP---e.g., '((guix build utils) (guix build gnu-build-system)).

EFFECTIVE-VERSION determines the string to use when adding extensions of

EXP (see 'with-extensions') to the search path---e.g., "2.2".

GRAFT? determines whether packages referred to by EXP should be grafted when

applicable.

When REFERENCES-GRAPHS is true, it must be a list of tuples of one of the

following forms:

(FILE-NAME PACKAGE)

(FILE-NAME PACKAGE OUTPUT)

(FILE-NAME DERIVATION)

(FILE-NAME DERIVATION OUTPUT)

(FILE-NAME STORE-ITEM)

The right-hand-side of each element of REFERENCES-GRAPHS is automatically made

Chapter 40: (guix gexp) 73

an input of the build process of EXP. In the build environment, each

FILE-NAME contains the reference graph of the corresponding item, in a simple

text format.

ALLOWED-REFERENCES must be either #f or a list of output names and packages.

In the latter case, the list denotes store items that the result is allowed to

refer to. Any reference to another store item will lead to a build error.

Similarly for DISALLOWED-REFERENCES, which can list items that must not be

referenced by the outputs.

DEPRECATION-WARNINGS determines whether to show deprecation warnings while

compiling modules. It can be #f, #t, or 'detailed.

The other arguments are as for 'derivation'.

[Function]gexp->file name exp [#:set-load-path?] [#:module-path] [#:splice?]
[#:system] [#:target]

Return a derivation that builds a file NAME containing EXP. When SPLICE? is true,
EXP is considered to be a list of expressions that will be spliced in the resulting file.

When SET-LOAD-PATH? is true, emit code in the resulting file to set ’%load-path’
and ’%load-compiled-path’ to honor EXP’s imported modules. Lookup EXP’s mod-
ules in MODULE-PATH.

[Function]gexp->script name exp [#:guile] [#:module-path] [#:system]
[#:target]

Return an executable script NAME that runs EXP using GUILE, with EXP’s im-
ported modules in its search path. Look up EXP’s modules in MODULE-PATH.

[Function]text-file* name . text
Return as a monadic value a derivation that builds a text file containing all of TEXT.
TEXT may list, in addition to strings, objects of any type that can be used in a gexp:
packages, derivations, local file objects, etc. The resulting store file holds references
to all these.

[Function]mixed-text-file name [#:guile] . text
Return an object representing store file NAME containing TEXT. TEXT is a

sequence of strings and file-like objects, as in:

(mixed-text-file "profile"

"export PATH=" coreutils "/bin:" grep "/bin")

This is the declarative counterpart of 'text-file*'.

[Function]file-union name files [#:guile]
Return a <computed-file> that builds a directory containing all of FILES.

Each item in FILES must be a two-element list where the first element is the

file name to use in the new directory, and the second element is a gexp

denoting the target file. Here's an example:

Chapter 40: (guix gexp) 74

(file-union "etc"

`(("hosts" ,(plain-file "hosts"

"127.0.0.1 localhost"))

("bashrc" ,(plain-file "bashrc"

"alias ls='ls --color'"))

("libvirt/qemu.conf" ,(plain-file "qemu.conf" ""))))

This yields an 'etc' directory containing these two files.

[Function]directory-union name things [#:copy?] [#:quiet?]
[#:resolve-collision]

Return a directory that is the union of THINGS, where THINGS is a list of

file-like objects denoting directories. For example:

(directory-union "guile+emacs" (list guile emacs))

yields a directory that is the union of the 'guile' and 'emacs' packages.

Call RESOLVE-COLLISION when several files collide, passing it the list of

colliding files. RESOLVE-COLLISION must return the chosen file or #f, in

which case the colliding entry is skipped altogether.

When COPY? is true, copy files instead of creating symlinks. When QUIET? is

true, the derivation will not print anything.

[Function]references-file item [name] [#:guile]
Return a file that contains the list of direct and indirect references (the closure) of
ITEM.

[Function]imported-files files [#:name] [#:system] [#:guile]
Import FILES into the store and return the resulting derivation or store file name (a
derivation is created if and only if some elements of FILES are file-like objects and
not local file names.) FILES must be a list of (FINAL-PATH . FILE) pairs. Each
FILE is mapped to FINAL-PATH in the resulting store path. FILE can be either a
file name, or a file-like object, as returned by ’local-file’ for example.

[Function]imported-modules modules [#:name] [#:system] [#:guile]
[#:module-path]

Return a derivation that contains the source files of MODULES, a list of

module names such as `(ice-9 q)'. All of MODULES must be either names of

modules to be found in the MODULE-PATH search path, or a module name followed

by an arrow followed by a file-like object. For example:

(imported-modules `((guix build utils)

(guix gcrypt)

((guix config) => ,(scheme-file ...))))

Chapter 40: (guix gexp) 75

In this example, the first two modules are taken from MODULE-PATH, and the

last one is created from the given <scheme-file> object.

[Function]compiled-modules modules [#:name] [#:system] [#:target] [#:guile]
[#:module-path] [#:extensions] [#:deprecation-warnings]
[#:optimization-level]

Return a derivation that builds a tree containing the ‘.go’ files corresponding to
MODULES. All the MODULES are built in a context where they can refer to each
other. When TARGET is true, cross-compile MODULES for TARGET, a GNU
triplet.

[Special Form]define-gexp-compiler (name (param record-type) system
target) body ...

[Special Form]define-gexp-compiler name record-type compiler => compile
expander => expand

Define NAME as a compiler for objects matching PREDICATE encountered in

gexps.

In the simplest form of the macro, BODY must return (1) a derivation for

a record of the specified type, for SYSTEM and TARGET (the latter of which is

#f except when cross-compiling), (2) another record that can itself be

compiled down to a derivation, or (3) an object of a primitive data type.

The more elaborate form allows you to specify an expander:

(define-gexp-compiler something-compiler <something>

compiler => (lambda (param system target) ...)

expander => (lambda (param drv output) ...))

The expander specifies how an object is converted to its sexp representation.

[Special Form]gexp-compiler?

[Function]file-like? object
Return #t if OBJECT leads to a file in the store once unquoted in a G-expression;
otherwise return #f.

[Function]lower-object obj [system] [#:target]
Return as a value in %STORE-MONAD the derivation or store item corresponding
to OBJ for SYSTEM, cross-compiling for TARGET if TARGET is true. OBJ must
be an object that has an associated gexp compiler, such as a <package>.

[Variable]&gexp-error

[Function]gexp-error? obj

[Variable]&gexp-input-error

[Function]gexp-input-error? obj

[Function]gexp-error-invalid-input obj

76

41 (guix git-authenticate)

41.1 Overview

This module provides tools to authenticate a range of Git commits. A

commit is considered "authentic" if and only if it is signed by an

authorized party. Parties authorized to sign a commit are listed in the

'.guix-authorizations' file of the parent commit.

41.2 Usage

[Function]read-authorizations port
Read authorizations in the ’.guix-authorizations’ format from PORT, and return a
list of authorized fingerprints.

[Function]commit-signing-key repo commit-id keyring
[#:disallowed-hash-algorithms]

Return the OpenPGP key that signed COMMIT-ID (an OID). Raise an exception
if the commit is unsigned, has an invalid signature, has a signature using one of the
hash algorithms in DISALLOWED-HASH-ALGORITHMS, or if its signing key is not
in KEYRING.

[Function]commit-authorized-keys repository commit [default-authorizations]
Return the list of OpenPGP fingerprints authorized to sign COMMIT, based on
authorizations listed in its parent commits. If one of the parent commits does not
specify anything, fall back to DEFAULT-AUTHORIZATIONS.

[Function]authenticate-commit repository commit keyring
[#:default-authorizations]

Authenticate COMMIT from REPOSITORY and return the signing key fingerprint.
Raise an error when authentication fails. If one of the parent commits does not specify
anything, fall back to DEFAULT-AUTHORIZATIONS.

[Function]authenticate-commits repository commits
[#:default-authorizations] [#:keyring-reference] [#:keyring]
[#:report-progress]

Authenticate COMMITS, a list of commit objects, calling REPORT-PROGRESS
for each of them. Return an alist showing the number of occurrences of
each key. If KEYRING is omitted, the OpenPGP keyring is loaded from
KEYRING-REFERENCE in REPOSITORY.

[Function]load-keyring-from-reference repository reference
Load the ’.key’ files from the tree at REFERENCE in REPOSITORY and return an
OpenPGP keyring.

[Function]previously-authenticated-commits key
Return the previously-authenticated commits under KEY as a list of commit IDs (hex
strings).

Chapter 41: (guix git-authenticate) 77

[Function]cache-authenticated-commit key commit-id
Record in ~/.cache, under KEY, COMMIT-ID and its closure as authenticated (only
COMMIT-ID is written to cache, though).

[Function]repository-cache-key repository
Return a unique key to store the authenticate commit cache for REPOSITORY.

[Function]authenticate-repository repository start signer
[#:keyring-reference] [#:cache-key] [#:end] [#:authentic-commits]
[#:historical-authorizations] [#:make-reporter]

Authenticate REPOSITORY up to commit END, an OID. Authentication starts with
commit START, an OID, which must be signed by SIGNER; an exception is raised if
that is not the case. Commits listed in AUTHENTIC-COMMITS and their closure
are considered authentic. Return an alist mapping OpenPGP public keys to the
number of commits signed by that key that have been traversed.

The OpenPGP keyring is loaded from KEYRING-REFERENCE in REPOSITORY,
where KEYRING-REFERENCE is the name of a branch. The list of authenticated
commits is cached in the authentication cache under CACHE-KEY.

HISTORICAL-AUTHORIZATIONS must be a list of OpenPGP fingerprints
(bytevectors) denoting the authorized keys for commits whose parent lack the
’.guix-authorizations’ file.

[Function]git-authentication-error? obj

[Function]git-authentication-error-commit obj

[Function]unsigned-commit-error? obj

[Function]unauthorized-commit-error? obj

[Function]unauthorized-commit-error-signing-key obj

[Function]signature-verification-error? obj

[Function]signature-verification-error-keyring obj

[Function]signature-verification-error-signature obj

[Function]missing-key-error? obj

[Function]missing-key-error-signature obj

78

42 (guix git-download)

42.1 Overview

An <origin> method that fetches a specific commit from a Git repository.

The repository URL and commit hash are specified with a <git-reference>

object.

42.2 Usage

[Special Form]git-reference

[Special Form]git-reference?

[Special Form]git-reference-url

[Special Form]git-reference-commit

[Special Form]git-reference-recursive?

[Function]git-fetch ref hash-algo hash [name] [#:system] [#:guile] [#:git]
Return a fixed-output derivation that fetches REF, a <git-reference> object. The
output is expected to have recursive hash HASH of type HASH-ALGO (a symbol).
Use NAME as the file name, or a generic name if #f.

[Function]git-version version revision commit
Return the version string for packages using git-download.

[Function]git-file-name name version
Return the file-name for packages using git-download.

[Function]git-predicate directory [#:recursive?]
Return a predicate that returns true if a file is part of the Git checkout living at
DIRECTORY. If DIRECTORY does not lie within a Git checkout, and upon Git
errors, return #f instead of a predicate.

When RECURSIVE? is true, the predicate also returns true if a file is part of any
Git submodule under DIRECTORY. This is enabled by default.

The returned predicate takes two arguments FILE and STAT where FILE is an ab-
solute file name and STAT is the result of ’lstat’.

79

43 (guix git)

43.1 Overview

43.2 Usage

[Variable]%repository-cache-directory

[Function]honor-system-x509-certificates!
Use the system’s X.509 certificates for Git checkouts over HTTPS. Honor the
’SSL CERT FILE’ and ’SSL CERT DIR’ environment variables.

[Function]url-cache-directory url [cache-directory] [#:recursive?]
Return the directory associated to URL in %repository-cache-directory.

[Special Form]with-repository directory repository exp ...
Open the repository at DIRECTORY and bind REPOSITORY to it within the dy-
namic extent of EXP.

[Special Form]with-git-error-handling body ...

[Special Form]false-if-git-not-found exp
Evaluate EXP, returning #false if a GIT ENOTFOUND error is raised.

[Function]update-cached-checkout url [#:ref] [#:recursive?] [#:check-out?]
[#:starting-commit] [#:log-port] [#:cache-directory]

Update the cached checkout of URL to REF in CACHE-DIRECTORY. Return three
values: the cache directory name, and the SHA1 commit (a string) corresponding
to REF, and the relation of the new commit relative to STARTING-COMMIT (if
provided) as returned by ’commit-relation’.

REF is pair whose key is [branch | commit | tag | tag-or-commit] and value the
associated data: [<branch name> | <sha1> | <tag name> | <string>]. If REF is the
empty list, the remote HEAD is used.

When RECURSIVE? is true, check out submodules as well, if any.

When CHECK-OUT? is true, reset the cached working tree to REF; otherwise leave
it unchanged.

[Function]url+commit->name url sha1
Return the string "<REPO-NAME>-<SHA1:7>" where REPO-NAME is the name of
the git repository, extracted from URL and SHA1:7 the seven first digits of SHA1
string.

[Function]latest-repository-commit store url [#:recursive?] [#:log-port]
[#:cache-directory] [#:ref]

Return two values: the content of the git repository at URL copied into a store
directory and the sha1 of the top level commit in this directory. The reference to
be checkout, once the repository is fetched, is specified by REF. REF is pair whose

Chapter 43: (guix git) 80

key is [branch | commit | tag] and value the associated data, respectively [<branch
name> | <sha1> | <tag name>]. If REF is the empty list, the remote HEAD is used.

When RECURSIVE? is true, check out submodules as well, if any.

Git repositories are kept in the cache directory specified by %repository-cache-
directory parameter.

Log progress and checkout info to LOG-PORT.

[Function]commit-difference new old [excluded]
Return the list of commits between NEW and OLD, where OLD is assumed to be
an ancestor of NEW. Exclude all the commits listed in EXCLUDED along with their
ancestors.

Essentially, this computes the set difference between the closure of NEW and that of
OLD.

[Function]commit-relation old new
Return a symbol denoting the relation between OLD and NEW, two commit objects:
’ancestor (meaning that OLD is an ancestor of NEW), ’descendant, or ’unrelated, or
’self (OLD and NEW are the same commit).

[Function]commit-descendant? new old
Return true if NEW is the descendant of one of OLD, a list of commits.

When the expected result is likely #t, this is faster than using ’commit-relation’ since
fewer commits need to be traversed.

[Function]commit-id? str
Return true if STR is likely a Git commit ID, false otherwise—e.g., if it is a tag name.
This is based on a simple heuristic so use with care!

[Function]remote-refs url [#:tags?]
Return the list of references advertised at Git repository URL. If TAGS? is true, limit
to only refs/tags.

[Special Form]git-checkout

[Special Form]git-checkout?

[Special Form]git-checkout-url

[Special Form]git-checkout-branch

[Special Form]git-checkout-commit

[Special Form]git-checkout-recursive?

[Function]git-reference->git-checkout reference
Convert the <git-reference> REFERENCE to an equivalent <git-checkout>.

81

44 (guix glob)

44.1 Overview

This is a minimal implementation of "glob patterns" (info "(libc)

Globbbing"). It is currently limited to simple patterns and does not

support braces, for instance.

44.2 Usage

[Function]string->sglob str
Return an sexp, called an "sglob", that represents the compiled form of STR, a glob
pattern such as "foo*" or "foo??bar".

[Function]compile-sglob sglob
Compile SGLOB into a more efficient representation.

[Function]string->compiled-sglob . args

[Function]glob-match? pattern str
Return true if STR matches PATTERN, a compiled glob pattern as returned by
’compile-sglob’.

82

45 (guix gnu-maintenance)

45.1 Overview

Code for dealing with the maintenance of GNU packages, such as

auto-updates.

45.2 Usage

[Special Form]gnu-package-name

[Special Form]gnu-package-mundane-name

[Special Form]gnu-package-copyright-holder

[Special Form]gnu-package-savannah

[Special Form]gnu-package-fsd

[Special Form]gnu-package-language

[Special Form]gnu-package-logo

[Special Form]gnu-package-doc-category

[Special Form]gnu-package-doc-summary

[Special Form]gnu-package-doc-description

[Special Form]gnu-package-doc-urls

[Special Form]gnu-package-download-url

[Function]official-gnu-packages [fetch]
Return a list of records, which are GNU packages. Use FETCH, to fetch the list of
GNU packages over HTTP.

[Function]find-package name
Find GNU package called NAME and return it. Return #f if it was not found.

[Function]gnu-package? package

[Function]uri-mirror-rewrite uri
Rewrite URI to a mirror:// URI if possible, or return URI unmodified.

[Function]release-file? project file
Return #f if FILE is not a release tarball of PROJECT, otherwise return true.

[Function]releases project [#:server] [#:directory]
Return the list of <upstream-release> of PROJECT as a list of release name/directory
pairs.

[Function]latest-release package [#:server] [#:directory]
Return the <upstream-source> for the latest version of PACKAGE or #f. PACKAGE
must be the canonical name of a GNU package.

Chapter 45: (guix gnu-maintenance) 83

[Variable]gnu-release-archive-types
[unbound!]

[Function]gnu-package-name->name+version name+version
Return the package name and version number extracted from NAME+VERSION.

[Variable]%gnu-updater

[Variable]%gnu-ftp-updater

[Variable]%savannah-updater

[Variable]%sourceforge-updater

[Variable]%xorg-updater

[Variable]%kernel.org-updater

[Variable]%generic-html-updater

84

46 (guix gnupg)

46.1 Overview

GnuPG interface.

46.2 Usage

[Variable]%gpg-command

[Variable]%openpgp-key-server

[Variable]current-keyring

[Function]gnupg-verify sig file [keyring]
Verify signature SIG for FILE against the keys in KEYRING. All the keys in
KEYRING as assumed to be "trusted", whether or not they expired or were revoked.
Return a status s-exp if GnuPG failed.

[Function]gnupg-verify* sig file [#:key-download] [#:server] [#:keyring]
Like ‘gnupg-verify’, but try downloading the public key if it’s missing. Return two
values: ’valid-signature and a fingerprint/name pair upon success, ’missing-key and
a fingerprint if the key could not be found, and ’invalid-signature with a fingerprint
if the signature is invalid.

KEY-DOWNLOAD specifies a download policy for missing OpenPGP keys; allowed
values: ’always’, ’never’, and ’interactive’ (default). Return a fingerprint/user name
pair on success and #f otherwise.

[Function]gnupg-status-good-signature? status
If STATUS, as returned by ‘gnupg-verify’, denotes a good signature, return a finger-
print/user pair; return #f otherwise.

[Function]gnupg-status-missing-key? status
If STATUS denotes a missing-key error, then return the fingerprint of the missing key
or its key id if the fingerprint is unavailable.

85

47 (guix grafts)

47.1 Overview

47.2 Usage

[Special Form]graft?

[Special Form]graft

[Special Form]graft-origin

[Special Form]graft-replacement

[Special Form]graft-origin-output

[Special Form]graft-replacement-output

[Function]graft-derivation store drv grafts [#:guile] [#:outputs] [#:system]
Apply GRAFTS to the OUTPUTS of DRV and all their dependencies, recursively.
That is, if GRAFTS apply only indirectly to DRV, graft the dependencies of DRV,
and graft DRV itself to refer to those grafted dependencies.

[Function]graft-derivation/shallow drv grafts [#:name] [#:outputs]
[#:guile] [#:system]

Return a derivation called NAME, which applies GRAFTS to the specified OUT-
PUTS of DRV. This procedure performs "shallow" grafting in that GRAFTS are not
recursively applied to dependencies of DRV.

[Variable]%graft-with-utf8-locale?

[Variable]%graft?

[Special Form]grafting?

[Special Form]set-grafting

[Special Form]without-grafting mexp ...
Bind monadic expressions MEXP in a dynamic extent where ’%graft?’ is false.

86

48 (guix graph)

48.1 Overview

This module provides an abstract way to represent graphs and to manipulate

them. It comes with several such representations for packages,

derivations, and store items. It also provides a generic interface for

exporting graphs in an external format, including a Graphviz

implementation thereof.

48.2 Usage

[Special Form]node-type

[Special Form]node-type?

[Special Form]node-type-identifier

[Special Form]node-type-label

[Special Form]node-type-edges

[Special Form]node-type-convert

[Special Form]node-type-name

[Special Form]node-type-description

[Function]node-edges type nodes
Return, as a monadic value, a one-argument procedure that, given a node of TYPE,
returns its edges. NODES is taken to be the sinks of the global graph.

[Function]node-back-edges type nodes
Return, as a monadic value, a one-argument procedure that, given a node of TYPE,
returns its back edges. NODES is taken to be the sinks of the global graph.

[Function]traverse/depth-first proc seed nodes node-edges
Do a depth-first traversal of NODES along NODE-EDGES, calling PROC with each
node and the current result, and visiting each reachable node exactly once. NODES
must be a list of nodes, and NODE-EDGES must be a one-argument procedure as
returned by ’node-edges’ or ’node-back-edges’.

[Function]node-transitive-edges nodes node-edges
Return the list of nodes directly or indirectly connected to NODES according to
the NODE-EDGES procedure. NODE-EDGES must be a one-argument procedure
that, given a node, returns its list of direct dependents; it is typically returned by
’node-edges’ or ’node-back-edges’.

[Function]node-reachable-count nodes node-edges
Return the number of nodes reachable from NODES along NODE-EDGES.

[Function]shortest-path node1 node2 type
Return as a monadic value the shortest path, represented as a list, from NODE1 to
NODE2 of the given TYPE. Return #f when there is no path.

Chapter 48: (guix graph) 87

[Variable]%graph-backends

[Variable]%d3js-backend

[Variable]%graphviz-backend

[Function]lookup-backend name
Return the graph backend called NAME. Raise an error if it is not found.

[Special Form]graph-backend?

[Special Form]graph-backend

[Special Form]graph-backend-name

[Special Form]graph-backend-description

[Function]export-graph sinks port [#:reverse-edges?] [#:node-type]
[#:max-depth] [#:backend]

Write to PORT the representation of the DAG with the given SINKS, using the given
BACKEND. Use NODE-TYPE to traverse the DAG. When REVERSE-EDGES? is
true, draw reverse arrows. Do not represent nodes whose distance to one of the SINKS
is greater than MAX-DEPTH.

88

49 (guix hash)

49.1 Overview

49.2 Usage

[Function]vcs-file? file stat
Returns true if FILE is a version control system file.

[Function]file-hash* file [#:algorithm] [#:recursive?] [#:select?]
Compute the hash of FILE with ALGORITHM.

Symbolic links are only dereferenced if RECURSIVE? is false. Directories are only
supported if RECURSIVE? is #true or ’auto’. The executable bit is only recorded
if RECURSIVE? is #true. If FILE is a symbolic link, it is only followed if RECUR-
SIVE? is false.

For regular files, there are two different hashes when the executable hash isn’t
recorded: the regular hash and the nar hash. In most situations, the regular hash
is desired and setting RECURSIVE? to ’auto’ does the right thing for both regular
files and directories.

This procedure must only be used under controlled circumstances; the detection of
symbolic links in FILE is racy.

When FILE is a directory, the procedure SELECT? called as (SELECT? FILE STAT)
decides which files to include. By default, version control files are excluded. To include
everything, SELECT? can be set to (const #true).

89

50 (guix hg-download)

50.1 Overview

An <origin> method that fetches a specific changeset from a Mercurial

repository. The repository URL and changeset ID are specified with a

<hg-reference> object.

50.2 Usage

[Special Form]hg-reference

[Special Form]hg-reference?

[Special Form]hg-reference-url

[Special Form]hg-reference-changeset

[Function]hg-predicate directory
This procedure evaluates to a predicate that reports back whether a given file - stat
combination is part of the files tracked by Mercurial.

[Function]hg-fetch ref hash-algo hash [name] [#:system] [#:guile] [#:hg]
Return a fixed-output derivation that fetches REF, a <hg-reference> object. The
output is expected to have recursive hash HASH of type HASH-ALGO (a symbol).
Use NAME as the file name, or a generic name if #f.

[Function]hg-version version revision changeset
Return the version string for packages using hg-download.

[Function]hg-file-name name version
Return the file-name for packages using hg-download.

90

51 (guix http-client)

51.1 Overview

HTTP client portable among Guile versions, and with proper error condition

reporting.

51.2 Usage

[Variable]&http-get-error

[Function]http-get-error? obj

[Function]http-get-error-uri obj

[Function]http-get-error-code obj

[Function]http-get-error-reason obj

[Function]http-get-error-headers obj

[Function]http-fetch uri [#:port] [#:text?] [#:buffered?] [#:open-connection]
[#:keep-alive?] [#:verify-certificate?] [#:headers] [#:log-port] [#:timeout]

Return an input port containing the data at URI, and the expected number of bytes
available or #f. If TEXT? is true, the data at URI is considered to be textual. Follow
any HTTP redirection. When BUFFERED? is #f, return an unbuffered port, suitable
for use in ‘filtered-port’. HEADERS is an alist of extra HTTP headers.

When KEEP-ALIVE? is true, the connection is marked as ’keep-alive’ and PORT is
not closed upon completion.

When VERIFY-CERTIFICATE? is true, verify HTTPS server certificates.

TIMEOUT specifies the timeout in seconds for connection establishment; when
TIMEOUT is #f, connection establishment never times out.

Write information about redirects to LOG-PORT.

Raise an ’&http-get-error’ condition if downloading fails.

[Function]http-multiple-get base-uri proc seed requests [#:port]
[#:verify-certificate?] [#:open-connection] [#:keep-alive?] [#:batch-size]

Send all of REQUESTS to the server at BASE-URI. Call PROC for each response,
passing it the request object, the response, a port from which to read the response
body, and the previous result, starting with SEED, à la ’fold’. Return the final result.

When PORT is specified, use it as the initial connection on which HTTP requests
are sent; otherwise call OPEN-CONNECTION to open a new connection for a URI.
When KEEP-ALIVE? is false, close the connection port before returning.

[Variable]%http-cache-ttl

[Function]http-fetch/cached uri [#:ttl] [#:text?] [#:headers] [#:write-cache]
[#:cache-miss] [#:log-port] [#:timeout]

Like ’http-fetch’, return an input port, but cache its contents in ~/.cache/guix. The
cache remains valid for TTL seconds.

Chapter 51: (guix http-client) 91

Call WRITE-CACHE with the HTTP input port and the cache output port to write
the data to cache. Call CACHE-MISS with URI just before fetching data from URI.

HEADERS is an alist of extra HTTP headers, to which cache-related headers are
added automatically as appropriate.

TIMEOUT specifies the timeout in seconds for connection establishment.

Write information about redirects to LOG-PORT.

[Function]open-socket-for-uri uri-or-string [#:timeout]
Return an open input/output port for a connection to URI. When TIMEOUT is
not #f, it must be a (possibly inexact) number denoting the maximum duration in
seconds to wait for the connection to complete; passed TIMEOUT, an ETIMEDOUT
error is raised.

92

52 (guix i18n)

52.1 Overview

Internationalization support.

52.2 Usage

[Function]G_ t-13c8accbfea35c4d-1d

[Function]N_ t-13c8accbfea35c4d-24 t-13c8accbfea35c4d-25
t-13c8accbfea35c4d-26

[Function]P_ msgid
Return the translation of the package description or synopsis MSGID.

[Variable]%gettext-domain

[Variable]%package-text-domain

93

53 (guix inferior)

53.1 Overview

This module provides a way to spawn Guix "inferior" processes and to talk

to them. It allows us, from one instance of Guix, to interact with

another instance of Guix coming from a different commit.

53.2 Usage

[Special Form]inferior?

[Function]open-inferior directory [#:command] [#:error-port]
Open the inferior Guix in DIRECTORY, running ’DIRECTORY/COMMAND repl’
or equivalent. Return #f if the inferior could not be launched.

[Function]port->inferior pipe [close]
Given PIPE, an input/output port, return an inferior that talks over PIPE. PIPE is
closed with CLOSE when ’close-inferior’ is called on the returned inferior.

[Function]close-inferior inferior
Close INFERIOR.

[Function]inferior-eval exp inferior
Evaluate EXP in INFERIOR.

[Function]inferior-eval-with-store inferior store code
Evaluate CODE in INFERIOR, passing it STORE as its argument. CODE must thus
be the code of a one-argument procedure that accepts a store.

[Special Form]inferior-object?

[Function]inferior-exception? obj

[Function]inferior-exception-arguments obj

[Function]inferior-exception-inferior obj

[Function]inferior-exception-stack obj

[Function]inferior-protocol-error? obj

[Function]inferior-protocol-error-inferior obj

[Function]read-repl-response port [inferior]
Read a (guix repl) response from PORT and return it as a Scheme object. Raise
’&inferior-exception’ when an exception is read from PORT.

[Function]inferior-packages inferior
Return the list of packages known to INFERIOR.

[Function]inferior-available-packages inferior
Return the list of name/version pairs corresponding to the set of packages available
in INFERIOR.

This is faster and less resource-intensive than calling ’inferior-packages’.

Chapter 53: (guix inferior) 94

[Function]lookup-inferior-packages inferior name [version]
Return the sorted list of inferior packages matching NAME in INFERIOR, with high-
est version numbers first. If VERSION is true, return only packages with a version
number prefixed by VERSION.

[Special Form]inferior-package?

[Special Form]inferior-package-name

[Special Form]inferior-package-version

[Function]inferior-package-synopsis package [#:translate?]
Return the Texinfo synopsis of PACKAGE, an inferior package. When TRANSLATE?
is true, translate it to the current locale’s language.

[Function]inferior-package-description package [#:translate?]
Return the Texinfo description of PACKAGE, an inferior package. When TRANS-
LATE? is true, translate it to the current locale’s language.

[Function]inferior-package-home-page package
Return the home page of PACKAGE.

[Function]inferior-package-location package
Return the source code location of PACKAGE, either #f or a <location> record.

[Function]inferior-package-inputs t-f7bdf8847bdd73-2536

[Function]inferior-package-native-inputs t-f7bdf8847bdd73-253d

[Function]inferior-package-propagated-inputs t-f7bdf8847bdd73-2544

[Function]inferior-package-transitive-propagated-inputs
t-f7bdf8847bdd73-254b

[Function]inferior-package-native-search-paths t-f7bdf8847bdd73-255a

[Function]inferior-package-transitive-native-search-paths
t-f7bdf8847bdd73-2568

[Function]inferior-package-search-paths t-f7bdf8847bdd73-2561

[Function]inferior-package-replacement package
Return the replacement for PACKAGE. This will either be an inferior package, or
#f.

[Function]inferior-package-provenance package
Return a "provenance sexp" for PACKAGE, an inferior package. The result is similar
to the sexp returned by ’package-provenance’ for regular packages.

[Function]inferior-package-derivation store package [system] [#:target]
Return the derivation for PACKAGE, an inferior package, built for SYSTEM and
cross-built for TARGET if TARGET is true. The inferior corresponding to PACK-
AGE must be live.

Chapter 53: (guix inferior) 95

[Function]inferior-package->manifest-entry package [output]
[#:properties]

Return a manifest entry for the OUTPUT of package PACKAGE.

[Function]gexp->derivation-in-inferior name exp guix [#:silent-failure?] .
rest

Return a derivation that evaluates EXP with GUIX, an instance of Guix as returned
for example by ’channel-instances->derivation’. Other arguments are passed as-is to
’gexp->derivation’.

When SILENT-FAILURE? is true, create an empty output directory instead of failing
when GUIX is too old and lacks the ’guix repl’ command.

[Variable]%inferior-cache-directory

[Function]cached-channel-instance store channels [#:authenticate?]
[#:cache-directory] [#:ttl]

Return a directory containing a guix filetree defined by CHANNELS, a list of chan-
nels. The directory is a subdirectory of CACHE-DIRECTORY, where entries can be
reclaimed after TTL seconds. This procedure opens a new connection to the build
daemon. AUTHENTICATE? determines whether CHANNELS are authenticated.

[Function]inferior-for-channels channels [#:cache-directory] [#:ttl]
Return an inferior for CHANNELS, a list of channels. Use the cache at CACHE-
DIRECTORY, where entries can be reclaimed after TTL seconds. This procedure
opens a new connection to the build daemon.

This is a convenience procedure that people may use in manifests passed to ’guix
package -m’, for instance.

96

54 (guix ipfs)

54.1 Overview

This module implements bindings for the HTTP interface of the IPFS

gateway, documented here: <https://docs.ipfs.io/reference/api/http/>. It

allows you to add and retrieve files over IPFS, and a few other things.

54.2 Usage

[Variable]%ipfs-base-url

[Function]add-data data [#:name] [#:recursive?]
Add DATA, a bytevector, to IPFS. Return a content object representing it.

[Function]add-file file [#:name]
Add FILE under NAME to the IPFS and return a content object for it.

[Special Form]content?

[Special Form]content-name

[Special Form]content-hash

[Special Form]content-size

[Function]add-empty-directory [#:name]
Return a content object for an empty directory.

[Function]add-to-directory directory file name
Add FILE to DIRECTORY under NAME, and return the resulting directory. DI-
RECTORY and FILE must be hashes identifying objects in the IPFS store.

[Function]read-contents object [#:offset] [#:length]
Return an input port to read the content of OBJECT from.

[Function]publish-name object
Publish OBJECT under the current peer ID.

97

55 (guix least-authority)

55.1 Overview

This module provides tools to execute programs with the least authority

necessary, using Linux namespaces.

55.2 Usage

[Function]least-authority-wrapper program [#:name] [#:guest-uid]
[#:guest-gid] [#:mappings] [#:namespaces] [#:directory]
[#:preserved-environment-variables]

Return a wrapper of PROGRAM that executes it with the least authority.

PROGRAM is executed in separate namespaces according to NAMESPACES, a list
of symbols; it runs with GUEST-UID and GUEST-GID. MAPPINGS is a list of
<file-system-mapping> records indicating directories mirrored inside the execution
environment of PROGRAM. DIRECTORY is the working directory of the wrapped
process. Each environment listed in PRESERVED-ENVIRONMENT-VARIABLES
is preserved; other environment variables are erased.

98

56 (guix licenses)

56.1 Overview

Available licenses.

This list is based on these links:

https://github.com/NixOS/nixpkgs/blob/master/lib/licenses.nix

https://www.gnu.org/licenses/license-list

Please update spdx-string->license from guix/import/utils.scm

when modifying this list to avoid mismatches.

56.2 Usage

[Special Form]license?

[Special Form]license-name

[Special Form]license-uri

[Special Form]license-comment

[Variable]agpl1

[Variable]agpl3

[Variable]agpl3+

[Variable]apsl2

[Variable]asl1.1

[Variable]asl2.0

[Variable]boost1.0

[Variable]bsd-0

[Variable]bsd-1

[Variable]bsd-2

[Variable]bsd-3

[Variable]bsd-4

[Function]non-copyleft uri [comment]
Return a lax, permissive, non-copyleft license (for example a variant of the 3-clause
BSD license or the Expat license), whose full text can be found at URI, which may
be a file:// URI pointing the package’s tree.

[Variable]cc0

[Variable]cc-by2.0

[Variable]cc-by3.0

Chapter 56: (guix licenses) 99

[Variable]cc-by4.0

[Variable]cc-by-sa2.0

[Variable]cc-by-sa3.0

[Variable]cc-by-sa4.0

[Variable]cddl1.0

[Variable]cddl1.1

[Variable]cecill

[Variable]cecill-b

[Variable]cecill-c

[Variable]artistic2.0

[Variable]clarified-artistic

[Variable]copyleft-next

[Variable]cpl1.0

[Variable]cua-opl1.0

[Variable]edl1.0

[Variable]epl1.0

[Variable]epl2.0

[Variable]eupl1.1

[Variable]eupl1.2

[Variable]expat

[Variable]expat-0

[Variable]freetype

[Variable]freebsd-doc

[Variable]giftware

[Variable]gpl1

[Variable]gpl1+

[Variable]gpl2

[Variable]gpl2+

[Variable]gpl3

[Variable]gpl3+

[Variable]gfl1.0

[Variable]fdl1.1+

[Variable]fdl1.2+

Chapter 56: (guix licenses) 100

[Variable]fdl1.3+

[Variable]opl1.0+

[Variable]osl2.1

[Variable]isc

[Variable]ijg

[Variable]ibmpl1.0

[Variable]imlib2

[Variable]ipa

[Variable]knuth

[Variable]lal1.3

[Variable]lgpl2.0

[Variable]lgpl2.0+

[Variable]lgpl2.1

[Variable]lgpl2.1+

[Variable]lgpl3

[Variable]lgpl3+

[Variable]llgpl

[Variable]lppl

[Variable]lppl1.0+

[Variable]lppl1.1+

[Variable]lppl1.2

[Variable]lppl1.2+

[Variable]lppl1.3

[Variable]lppl1.3+

[Variable]lppl1.3a

[Variable]lppl1.3a+

[Variable]lppl1.3b

[Variable]lppl1.3b+

[Variable]lppl1.3c

[Variable]lppl1.3c+

[Variable]miros

[Variable]mpl1.0

[Variable]mpl1.1

Chapter 56: (guix licenses) 101

[Variable]mpl2.0

[Variable]ms-pl

[Variable]ncsa

[Variable]nmap

[Variable]ogl-psi1.0

[Variable]openldap2.8

[Variable]openssl

[Variable]perl-license

[Variable]psfl

[Variable]public-domain

[Variable]qpl

[Variable]qwt1.0

[Variable]repoze

[Variable]ruby

[Variable]sgifreeb2.0

[Variable]silofl1.1

[Variable]sleepycat

[Variable]tcl/tk

[Variable]unicode

[Variable]unlicense

[Variable]vim

[Variable]w3c

[Variable]x11

[Function]x11-style uri [comment]
Return an X11-style license, whose full text can be found at URI, which may be a
file:// URI pointing the package’s tree.

[Variable]zpl2.1

[Variable]zlib

[Function]fsf-free uri [comment]
Return a license that does not fit any of the ones above or a collection of licenses,
approved as free by the FSF. More details can be found at URI.

[Variable]wtfpl2

[Variable]wxwindows3.1+

[Variable]hpnd

Chapter 56: (guix licenses) 102

[Function]fsdg-compatible uri [comment]
Return a license that does not fit any of the ones above or a collection of licenses, not
necessarily free, but in accordance with FSDG as Non-functional Data. More details
can be found at URI. See also https://www.gnu.org/distros/free-system-distribution-
guidelines.en.html#non-functional-data.

103

57 (guix lint)

57.1 Overview

57.2 Usage

[Function]check-description-style package

[Function]check-inputs-should-be-native package

[Function]check-inputs-should-not-be-an-input-at-all package

[Function]check-input-labels package
Emit a warning for labels that differ from the corresponding package name.

[Function]check-wrapper-inputs package
Emit a warning if PACKAGE uses ’wrap-program’ or similar, but "bash" or "bash-
minimal" is not in its inputs. ’wrap-script’ is not supported.

[Function]check-patch-file-names package
Emit a warning if the patches requires by PACKAGE are badly named or if the patch
could not be found.

[Function]check-patch-headers package
Check that PACKAGE’s patches start with a comment. Return a list of warnings.

[Function]check-synopsis-style package

[Function]check-derivation package [#:store]
Emit a warning if we fail to compile PACKAGE to a derivation.

[Function]check-home-page package
Emit a warning if PACKAGE has an invalid ’home-page’ field, or if that ’home-page’
is not reachable.

[Function]check-name package
Check whether PACKAGE’s name matches our guidelines.

[Function]check-source package
Emit a warning if PACKAGE has an invalid ’source’ field, or if that ’source’ is not
reachable.

[Function]check-source-file-name package
Emit a warning if PACKAGE’s origin has no meaningful file name.

[Function]check-source-unstable-tarball package
Emit a warning if PACKAGE’s source is an autogenerated tarball.

[Function]check-optional-tests package
Emit a warning if the test suite is run unconditionally.

Chapter 57: (guix lint) 104

[Function]check-mirror-url package
Check whether PACKAGE uses source URLs that should be ’mirror://’.

[Function]check-github-url package [#:timeout]
Check whether PACKAGE uses source URLs that redirect to GitHub.

[Function]check-license package
Warn about type errors of the ’license’ field of PACKAGE.

[Function]check-vulnerabilities package [package-vulnerabilities]
Check for known vulnerabilities for PACKAGE. Obtain the list of vulnerability
records for PACKAGE by calling PACKAGE-VULNERABILITIES.

[Function]check-for-updates package
Check if there is an update available for PACKAGE.

[Function]check-formatting package
Check the formatting of the source code of PACKAGE.

[Function]check-archival package
Check whether PACKAGE’s source code is archived on Software Heritage. If it’s not,
and if its source code is a VCS snapshot, then send a "save" request to Software
Heritage.

Software Heritage imposes limits on the request rate per client IP address. This
checker prints a notice and stops doing anything once that limit has been reached.

[Function]check-profile-collisions package [#:store]
Check for collisions that would occur when installing PACKAGE as a result of the
propagated inputs it pulls in.

[Function]check-haskell-stackage package
Check whether PACKAGE is a Haskell package ahead of the current Stackage LTS
version.

[Function]check-tests-true package
Check whether PACKAGE explicitly requests to run tests, which is superfluous when
building natively and incorrect when cross-compiling.

[Special Form]lint-warning

[Special Form]lint-warning?

[Special Form]lint-warning-package

[Function]lint-warning-message warning

[Special Form]lint-warning-message-text

[Special Form]lint-warning-message-data

[Special Form]lint-warning-location

[Variable]%local-checkers

[Variable]%network-dependent-checkers

Chapter 57: (guix lint) 105

[Variable]%all-checkers

[Special Form]lint-checker

[Special Form]lint-checker?

[Special Form]lint-checker-name

[Special Form]lint-checker-description

[Special Form]lint-checker-check

[Special Form]lint-checker-requires-store?

106

58 (guix man-db)

58.1 Overview

58.2 Usage

[Special Form]mandb-entry?

[Special Form]mandb-entry-file-name

[Special Form]mandb-entry-name

[Special Form]mandb-entry-section

[Special Form]mandb-entry-synopsis

[Special Form]mandb-entry-kind

[Function]mandb-entries directory
Return mandb entries for the man pages found under DIRECTORY, recursively.

[Function]write-mandb-database file entries
Write ENTRIES to FILE as a man-db database. FILE is usually ".../index.db", and
is a GDBM database.

107

59 (guix memoization)

59.1 Overview

59.2 Usage

[Function]invalidate-memoization! proc
Invalidate the memoization cache of PROC.

[Function]memoize proc
Return a memoizing version of PROC.

This is a generic version of ’mlambda’ what works regardless of the arity of ’proc’.
It is more expensive since the argument list is always allocated, and the result is
returned via (apply values results).

[Special Form]mlambda formals body ...
Define a memoizing lambda. The lambda’s arguments are compared with ’equal?’,
and BODY is expected to yield a single return value.

[Special Form]mlambdaq formals body ...
Define a memoizing lambda. If FORMALS lists a single argument, it is compared us-
ing ’eq?’; otherwise, the argument list is compared using ’equal?’. BODY is expected
to yield a single return value.

108

60 (guix modules)

60.1 Overview

This module provides introspection tools for Guile modules at the source

level. Namely, it allows you to determine the closure of a module; it

does so just by reading the 'define-module' clause of the module and its

dependencies. This is primarily useful as an argument to

'with-imported-modules'.

60.2 Usage

[Function]missing-dependency-error? obj

[Function]missing-dependency-module obj

[Function]missing-dependency-search-path obj

[Function]file-name->module-name file
Return the module name (a list of symbols) corresponding to FILE.

[Function]module-name->file-name module
Return the file name for MODULE.

[Function]source-module-dependencies module [load-path]
Return the modules used by MODULE by looking at its source code.

[Function]source-module-closure modules [load-path] [#:select?]
Return the closure of MODULES by reading ’define-module’ forms in their source
code. MODULES and the result are a list of Guile module names. Only modules
that match SELECT? are considered.

[Function]live-module-closure modules [#:select?]
Return the closure of MODULES, determined by looking at live (loaded) module
information. MODULES and the result are a list of Guile module names. Only
modules that match SELECT? are considered.

[Function]guix-module-name? name
Return true if NAME (a list of symbols) denotes a Guix module.

109

61 (guix monad-repl)

61.1 Overview

61.2 Usage

[Variable]run-in-store
[unbound!]

[Variable]enter-store-monad
[unbound!]

110

62 (guix monads)

62.1 Overview

This module implements the general mechanism of monads, and provides in

particular an instance of the "state" monad. The API was inspired by that

of Racket's "better-monads" module (see

<http://planet.racket-lang.org/package-source/toups/functional.plt/1/1/planet-docs/better-monads-guide/index.html>).

The implementation and use case were influenced by Oleg Kysielov's

"Monadic Programming in Scheme" (see

<http://okmij.org/ftp/Scheme/monad-in-Scheme.html>).

62.2 Usage

[Special Form]define-monad
Define the monad under NAME, with the given bind and return methods.

[Special Form]monad?

[Special Form]monad-bind

[Special Form]monad-return

[Special Form]template-directory
This is a "stateful macro" to register and lookup templates and template instances.

[Special Form]>>=

[Special Form]return

[Special Form]with-monad
Evaluate BODY in the context of MONAD, and return its result.

[Special Form]mlet

[Special Form]mlet* monad () body ...
[Special Form]mlet* monad ((var mval) rest ...) body ...
[Special Form]mlet* monad ((var -> val) rest ...) body ...

Bind the given monadic values MVAL to the given variables VAR. When the form is
(VAR -> VAL), bind VAR to the non-monadic value VAL in the same way as ’let’.

[Special Form]mbegin %current-monad mexp
[Special Form]mbegin %current-monad mexp rest ...
[Special Form]mbegin monad mexp
[Special Form]mbegin monad mexp rest ...

Bind MEXP and the following monadic expressions in sequence, returning the result
of the last expression. Every expression in the sequence must be a monadic expression.

[Special Form]mwhen condition mexp0 mexp* ...
When CONDITION is true, evaluate the sequence of monadic expressions
MEXP0..MEXP* as in an ’mbegin’. When CONDITION is false, return
unspecified in the current monad. Every expression in the sequence must be a
monadic expression.

Chapter 62: (guix monads) 111

[Special Form]munless condition mexp0 mexp* ...
When CONDITION is false, evaluate the sequence of monadic expressions
MEXP0..MEXP* as in an ’mbegin’. When CONDITION is true, return
unspecified in the current monad. Every expression in the sequence must be a
monadic expression.

[Special Form]mparameterize monad ((parameter value) rest ...) body ...
[Special Form]mparameterize monad () body ...

This form implements dynamic scoping, similar to ’parameterize’, but in a monadic
context.

[Special Form]lift0
Lift PROC to MONAD—i.e., return a monadic function in MONAD.

[Special Form]lift1
Lift PROC to MONAD—i.e., return a monadic function in MONAD.

[Special Form]lift2
Lift PROC to MONAD—i.e., return a monadic function in MONAD.

[Special Form]lift3
Lift PROC to MONAD—i.e., return a monadic function in MONAD.

[Special Form]lift4
Lift PROC to MONAD—i.e., return a monadic function in MONAD.

[Special Form]lift5
Lift PROC to MONAD—i.e., return a monadic function in MONAD.

[Special Form]lift6
Lift PROC to MONAD—i.e., return a monadic function in MONAD.

[Special Form]lift7
Lift PROC to MONAD—i.e., return a monadic function in MONAD.

[Function]lift proc monad
Lift PROC, a procedure that accepts an arbitrary number of arguments, to
MONAD—i.e., return a monadic function in MONAD.

[Special Form]listm
Return a monadic list in MONAD from the monadic values MVAL.

[Special Form]foldm

[Special Form]mapm

[Special Form]sequence

[Special Form]anym

[Special Form]%identity-monad

[Special Form]%state-monad

Chapter 62: (guix monads) 112

[Special Form]state-return

[Special Form]state-bind

[Special Form]current-state

[Special Form]set-current-state

[Function]state-push value
Push VALUE to the current state, which is assumed to be a list, and return the
previous state as a monadic value.

[Function]state-pop
Pop a value from the current state and return it as a monadic value. The state is
assumed to be a list.

[Function]run-with-state mval [state]
Run monadic value MVAL starting with STATE as the initial state. Return two
values: the resulting value, and the resulting state.

113

63 (guix narinfo)

63.1 Overview

63.2 Usage

[Function]narinfo-signature->canonical-sexp str
Return the value of a narinfo’s ’Signature’ field as a canonical sexp.

[Special Form]narinfo?

[Special Form]narinfo-path

[Special Form]narinfo-uris

[Special Form]narinfo-uri-base

[Special Form]narinfo-compressions

[Special Form]narinfo-file-hashes

[Special Form]narinfo-file-sizes

[Special Form]narinfo-hash

[Special Form]narinfo-size

[Special Form]narinfo-references

[Special Form]narinfo-deriver

[Special Form]narinfo-system

[Special Form]narinfo-signature

[Special Form]narinfo-contents

[Function]narinfo-hash-algorithm+value narinfo
Return two values: the hash algorithm used by NARINFO and its value as a bytevec-
tor.

[Function]narinfo-hash->sha256 hash
If the string HASH denotes a sha256 hash, return it as a bytevector. Otherwise return
#f.

[Function]narinfo-best-uri narinfo [#:fast-decompression?]
Select the "best" URI to download NARINFO’s nar, and return three values: the
URI, its compression method (a string), and the compressed file size. When FAST-
DECOMPRESSION? is true, prefer substitutes with faster decompression (typically
zstd) rather than substitutes with a higher compression ratio (typically lzip).

[Function]valid-narinfo? narinfo [acl] [#:verbose?]
Return #t if NARINFO’s signature is valid and made by one of the keys in ACL.

Chapter 63: (guix narinfo) 114

[Function]read-narinfo port [url] [#:size]
Read a narinfo from PORT. If URL is true, it must be a string used to build full URIs
from relative URIs found while reading PORT. When SIZE is true, read at most SIZE
bytes from PORT; otherwise, read as much as possible.

No authentication and authorization checks are performed here!

[Function]write-narinfo narinfo port
Write NARINFO to PORT.

[Function]string->narinfo str cache-uri
Return the narinfo represented by STR. Assume CACHE-URI as the base URI of the
cache STR originates form.

[Function]narinfo->string narinfo
Return the external representation of NARINFO.

[Function]equivalent-narinfo? narinfo1 narinfo2
Return true if NARINFO1 and NARINFO2 are equivalent–i.e., if they describe the
same store item. This ignores unnecessary metadata such as the Nar URL.

115

64 (guix nar)

64.1 Overview

64.2 Usage

[Function]nar-invalid-hash-error? obj

[Function]nar-invalid-hash-error-expected obj

[Function]nar-invalid-hash-error-actual obj

[Function]nar-signature-error? obj

[Function]nar-signature-error-signature obj

[Function]restore-file-set port [#:verify-signature?] [#:lock?] [#:log-port]
Restore the file set ("nar bundle") read from PORT to the store. The format of the
data on PORT must be as created by ’export-paths’—i.e., a series of Nar-formatted
archives with interspersed meta-data joining them together, possibly with a digital
signature at the end. Log progress to LOG-PORT. Return the list of files restored.

When LOCK? is #f, assume locks for the files to be restored are already held. This
is the case when the daemon calls a build hook.

Note that this procedure accesses the store directly, so it’s only meant to be used by
the daemon’s build hooks since they cannot call back to the daemon while the locks
are held.

116

65 (guix openpgp)

65.1 Overview

This module contains code to read OpenPGP messages as described in

<https://tools.ietf.org/html/rfc4880>, with extensions from

<https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-06> (notably

EdDSA support and extra signature sub-packets).

Currently this module does enough to verify detached signatures of binary

data. It does _not_ perform sanity checks on self-signatures, subkey

binding signatures, etc., among others. Use only in a context where this

limitations are acceptable!

65.2 Usage

[Function]get-openpgp-detached-signature/ascii port
Read from PORT an ASCII-armored detached signature. Return an <openpgp-
signature> record or the end-of-file object. Raise an error if the data read from
PORT does is invalid or does not correspond to a detached signature.

[Function]verify-openpgp-signature sig keyring dataport
Verify that the data read from DATAPORT matches SIG, an <openpgp-signature>.
Fetch the public key of the issuer of SIG from KEYRING, a keyring as returned by
’get-openpgp-keyring’. Return two values: a status symbol, such as ’bad-signature or
’missing-key, and additional info, such as the issuer’s OpenPGP public key extracted
from KEYRING.

[Function]port-ascii-armored? p

[Function]openpgp-error? obj

[Function]openpgp-unrecognized-packet-error? obj

[Function]openpgp-unrecognized-packet-error-port obj

[Function]openpgp-unrecognized-packet-error-type obj

[Function]openpgp-invalid-signature-error? obj

[Function]openpgp-invalid-signature-error-port obj

[Special Form]openpgp-signature?

[Special Form]openpgp-signature-issuer-key-id

[Special Form]openpgp-signature-issuer-fingerprint

[Special Form]openpgp-signature-public-key-algorithm

[Special Form]openpgp-signature-hash-algorithm

Chapter 65: (guix openpgp) 117

[Function]openpgp-signature-creation-time sig

[Function]openpgp-signature-expiration-time sig

[Special Form]openpgp-user-id?

[Special Form]openpgp-user-id-value

[Special Form]openpgp-user-attribute?

[Special Form]openpgp-public-key?

[Special Form]openpgp-public-key-subkey?

[Special Form]openpgp-public-key-value

[Special Form]openpgp-public-key-fingerprint

[Function]openpgp-format-fingerprint bv
Return a string representing BV, a bytevector, in the conventional OpenPGP hex-
adecimal format for fingerprints.

[Function]openpgp-public-key-id k

[Special Form]openpgp-keyring?

[Variable]%empty-keyring

[Function]lookup-key-by-id keyring id
Return two values: the first key with ID in KEYRING, and a list of associated packets
(user IDs, signatures, etc.). Return #f and the empty list of ID was not found. ID
must be the 64-bit key ID of the key, an integer.

[Function]lookup-key-by-fingerprint keyring fingerprint
Return two values: the key with FINGERPRINT in KEYRING, and a list of associ-
ated packets (user IDs, signatures, etc.). Return #f and the empty list of FINGER-
PRINT was not found. FINGERPRINT must be a bytevector.

[Function]get-openpgp-keyring port [keyring] [#:limit]
Read from PORT an OpenPGP keyring in binary format; return a keyring based on
all the OpenPGP primary keys that were read. The returned keyring complements
KEYRING. LIMIT is the maximum number of keys to read, or -1 if there is no limit.

[Function]read-radix-64 port
Read from PORT an ASCII-armored Radix-64 stream, decode it, and return the result
as a bytevector as well as the type, a string such as "PGP MESSAGE". Return #f
if PORT does not contain a valid Radix-64 stream, and the end-of-file object if the
Radix-64 sequence was truncated.

[Function]string->openpgp-packet str
Read STR, an ASCII-armored OpenPGP packet, and return the corresponding
OpenPGP record.

[Function]get-openpgp-packet p

118

66 (guix packages)

66.1 Overview

This module provides a high-level mechanism to define packages in a

Guix-based distribution.

66.2 Usage

[Special Form]content-hash
Return a content hash with the given parameters. The default hash algorithm is
sha256. If the first argument is a literal string, it is decoded as base32. Otherwise, it
must be a bytevector.

[Special Form]content-hash?

[Special Form]content-hash-algorithm

[Special Form]content-hash-value

[Special Form]origin fields ...
Build an <origin> record, automatically converting ’sha256’ field specifications to
’hash’.

[Special Form]origin?

[Special Form]this-origin
Return the record being defined. This macro may only be used in the context of the
definition of a thunked field.

[Special Form]origin-uri

[Special Form]origin-method

[Special Form]origin-hash

[Special Form]origin-sha256

[Special Form]origin-file-name

[Function]origin-actual-file-name origin
Return the file name of ORIGIN, either its ’file-name’ field or the file name of its
URI.

[Special Form]origin-patches

[Special Form]origin-patch-flags

[Special Form]origin-patch-inputs

[Special Form]origin-patch-guile

[Special Form]origin-snippet

[Special Form]origin-modules

Chapter 66: (guix packages) 119

[Special Form]base32
Return the bytevector corresponding to the given textual representation.

[Special Form]base64
Return the bytevector corresponding to the given textual representation.

[Special Form]package

[Special Form]package?

[Special Form]this-package
Return the record being defined. This macro may only be used in the context of the
definition of a thunked field.

[Special Form]package-name

[Function]package-upstream-name package
Return the upstream name of PACKAGE, which could be different from the name it
has in Guix.

[Special Form]package-version

[Function]package-full-name package [delimiter]
Return the full name of PACKAGE--i.e., `NAME@@VERSION'. By specifying

DELIMITER (a string), you can customize what will appear between the name and

the version. By default, DELIMITER is "@@".

[Special Form]package-source

[Special Form]package-build-system

[Special Form]package-arguments

[Special Form]package-inputs

[Special Form]package-native-inputs

[Special Form]package-propagated-inputs

[Special Form]package-outputs

[Special Form]package-native-search-paths

[Special Form]package-search-paths

[Special Form]package-replacement

[Special Form]package-synopsis

[Special Form]package-description

[Special Form]package-license

[Special Form]package-home-page

[Special Form]package-supported-systems

Chapter 66: (guix packages) 120

[Special Form]package-properties

[Function]package-location package
Return the source code location of PACKAGE as a <location> record, or #f if it is
not known.

[Function]package-definition-location package
Like ’package-location’, but return the location of the definition itself–i.e., that of the
enclosing ’define-public’ form, if any, or #f.

[Function]hidden-package p
Return a "hidden" version of P–i.e., one that ’fold-packages’ and thus, user interfaces,
ignores.

[Function]hidden-package? p
Return true if P is "hidden"–i.e., must not be visible to user interfaces.

[Function]package-superseded p
Return the package that supersedes P, or #f if P is still current.

[Function]deprecated-package old-name p
Return a package called OLD-NAME and marked as superseded by P, a package
object.

[Function]package-field-location package field
Return the source code location of the definition of FIELD for PACKAGE, or #f if
it could not be determined.

[Special Form]this-package-input name
Return the input NAME of the package being defined–i.e., an input from the ‘inputs’
or ‘propagated-inputs’ field. Native inputs are not considered. If this input does not
exist, return #f instead.

[Special Form]this-package-native-input name
Return the native package input NAME of the package being defined–i.e., an input
from the ‘native-inputs’ field. If this native input does not exist, return #f instead.

[Function]lookup-package-input package name
Look up NAME among PACKAGE’s inputs. Return it if found, #f otherwise.

[Function]lookup-package-native-input package name
Look up NAME among PACKAGE’s native inputs. Return it if found, #f otherwise.

[Function]lookup-package-propagated-input package name
Look up NAME among PACKAGE’s propagated inputs. Return it if found, #f
otherwise.

[Function]lookup-package-direct-input package name
Look up NAME among PACKAGE’s direct inputs. Return it if found, #f otherwise.

Chapter 66: (guix packages) 121

[Special Form]prepend

[Special Form]replace

[Special Form]modify-inputs inputs (delete name) clauses ...
[Special Form]modify-inputs inputs (delete names ...) clauses ...
[Special Form]modify-inputs inputs (prepend lst ...) clauses ...
[Special Form]modify-inputs inputs (append lst ...) clauses ...
[Special Form]modify-inputs inputs (replace name replacement) clauses ...
[Special Form]modify-inputs inputs

Modify the given package inputs, as returned by 'package-inputs' & co.,

according to the given clauses. The example below removes the GMP and ACL

inputs of Coreutils and adds libcap:

(modify-inputs (package-inputs coreutils)

(delete "gmp" "acl")

(prepend libcap))

Other types of clauses include 'append' and 'replace'.

The first argument must be a labeled input list; the result is also a labeled

input list.

[Function]package-direct-sources package
Return all source origins associated with PACKAGE; including origins in PACK-
AGE’s inputs.

[Function]package-transitive-sources package
Return PACKAGE’s direct sources, and their direct sources, recursively.

[Function]package-direct-inputs package
Return all the direct inputs of PACKAGE—i.e, its direct inputs along with their
propagated inputs.

[Function]package-transitive-inputs package
Return the transitive inputs of PACKAGE—i.e., its direct inputs along with their
propagated inputs, recursively.

[Function]package-transitive-target-inputs package
Return the transitive target inputs of PACKAGE—i.e., its direct inputs along with
their propagated inputs, recursively. This only includes inputs for the target system,
and not native inputs.

[Function]package-transitive-native-inputs package
Return the transitive native inputs of PACKAGE—i.e., its direct inputs along with
their propagated inputs, recursively. This only includes inputs for the host system
("native inputs"), and not target inputs.

[Function]package-transitive-propagated-inputs package
Return the propagated inputs of PACKAGE, and their propagated inputs, recursively.

Chapter 66: (guix packages) 122

[Function]package-transitive-native-search-paths package
Return the list of search paths for PACKAGE and its propagated inputs, recursively.

[Function]package-transitive-supported-systems package [system]
Return the intersection of the systems supported by PACKAGE and those supported
by its dependencies.

[Function]package-mapping proc [cut?] [#:deep?]
Return a procedure that, given a package, applies PROC to all the packages depended
on and returns the resulting package. The procedure stops recursion when CUT?
returns true for a given package. When DEEP? is true, PROC is applied to implicit
inputs as well.

[Function]package-input-rewriting replacements [rewrite-name] [#:deep?]
Return a procedure that, when passed a package, replaces its direct and indirect de-
pendencies, including implicit inputs when DEEP? is true, according to REPLACE-
MENTS. REPLACEMENTS is a list of package pairs; the first element of each pair
is the package to replace, and the second one is the replacement.

Optionally, REWRITE-NAME is a one-argument procedure that takes the name of
a package and returns its new name after rewrite.

[Function]package-input-rewriting/spec replacements [#:deep?]
Return a procedure that, given a package, applies the given REPLACEMENTS to

all the package graph, including implicit inputs unless DEEP? is false.

REPLACEMENTS is a list of spec/procedures pair; each spec is a package

specification such as "gcc" or "guile@@2", and each procedure takes a

matching package and returns a replacement for that package.

[Function]package-source-derivation store source [system]
Return the derivation or file corresponding to SOURCE, which can be an a file name
or any object handled by ’lower-object’, such as an <origin>. When SOURCE is a
file name, return either the interned file name (if SOURCE is outside of the store) or
SOURCE itself (if SOURCE is already a store item.)

[Function]package-derivation store . args
Return the <derivation> object of PACKAGE for SYSTEM.

[Function]package-cross-derivation store . args
Cross-build PACKAGE for TARGET (a GNU triplet) from host SYSTEM (a Guix
system identifying string).

[Function]package-output store package [output] [system]
Return the output path of PACKAGE’s OUTPUT for SYSTEM—where OUTPUT
is the symbolic output name, such as "out". Note that this procedure calls ‘package-
derivation’, which is costly.

[Function]package-grafts store . args
Return the list of grafts applicable to PACKAGE as built for SYSTEM and TARGET.

Chapter 66: (guix packages) 123

[Function]package-patched-vulnerabilities package
Return the list of patched vulnerabilities of PACKAGE as a list of CVE identifiers.
The result is inferred from the file names of patches.

[Function]package-with-patches original patches
Return package ORIGINAL with PATCHES applied.

[Function]package-with-extra-patches original patches
Return package ORIGINAL with all PATCHES appended to its list of patches.

[Function]package-with-c-toolchain package toolchain
Return a variant of PACKAGE that uses TOOLCHAIN instead of the default GNU
C/C++ toolchain. TOOLCHAIN must be a list of inputs (label/package tuples) pro-
viding equivalent functionality, such as the ’gcc-toolchain’ package.

[Special Form]package/inherit p overrides ...
Like (package (inherit P) OVERRIDES ...), except that the same transformation is
done to the package P’s replacement, if any. P must be a bare identifier, and will be
bound to either P or its replacement when evaluating OVERRIDES.

[Function]transitive-input-references alist inputs
Return a list of (assoc-ref ALIST <label>) for each (<label> <package> .) in INPUTS
and their transitive propagated inputs.

[Variable]%32bit-supported-systems

[Variable]%64bit-supported-systems

[Variable]%supported-systems

[Variable]%hurd-systems

[Variable]%cuirass-supported-systems

[Function]supported-package? package [system]
Return true if PACKAGE is supported on SYSTEM–i.e., if PACKAGE and all its
dependencies are known to build on SYSTEM.

[Variable]&package-error

[Function]package-error? obj

[Function]package-error-package obj

[Function]package-license-error? obj

[Function]package-error-invalid-license obj

[Variable]&package-input-error

[Function]package-input-error? obj

[Function]package-error-invalid-input obj

[Variable]&package-cross-build-system-error

Chapter 66: (guix packages) 124

[Function]package-cross-build-system-error? obj

[Function]package->bag package [system] [target] [#:graft?]
Compile PACKAGE into a bag for SYSTEM, possibly cross-compiled to TARGET,
and return it.

[Function]bag->derivation bag [context]
Return the derivation to build BAG for SYSTEM. Optionally, CONTEXT can be
a package object describing the context in which the call occurs, for improved error
reporting.

[Function]bag-direct-inputs bag
Same as ’package-direct-inputs’, but applied to a bag.

[Function]bag-transitive-inputs bag
Same as ’package-transitive-inputs’, but applied to a bag.

[Function]bag-transitive-host-inputs bag
Same as ’package-transitive-target-inputs’, but applied to a bag.

[Function]bag-transitive-build-inputs bag
Same as ’package-transitive-native-inputs’, but applied to a bag.

[Function]bag-transitive-target-inputs bag
Return the "target inputs" of BAG, recursively.

[Function]package-development-inputs package [system] [#:target]
Return the list of inputs required by PACKAGE for development purposes on SYS-
TEM. When TARGET is true, return the inputs needed to cross-compile PACKAGE
from SYSTEM to TRIPLET, where TRIPLET is a triplet such as "aarch64-linux-
gnu".

[Function]package-closure packages [#:system]
Return the closure of PACKAGES on SYSTEM–i.e., PACKAGES and the list of
packages they depend on, recursively.

[Function]default-guile
Return the default Guile package used to run the build code of derivations.

[Function]default-guile-derivation [system]
Return the derivation for SYSTEM of the default Guile package used to run the build
code of derivation.

[Function]set-guile-for-build guile
This monadic procedure changes the Guile currently used to run the build code of
derivations to GUILE, a package object.

[Function]package-file package [file] [#:system] [#:output] [#:target]
Return as a monadic value the absolute file name of FILE within the OUTPUT
directory of PACKAGE. When FILE is omitted, return the name of the OUTPUT
directory of PACKAGE. When TARGET is true, use it as a cross-compilation target
triplet.

Chapter 66: (guix packages) 125

Note that this procedure does not build PACKAGE. Thus, the result might or
might not designate an existing file. We recommend not using this procedure unless
you know what you are doing.

[Function]package->derivation package [system] [#:graft?]
Return the <derivation> object of PACKAGE for SYSTEM.

[Function]package->cross-derivation package target [system] [#:graft?]
Cross-build PACKAGE for TARGET (a GNU triplet) from host SYSTEM (a Guix
system identifying string).

[Function]origin->derivation origin [system]
Return the derivation corresponding to ORIGIN.

[Variable]%current-system

[Variable]%current-target-system

[Special Form]define-public
Like ’define-public’ but set ’current-definition-location’ for the lexical scope of its
body.

[Special Form]search-path-specification

[Function]delete []
- Scheme Procedure: delete item lst

Return a newly-created copy of LST with elements `equal?' to ITEM

removed. This procedure mirrors `member': `delete' compares

elements of LST against ITEM with `equal?'.

126

67 (guix pki)

67.1 Overview

Public key infrastructure for the authentication and authorization of

archive imports. This is essentially a subset of SPKI for our own

purposes (see <http://theworld.com/~cme/spki.txt> and

<http://www.ietf.org/rfc/rfc2693.txt>.)

67.2 Usage

[Variable]%public-key-file

[Variable]%private-key-file

[Variable]%acl-file

[Function]current-acl
Return the current ACL.

[Function]public-keys->acl keys
Return an ACL that lists all of KEYS with a ’(guix import)’ tag—meaning that all of
KEYS are authorized for archive imports. Each element in KEYS must be a canonical
sexp with type ’public-key’.

[Function]acl->public-keys acl
Return the public keys (as canonical sexps) listed in ACL with the ’(guix import)’
tag.

[Function]authorized-key? key [acl]
Return #t if KEY (a canonical sexp) is an authorized public key for archive imports
according to ACL.

[Function]write-acl acl port
Write ACL to PORT in canonical-sexp format.

[Function]signature-sexp data secret-key public-key
Return a SPKI-style sexp for the signature of DATA with SECRET-KEY that in-
cludes DATA, the actual signature value (with a ’sig-val’ tag), and PUBLIC-KEY
(see <http://theworld.com/~cme/spki.txt> for examples.)

[Function]signature-subject sig
Return the signer’s public key for SIG.

[Function]signature-signed-data sig
Return the signed data from SIG, typically an sexp such as

(hash "sha256" #...#).

[Function]valid-signature? sig
Return #t if SIG is valid.

Chapter 67: (guix pki) 127

[Special Form]signature-case (signature hash acl) (valid-signature valid-exp
...) (else else-exp ...)

[Special Form]signature-case (signature hash acl) (valid-signature valid-exp
...) (invalid-signature invalid-exp ...) (hash-mismatch mismatch-exp ...)
(unauthorized-key unauthorized-exp ...) (corrupt-signature corrupt-exp
...)

Match the cases of the verification of SIGNATURE against HASH and ACL:

- the 'valid-signature' case if SIGNATURE is indeed a signature of HASH with

a key present in ACL;

- 'invalid-signature' if SIGNATURE is incorrect;

- 'hash-mismatch' if the hash in SIGNATURE does not match HASH;

- 'unauthorized-key' if the public key in SIGNATURE is not listed in ACL;

- 'corrupt-signature' if SIGNATURE is not a valid signature sexp.

This macro guarantees at compile-time that all these cases are handled.

SIGNATURE, and ACL must be canonical sexps; HASH must be a bytevector.

128

68 (guix platform)

68.1 Overview

68.2 Usage

[Special Form]platform

[Special Form]platform?

[Special Form]platform-target

[Special Form]platform-system

[Special Form]platform-linux-architecture

[Special Form]platform-glibc-dynamic-linker

[Function]platform-modules
Return the list of platform modules.

[Function]platforms . args

[Function]lookup-platform-by-system system
Return the platform corresponding to the given SYSTEM.

[Function]lookup-platform-by-target target
Return the platform corresponding to the given TARGET.

[Function]lookup-platform-by-target-or-system target-or-system
Return the platform corresponding to the given TARGET or SYSTEM.

[Function]platform-system->target system
Return the target matching the given SYSTEM if it exists or false otherwise.

[Function]platform-target->system target
Return the system matching the given TARGET if it exists or false otherwise.

[Function]systems
Return the list of supported systems.

[Function]targets
Return the list of supported targets.

129

69 (guix profiles)

69.1 Overview

Tools to create and manipulate profiles---i.e., the representation of a

set of installed packages.

69.2 Usage

[Variable]&profile-error

[Function]profile-error? obj

[Function]profile-error-profile obj

[Variable]&profile-not-found-error

[Function]profile-not-found-error? obj

[Variable]&profile-collision-error

[Function]profile-collision-error? obj

[Function]profile-collision-error-entry obj

[Function]profile-collision-error-conflict obj

[Variable]&missing-generation-error

[Function]missing-generation-error? obj

[Function]missing-generation-error-generation obj

[Variable]&unmatched-pattern-error

[Function]unmatched-pattern-error? obj

[Function]unmatched-pattern-error-pattern obj

[Function]unmatched-pattern-error-manifest obj

[Special Form]manifest

[Function]make-manifest entries

[Special Form]manifest?

[Special Form]manifest-entries

[Function]manifest-transitive-entries manifest
Return the entries of MANIFEST along with their propagated inputs, recursively.

[Special Form]<manifest-entry>
This macro lets us query record type info at macro-expansion time.

[Special Form]manifest-entry

[Special Form]manifest-entry?

[Special Form]manifest-entry-name

Chapter 69: (guix profiles) 130

[Special Form]manifest-entry-version

[Special Form]manifest-entry-output

[Special Form]manifest-entry-item

[Special Form]manifest-entry-dependencies

[Special Form]manifest-entry-search-paths

[Special Form]manifest-entry-parent

[Special Form]manifest-entry-properties

[Function]lower-manifest-entry entry system [#:target]
Lower ENTRY for SYSTEM and TARGET such that its ’item’ field is a store file
name.

[Function]manifest-entry=? entry1 entry2
Return true if ENTRY1 is equivalent to ENTRY2, ignoring their ’properties’ field.

[Special Form]manifest-pattern

[Special Form]manifest-pattern?

[Special Form]manifest-pattern-name

[Special Form]manifest-pattern-version

[Special Form]manifest-pattern-output

[Function]concatenate-manifests lst
Concatenate the manifests listed in LST and return the resulting manifest.

[Function]map-manifest-entries proc manifest
Apply PROC to all the entries of MANIFEST and return a new manifest.

[Function]manifest-remove manifest patterns
Remove entries for each of PATTERNS from MANIFEST. Each item in PATTERNS
must be a manifest-pattern.

[Function]manifest-add manifest entries
Add a list of manifest ENTRIES to MANIFEST and return new manifest. Remove
MANIFEST entries that have the same name and output as ENTRIES.

[Function]manifest-lookup manifest pattern
Return the first item of MANIFEST that matches PATTERN, or #f if there is no
match..

[Function]manifest-installed? manifest pattern
Return #t if MANIFEST has an entry matching PATTERN (a manifest-pattern), #f
otherwise.

[Function]manifest-matching-entries manifest patterns
Return all the entries of MANIFEST that match one of the PATTERNS. Raise an
’&unmatched-pattern-error’ if none of the entries of MANIFEST matches one of PAT-
TERNS.

Chapter 69: (guix profiles) 131

[Function]manifest-search-paths manifest
Return the list of search path specifications that apply to MANIFEST, including the
search path specification for $PATH.

[Function]check-for-collisions manifest system [#:target]
Check whether the entries of MANIFEST conflict with one another; raise a ’&profile-
collision-error’ when a conflict is encountered.

[Function]manifest->code manifest [#:entry-package-version]
Return an sexp representing code to build an approximate version of MANIFEST;
the code is wrapped in a top-level ’begin’ form. Call ENTRY-PACKAGE-VERSION
to determine the version number to use in the spec for a given entry; it can be set to
’manifest-entry-version’ for fully-specified version numbers, or to some other proce-
dure to disambiguate versions for packages for which several versions are available.

[Special Form]manifest-transaction

[Special Form]manifest-transaction?

[Special Form]manifest-transaction-install

[Special Form]manifest-transaction-remove

[Function]manifest-transaction-install-entry entry transaction
Augment TRANSACTION’s set of installed packages with ENTRY, a <manifest-
entry>.

[Function]manifest-transaction-remove-pattern pattern transaction
Add PATTERN to TRANSACTION’s list of packages to remove.

[Function]manifest-transaction-null? transaction
Return true if TRANSACTION has no effect—i.e., it neither installs nor remove
software.

[Function]manifest-transaction-removal-candidate? entry transaction
Return true if ENTRY is a candidate for removal in TRANSACTION.

[Function]manifest-perform-transaction manifest transaction
Perform TRANSACTION on MANIFEST and return the new manifest.

[Function]manifest-transaction-effects manifest transaction
Compute the effect of applying TRANSACTION to MANIFEST. Return 4 values:
the list of packages that would be removed, installed, upgraded, or downgraded when
applying TRANSACTION to MANIFEST. Upgrades are represented as pairs where
the head is the entry being upgraded and the tail is the entry that will replace it.

[Function]profile-manifest profile
Return the PROFILE’s manifest.

[Function]package->manifest-entry package [output] [#:parent]
[#:properties]

Return a manifest entry for the OUTPUT of package PACKAGE.

Chapter 69: (guix profiles) 132

[Function]package->development-manifest package [system] [#:target]
Return a manifest for the "development inputs" of PACKAGE for SYSTEM, option-
ally when cross-compiling to TARGET. Development inputs include both explicit and
implicit inputs of PACKAGE.

[Function]packages->manifest packages
Return a list of manifest entries, one for each item listed in PACKAGES. Elements
of PACKAGES can be either package objects or package/string tuples denoting a
specific output of a package.

[Function]ca-certificate-bundle manifest
Return a derivation that builds a single-file bundle containing the CA certificates in
the /etc/ssl/certs sub-directories of the packages in MANIFEST. Single-file bundles
are required by programs such as Git and Lynx.

[Variable]%default-profile-hooks

[Variable]%manifest-format-version

[Function]profile-derivation manifest [#:name] [#:hooks] [#:locales?]
[#:allow-unsupported-packages?] [#:allow-collisions?]
[#:relative-symlinks?] [#:format-version] [#:system] [#:target]

Return a derivation that builds a profile (aka. ’user environment’) with the
given MANIFEST. The profile includes additional derivations returned by the
monadic procedures listed in HOOKS–such as an Info ’dir’ file, etc. Unless
ALLOW-COLLISIONS? is true, a ’&profile-collision-error’ is raised if entries in
MANIFEST collide (for instance if there are two same-name packages with a
different version number.) Unless ALLOW-UNSUPPORTED-PACKAGES? is true
or TARGET is set, raise an error if MANIFEST contains a package that does not
support SYSTEM.

When LOCALES? is true, the build is performed under a UTF-8 locale; this adds a
dependency on the ’glibc-utf8-locales’ package.

When RELATIVE-SYMLINKS? is true, use relative file names for symlink targets.
This is one of the things to do for the result to be relocatable.

When TARGET is true, it must be a GNU triplet, and the packages in MANIFEST
are cross-built for TARGET.

[Function]profile-search-paths profile [manifest] [#:getenv]
Read the manifest of PROFILE and evaluate the values of search path environment
variables required by PROFILE; return a list of specification/value pairs. If MANI-
FEST is not #f, it is assumed to be the manifest of PROFILE, which avoids rereading
it.

Use GETENV to determine the current settings and report only settings not already
effective.

[Function]load-profile profile [manifest] [#:pure?] [#:white-list-regexps]
[#:white-list]

Set the environment variables specified by MANIFEST for PROFILE. When PURE?
is #t, unset the variables in the current environment except those that match the

Chapter 69: (guix profiles) 133

regexps in WHITE-LIST-REGEXPS and those listed in WHITE-LIST. Otherwise,
augment existing environment variables with additional search paths.

[Special Form]profile

[Special Form]profile?

[Special Form]profile-name

[Special Form]profile-content

[Special Form]profile-hooks

[Special Form]profile-locales?

[Special Form]profile-allow-collisions?

[Special Form]profile-relative-symlinks?

[Function]generation-number profile [base-profile]
Return PROFILE’s number or 0. An absolute file name must be used.

Optionally, if BASE-PROFILE is provided, use it instead of PROFILE to construct
the regexp matching generations. This is useful in special cases like: (generation-
number "/run/current-system" %system-profile).

[Function]generation-profile file
If FILE is a profile generation GC root such as "guix-profile-42-link", return its
corresponding profile—e.g., "guix-profile". Otherwise return #f.

[Function]generation-numbers profile
Return the sorted list of generation numbers of PROFILE, or ’(0) if no former profiles
were found.

[Function]profile-generations profile
Return a list of PROFILE’s generations.

[Function]relative-generation-spec->number profile spec
Return PROFILE’s generation specified by SPEC, which is a string. The SPEC may
be a N, -N, or +N, where N is a number. If the spec is N, then the number returned
is N. If it is -N, then the number returned is the profile’s current generation number
minus N. If it is +N, then the number returned is the profile’s current generation
number plus N. Return #f if there is no such generation.

[Function]relative-generation profile shift [current]
Return PROFILE’s generation shifted from the CURRENT generation by SHIFT.
SHIFT is a positive or negative number. Return #f if there is no such generation.

[Function]previous-generation-number profile [number]
Return the number of the generation before generation NUMBER of PROFILE, or 0
if none exists. It could be NUMBER - 1, but it’s not the case when generations have
been deleted (there are "holes").

[Function]generation-time profile number
Return the creation time of a generation in the UTC format.

Chapter 69: (guix profiles) 134

[Function]generation-file-name profile generation
Return the file name for PROFILE’s GENERATION.

[Function]switch-to-generation profile number
Atomically switch PROFILE to the generation NUMBER. Return the number of the
generation that was current before switching.

[Function]roll-back store profile
Roll back to the previous generation of PROFILE. Return the number of the gener-
ation that was current before switching and the new generation number.

[Function]delete-generation store profile number
Delete generation with NUMBER from PROFILE. Return the file name of the gen-
eration that has been deleted, or #f if nothing was done (for instance because the
NUMBER is zero.)

[Variable]%user-profile-directory

[Variable]%profile-directory

[Variable]%current-profile

[Function]ensure-profile-directory
Attempt to create /. . . /profiles/per-user/$USER if needed. Nowadays this is taken
care of by the daemon.

[Function]canonicalize-profile profile
If PROFILE points to a profile in %PROFILE-DIRECTORY, return that. Otherwise
return PROFILE unchanged. The goal is to treat ’-p ~/.guix-profile’ as if ’-p’ was
omitted.

[Function]user-friendly-profile profile
Return either ~/.guix-profile or ~/.config/guix/current if that’s what PROFILE refers
to, directly or indirectly, or PROFILE.

[Function]linux-module-database manifest
Return a derivation that unites all the kernel modules of the manifest and creates the
dependency graph of all these kernel modules.

This is meant to be used as a profile hook.

135

70 (guix profiling)

70.1 Overview

Basic support for Guix-specific profiling.

70.2 Usage

[Function]profiled? component
Return true if COMPONENT profiling is active.

[Function]register-profiling-hook! component thunk
Register THUNK as a profiling hook for COMPONENT, a string such as "rpc".

136

71 (guix progress)

71.1 Overview

Helper to write progress report code for downloads, etc.

71.2 Usage

[Special Form]<progress-reporter>
This macro lets us query record type info at macro-expansion time.

[Special Form]progress-reporter

[Special Form]make-progress-reporter

[Special Form]progress-reporter?

[Function]call-with-progress-reporter reporter proc
Start REPORTER for progress reporting, and call (proc report) with the resulting
report procedure. When proc returns, the REPORTER is stopped.

[Function]start-progress-reporter! reporter
Low-level procedure to start REPORTER.

[Function]stop-progress-reporter! reporter
Low-level procedure to stop REPORTER.

[Function]progress-reporter-report! reporter . args
Low-level procedure to lead REPORTER to emit a report.

[Variable]progress-reporter/silent

[Function]progress-reporter/file file size [log-port] [#:abbreviation]
Return a <progress-reporter> object to show the progress of FILE’s download, which
is SIZE bytes long. The progress report is written to LOG-PORT, with ABBREVI-
ATION used to shorten FILE for display.

[Function]progress-reporter/bar total [prefix] [port]
Return a reporter that shows a progress bar every time one of the TOTAL tasks is
performed. Write PREFIX at the beginning of the line.

[Function]progress-reporter/trace file url size [log-port]
Like ’progress-reporter/file’, but instead of returning human-readable progress re-
ports, write "build trace" lines to be processed elsewhere.

[Function]progress-report-port reporter port [#:close?] [#:download-size]
Return a port that continuously reports the bytes read from PORT using
REPORTER, which should be a <progress-reporter> object. When CLOSE? is true,
PORT is closed when the returned port is closed.

When DOWNLOAD-SIZE is passed, do not read more than DOWNLOAD-SIZE bytes
from PORT. This is important to avoid blocking when the remote side won’t close
the underlying connection.

Chapter 71: (guix progress) 137

[Function]display-download-progress file size [#:tty?] [#:start-time]
[#:transferred] [#:log-port]

Write the progress report to LOG-PORT. Use START-TIME (a SRFI-19 time object)
and TRANSFERRED (a total number of bytes) to determine the throughput. When
TTY? is false, assume LOG-PORT is not a tty and do not emit ANSI escape codes.

[Function]erase-current-line port
Write an ANSI erase-current-line sequence to PORT to erase the whole line and move
the cursor to the beginning of the line.

[Function]progress-bar % [bar-width]
Return % as a string representing an ASCII-art progress bar. The total width of the
bar is BAR-WIDTH.

[Function]byte-count->string size
Given SIZE in bytes, return a string representing it in a human-readable way.

[Variable]current-terminal-columns

[Function]dump-port* in out [#:buffer-size] [#:reporter]
Read as much data as possible from IN and write it to OUT, using chunks of BUFFER-
SIZE bytes. After each successful transfer of BUFFER-SIZE bytes or less, report the
total number of bytes transferred to the REPORTER, which should be a <progress-
reporter> object.

138

72 (guix quirks)

72.1 Overview

Time traveling is a challenge! Sometimes, going back to the past requires

adjusting the old source code so it can be evaluated with our modern day

Guile and against our modern Guix APIs. This file describes quirks found

in old Guix revisions, along with ways to address them or patch them.

72.2 Usage

[Variable]%quirks

[Special Form]patch?

[Function]applicable-patch? patch source commit
Return true if PATCH is applicable to SOURCE, a directory, which corresponds to
the given Guix COMMIT, a SHA1 hexadecimal string.

[Function]apply-patch patch source
Apply PATCH onto SOURCE, directly modifying files beneath it.

[Variable]%patches

139

73 (guix read-print)

73.1 Overview

This module provides a comment-preserving reader and a comment-preserving

pretty-printer smarter than (ice-9 pretty-print).

73.2 Usage

[Function]pretty-print-with-comments port obj [#:format-comment]
[#:format-vertical-space] [#:indent] [#:max-width] [#:long-list]

Pretty-print OBJ to PORT, attempting to at most MAX-WIDTH character columns
and assuming the current column is INDENT. Comments present in OBJ are included
in the output.

Lists longer than LONG-LIST are written as one element per line. Comments are
passed through FORMAT-COMMENT before being emitted; a useful value for
FORMAT-COMMENT is ’canonicalize-comment’. Vertical space is passed through
FORMAT-VERTICAL-SPACE; a useful value of ’canonicalize-vertical-space’.

[Function]pretty-print-with-comments/splice port lst . rest
Write to PORT the expressions and blanks listed in LST.

[Function]read-with-comments port [#:blank-line?]
Like ’read’, but include <blank> objects when they’re encountered. When BLANK-
LINE? is true, assume PORT is at the beginning of a new line.

[Function]read-with-comments/sequence port
Read from PORT until the end-of-file is reached and return the list of expressions
and blanks that were read.

[Function]object->string* obj indent . args
Pretty-print OBJ with INDENT columns as the initial indent. ARGS are passed as-is
to ’pretty-print-with-comments’.

[Function]blank? obj

[Function]vertical-space a

[Function]vertical-space? obj

[Function]vertical-space-height obj

[Function]canonicalize-vertical-space space
Return a vertical space corresponding to a single blank line.

[Function]page-break

[Function]page-break? obj

[Function]comment str [margin?]
Return a new comment made from STR. When MARGIN? is true, return a margin
comment; otherwise return a line comment. STR must start with a semicolon and
end with newline, otherwise an error is raised.

Chapter 73: (guix read-print) 140

[Function]comment? obj

[Function]comment->string obj

[Function]comment-margin? obj

[Function]canonicalize-comment comment indent
Canonicalize COMMENT, which is to be printed at INDENT, ensuring it has the
"right" number of leading semicolons.

141

74 (guix records)

74.1 Overview

Utilities for dealing with Scheme records.

74.2 Usage

[Special Form]define-record-type*
Define the given record type such that an additional "syntactic

constructor" is defined, which allows instances to be constructed with named

field initializers, à la SRFI-35, as well as default values. An example use

may look like this:

(define-record-type* <thing> thing make-thing

thing?

this-thing

(name thing-name (default "chbouib"))

(port thing-port

(default (current-output-port)) (thunked))

(loc thing-location (innate) (default (current-source-location))))

This example defines a macro 'thing' that can be used to instantiate records

of this type:

(thing

(name "foo")

(port (current-error-port)))

The value of 'name' or 'port' could as well be omitted, in which case the

default value specified in the 'define-record-type*' form is used:

(thing)

The 'port' field is "thunked", meaning that calls like '(thing-port x)' will

actually compute the field's value in the current dynamic extent, which is

useful when referring to fluids in a field's value. Furthermore, that thunk

can access the record it belongs to via the 'this-thing' identifier.

A field can also be marked as "delayed" instead of "thunked", in which

case its value is effectively wrapped in a (delay ...) form.

A field can also have an associated "sanitizer", which is a procedure that

takes a user-supplied field value and returns a "sanitized" value for the

field:

Chapter 74: (guix records) 142

(define-record-type* <thing> thing make-thing

thing?

this-thing

(name thing-name

(sanitize (lambda (value)

(cond ((string? value) value)

((symbol? value) (symbol->string value))

(else (throw 'bad! value)))))))

It is possible to copy an object 'x' created with 'thing' like this:

(thing (inherit x) (name "bar"))

This expression returns a new object equal to 'x' except for its 'name'

field and its 'loc' field---the latter is marked as "innate", so it is not

inherited.

[Special Form]this-record
Return the record being defined. This macro may only be used in the context of the
definition of a thunked field.

[Function]alist->record alist make keys [multiple-value-keys]
Apply MAKE to the values associated with KEYS in ALIST. Items in KEYS that are
also in MULTIPLE-VALUE-KEYS are considered to occur possibly multiple times in
ALIST, and thus their value is a list.

[Function]object->fields object fields port
Write OBJECT (typically a record) as a series of recutils-style fields to PORT, ac-
cording to FIELDS. FIELDS must be a list of field name/getter pairs.

[Function]recutils->alist port
Read a recutils-style record from PORT and return it as a list of key/value pairs.
Stop upon an empty line (after consuming it) or EOF.

[Special Form]match-record record type (fields ...) body ...
Bind each FIELD of a RECORD of the given TYPE to it’s FIELD name. The order
in which fields appear does not matter. A syntax error is raised if an unknown field
is queried.

The current implementation does not support thunked and delayed fields.

143

75 (guix remote)

75.1 Overview

Note: This API is experimental and subject to change!

Evaluate a gexp on a remote machine, over SSH, ensuring that all the

elements the gexp refers to are deployed beforehand. This is useful for

expressions that have side effects; for pure expressions, you would rather

build a derivation remotely or offload it.

75.2 Usage

[Function]remote-eval exp session [#:build-locally?] [#:system]
[#:module-path] [#:socket-name] [#:become-command]

Evaluate EXP, a gexp, on the host at SESSION, an SSH session. Ensure that all
the elements EXP refers to are built and deployed to SESSION beforehand. When
BUILD-LOCALLY? is true, said dependencies are built locally and sent to the remote
store afterwards; otherwise, dependencies are built directly on the remote store.

144

76 (guix repl)

76.1 Overview

This module implements the "machine-readable" REPL provided by

'guix repl -t machine'. It's a lightweight module meant to be

embedded in any Guile process providing REPL functionality.

76.2 Usage

[Function]send-repl-response exp output [#:version]
Write the response corresponding to the evaluation of EXP to PORT, an output port.
VERSION is the client’s protocol version we are targeting.

[Function]machine-repl [input] [output]
Run a machine-usable REPL over ports INPUT and OUTPUT.

The protocol of this REPL is meant to be machine-readable and provides proper sup-
port to represent multiple-value returns, exceptions, objects that lack a read syntax,
and so on. As such it is more convenient and robust than parsing Guile’s REPL
prompt.

145

77 (guix)

77.1 Overview

77.2 Usage

[Special Form]define-public
Like ’define-public’ but set ’current-definition-location’ for the lexical scope of its
body.

146

78 (guix scripts)

78.1 Overview

General code for Guix scripts.

78.2 Usage

[Variable]synopsis

[Variable]category

[Special Form]define-command (name . args) (synopsis doc) body ...
[Special Form]define-command (name . args) (category cat) (synopsis doc) body

...
Define the given command as a procedure along with its synopsis and, optionally, its
category. The synopsis becomes the docstring of the procedure, but both the category
and synopsis are meant to be read (parsed) by ’guix help’.

[Variable]%command-categories

[Function]args-fold* args options unrecognized-option-proc operand-proc .
seeds

A wrapper on top of ‘args-fold’ that does proper user-facing error reporting.

[Function]parse-command-line args options seeds [#:build-options?]
[#:argument-handler]

Parse the command-line arguments ARGS according to OPTIONS (a list of SRFI-37
options) and return the result, seeded by SEEDS. When BUILD-OPTIONS? is true,
also pass arguments passed via the ’GUIX BUILD OPTIONS’ environment variable.
Command-line options take precedence those passed via ’GUIX BUILD OPTIONS’.

ARGUMENT-HANDLER is called for non-option arguments, like the ’operand-proc’
parameter of ’args-fold’.

[Function]maybe-build drvs [#:dry-run?] [#:use-substitutes?]
Show what will/would be built, and actually build DRVS, unless DRY-RUN? is true.

[Function]build-package package [#:dry-run?] [#:use-substitutes?] .
build-options

Build PACKAGE using BUILD-OPTIONS acceptable by ’set-build-options’. Show
what and how will/would be built.

[Function]build-package-source package [#:dry-run?] [#:use-substitutes?] .
build-options

Build PACKAGE source using BUILD-OPTIONS.

[Variable]%distro-age-warning

[Function]warn-about-old-distro [old] [#:suggested-command]
Emit a warning if Guix is older than OLD seconds.

Chapter 78: (guix scripts) 147

[Variable]%disk-space-warning

[Function]warn-about-disk-space [profile] [#:thresholds]
Display a hint about ’guix gc’ if less than THRESHOLD of /gnu/store is available.
THRESHOLDS is a pair (ABSOLUTE-THRESHOLD . RELATIVE-THRESHOLD).

[Variable]development

[Variable]extension

[Variable]internal

[Variable]main

[Variable]packaging

[Variable]plumbing

148

79 (guix search-paths)

79.1 Overview

This module defines "search path specifications", which allow packages to

declare environment variables that they use to define search paths. For

instance, GCC has the 'CPATH' variable, Guile has the 'GUILE_LOAD_PATH'

variable, etc.

79.2 Usage

[Special Form]<search-path-specification>
This macro lets us query record type info at macro-expansion time.

[Special Form]search-path-specification

[Special Form]search-path-specification?

[Special Form]search-path-specification-variable

[Special Form]search-path-specification-files

[Special Form]search-path-specification-separator

[Special Form]search-path-specification-file-type

[Special Form]search-path-specification-file-pattern

[Variable]$PATH

[Variable]$GUIX_EXTENSIONS_PATH

[Variable]$SSL_CERT_DIR

[Variable]$SSL_CERT_FILE

[Function]search-path-specification->sexp spec
Return an sexp representing SPEC, a <search-path-specification>. The sexp corre-
sponds to the arguments expected by ‘set-path-environment-variable’.

[Function]sexp->search-path-specification sexp
Convert SEXP, which is as returned by ’search-path-specification->sexp’, to a <search-
path-specification> object.

[Function]string-tokenize* string separator
Return the list of substrings of STRING separated by SEPARATOR. This is like
‘string-tokenize’, but SEPARATOR is a string.

[Function]evaluate-search-paths search-paths directories [getenv]
Evaluate SEARCH-PATHS, a list of search-path specifications, for DIRECTORIES,
a list of directory names, and return a list of specification/value pairs. Use GETENV
to determine the current settings and report only settings not already effective.

Chapter 79: (guix search-paths) 149

[Function]environment-variable-definition variable value [#:kind]
[#:separator]

Return a the definition of VARIABLE to VALUE in Bash syntax.

KIND can be either ’exact (return the definition of VARIABLE=VALUE), ’prefix
(return the definition where VALUE is added as a prefix to VARIABLE’s current
value), or ’suffix (return the definition where VALUE is added as a suffix to VARI-
ABLE’s current value.) In the case of ’prefix and ’suffix, SEPARATOR is used as the
separator between VARIABLE’s current value and its prefix/suffix.

[Function]search-path-definition search-path value [#:kind]
Similar to ’environment-variable-definition’, but applied to a <search-path-
specification>.

[Function]set-search-paths search-paths directories [#:setenv]
Set the search path environment variables specified by SEARCH-PATHS for the given
directories.

150

80 (guix self)

80.1 Overview

80.2 Usage

[Function]make-config.scm [#:gzip] [#:xz] [#:bzip2] [#:package-name]
[#:package-version] [#:channel-metadata] [#:config-variables]
[#:bug-report-address] [#:home-page-url]

[Function]whole-package name modules dependencies [#:guile-version] [#:info]
[#:daemon] [#:miscellany] [#:guile] [#:command]

Return the whole Guix package NAME that uses MODULES, a derivation of all
the modules (under share/guile/site and lib/guile), and DEPENDENCIES, a list of
packages depended on. COMMAND is the ’guix’ program to use; INFO is the Info
manual.

[Function]compiled-guix source [#:version] [#:channel-metadata]
[#:pull-version] [#:name] [#:guile-version] [#:guile-for-build] [#:gzip]
[#:bzip2] [#:xz] [#:guix]

Return a file-like object that contains a compiled Guix.

[Function]guix-derivation source version [guile-version] [#:pull-version]
[#:channel-metadata]

Return, as a monadic value, the derivation to build the Guix from SOURCE
for GUILE-VERSION. Use VERSION as the version string. Use CHANNEL-
METADATA as the channel metadata sexp to include in (guix config).

PULL-VERSION specifies the version of the ’guix pull’ protocol. Return #f if this
PULL-VERSION value is not supported.

151

81 (guix serialization)

81.1 Overview

81.2 Usage

[Function]write-int n p

[Function]read-int p

[Function]write-long-long n p

[Function]read-long-long p

[Function]write-padding n p

[Function]write-bytevector s p [l]

[Function]write-string s p

[Function]read-string p

[Function]read-latin1-string p
Read an ISO-8859-1 string from P.

[Function]read-maybe-utf8-string p
Read a serialized string from port P. Attempt to decode it as UTF-8 and substitute
invalid byte sequences with question marks. This is a "permissive" UTF-8 decoder.

[Function]write-string-list l p

[Function]read-string-list p

[Function]write-string-pairs l p

[Function]read-string-pairs p

[Function]write-store-path f p

[Function]read-store-path p

[Function]write-store-path-list l p

[Function]read-store-path-list p

[Variable]&nar-error

[Function]nar-error? obj

[Function]nar-error-port obj

[Function]nar-error-file obj

[Variable]&nar-read-error

[Function]nar-read-error? obj

[Function]nar-read-error-token obj

Chapter 81: (guix serialization) 152

[Function]write-file file port [#:select?]
Write the contents of FILE to PORT in Nar format, recursing into sub-directories of
FILE as needed. For each directory entry, call (SELECT? FILE STAT), where FILE
is the entry’s absolute file name and STAT is the result of ’lstat’; exclude entries for
which SELECT? does not return true.

[Function]write-file-tree file port [#:file-type+size] [#:file-port]
[#:symlink-target] [#:directory-entries] [#:postprocess-entries]

Write the contents of FILE to PORT in Nar format, recursing into sub-directories of
FILE as needed.

This procedure does not make any file-system I/O calls. Instead, it calls the user-
provided FILE-TYPE+SIZE, FILE-PORT, SYMLINK-TARGET, and DIRECTORY-
ENTRIES procedures, which roughly correspond to ’lstat’, ’readlink’, and ’scandir’.
POSTPROCESS-ENTRIES ensures that directory entries are valid; leave it as-is
unless you know that DIRECTORY-ENTRIES provide filtered and sorted entries, in
which case you can use ’identity’.

[Function]fold-archive proc seed port file
Read a file (possibly a directory structure) in Nar format from PORT. Call

PROC on each file or directory read from PORT using:

(PROC FILE TYPE CONTENTS RESULT)

using SEED as the first RESULT. TYPE is a symbol like 'regular, and CONTENTS

depends on TYPE.

[Function]restore-file port file [#:dump-file]
Read a file (possibly a directory structure) in Nar format from PORT.

Restore it as FILE with canonical permissions and timestamps. To write a

regular or executable file, call:

(DUMP-FILE FILE INPUT SIZE TYPE)

The default is to dump SIZE bytes from INPUT to FILE, but callers can provide

a custom procedure, for instance to deduplicate FILE on the fly.

[Function]dump-file file input size type
Dump SIZE bytes from INPUT to FILE.

This procedure is suitable for use as the #:dump-file argument to ’restore-file’.

[Function]dump-port* in out size
Copy SIZE bytes from IN to OUT.

153

82 (guix sets)

82.1 Overview

A simple (simplistic?) implementation of unordered persistent sets based

on vhashes that seems to be good enough so far.

Another option would be to use "bounded balance trees" (Adams 1992) as

implemented by Ian Price in 'pfds', which has faster union etc. but needs

an order on the objects of the set.

82.2 Usage

[Function]set . args
Return a set containing the ARGS, compared as per ’equal?’.

[Function]setq . args
Return a set containing the ARGS, compared as per ’eq?’.

[Special Form]set?

[Function]set-insert value set
Insert VALUE into SET.

[Function]set-union set1 set2
Return the union of SET1 and SET2. Warning: this is linear in the number of
elements of the smallest.

[Special Form]set-contains?

[Function]set->list set
Return the list of elements of SET.

[Function]list->set lst
Return a set with the elements taken from LST. Elements of the set will be compared
with ’equal?’.

[Function]list->setq lst
Return a set with the elements taken from LST. Elements of the set will be compared
with ’eq?’.

154

83 (guix ssh)

83.1 Overview

This module provides tools to support communication with remote stores

over SSH, using Guile-SSH.

83.2 Usage

[Function]open-ssh-session host [#:user] [#:port] [#:identity] [#:host-key]
[#:compression] [#:timeout] [#:connection-timeout]

Open an SSH session for HOST and return it. IDENTITY specifies the file

name of a private key to use for authenticating with the host. When USER,

PORT, or IDENTITY are #f, use default values or whatever '~/.ssh/config'

specifies; otherwise use them.

When HOST-KEY is true, it must be a string like "ssh-ed25519 AAAAC3Nz...

root@@example.org"; the server is authenticated and an error is raised if its

host key is different from HOST-KEY.

Error out if connection establishment takes more than CONNECTION-TIMEOUT

seconds. Install TIMEOUT as the maximum time in seconds after which a read or

write operation on a channel of the returned session is considered as failing.

Throw an error on failure.

[Function]authenticate-server* session key
Make sure the server for SESSION has the given KEY, where KEY is a string

such as "ssh-ed25519 AAAAC3Nz... root@@example.org". Raise an exception if the

actual key does not match.

[Function]remote-inferior session [become-command]
Return a remote inferior for the given SESSION. If BECOME-COMMAND is given,
use that to invoke the remote Guile REPL.

[Function]remote-daemon-channel session [socket-name]
Return an input/output port (an SSH channel) to the daemon at SESSION.

[Function]connect-to-remote-daemon session [socket-name]
Connect to the remote build daemon listening on SOCKET-NAME over SESSION,
an SSH session. Return a <store-connection> object.

[Function]remote-system session
Return the system type as expected by Nix, usually ARCHITECTURE-KERNEL, of
the machine on the other end of SESSION.

[Function]remote-authorize-signing-key key session [become-command]
Send KEY, a canonical sexp containing a public key, over SESSION and add it to the
system ACL file if it has not yet been authorized.

Chapter 83: (guix ssh) 155

[Function]send-files local files remote [#:recursive?] [#:log-port]
Send the subset of FILES from LOCAL (a local store) that’s missing to REMOTE,
a remote store. When RECURSIVE? is true, send the closure of FILES. Return the
list of store items actually sent.

[Function]retrieve-files local files remote [#:recursive?] [#:log-port]
Retrieve FILES from REMOTE and import them using the ’import-paths’ RPC on
LOCAL. When RECURSIVE? is true, retrieve the closure of FILES.

[Function]retrieve-files* files remote [#:recursive?] [#:log-port] [#:import]
Pass IMPORT an input port from which to read the sequence of FILES coming from
REMOTE. When RECURSIVE? is true, retrieve the closure of FILES.

[Function]remote-store-host remote
Return the name of the host REMOTE is connected to, where REMOTE is a remote
store as returned by ’connect-to-remote-daemon’.

[Function]report-guile-error host

156

84 (guix status)

84.1 Overview

This module provides facilities to track the status of ongoing builds and

downloads in a given session, as well as tools to report about the current

status to user interfaces. It does so by analyzing the output of

'current-build-output-port'. The build status is maintained in a

<build-status> record.

84.2 Usage

[Function]build-event-output-port proc [seed]
Return an output port for use as 'current-build-output-port' that calls

PROC with its current state value, initialized with SEED, on every build

event. Build events passed to PROC are tuples corresponding to the "build

traces" produced by the daemon:

(build-started "/gnu/store/...-foo.drv" ...)

(substituter-started "/gnu/store/...-foo" ...)

and so on.

The second return value is a thunk to retrieve the current state.

[Function]compute-status event status [#:current-time]
[#:derivation-path->output-path]

Given EVENT, a tuple like (build-started "/gnu/store/...-foo.drv" ...), compute a
new status based on STATUS.

[Special Form]build-status

[Special Form]build-status?

[Special Form]build-status-building

[Special Form]build-status-downloading

[Special Form]build-status-builds-completed

[Special Form]build-status-downloads-completed

[Special Form]build?

[Function]build derivation system [#:id] [#:log-file] [#:phase] [#:completion]
Return a new build.

[Special Form]build-derivation

[Special Form]build-system

[Special Form]build-log-file

Chapter 84: (guix status) 157

[Special Form]build-phase

[Special Form]build-completion

[Special Form]download?

[Function]download item uri [#:size] [#:start] [#:end] [#:transferred]
Return a new download.

[Special Form]download-item

[Special Form]download-uri

[Special Form]download-size

[Special Form]download-start

[Special Form]download-end

[Special Form]download-transferred

[Function]build-status-updater [on-change]
Return a procedure that can be passed to 'build-event-output-port'. That

procedure computes the new build status upon each event and calls ON-CHANGE:

(ON-CHANGE event status new-status)

ON-CHANGE can display the build status, build events, etc.

[Function]print-build-event event old-status status [port] [#:colorize?]
[#:print-urls?] [#:print-log?]

Print information about EVENT and STATUS to PORT. When COLORIZE? is true,
produce colorful output. When PRINT-LOG? is true, display the build log in addition
to build events. When PRINT-URLS? is true, display the URL of substitutes being
downloaded.

[Function]print-build-event/quiet event old-status status [port]
[#:colorize?]

[Variable]print-build-status
[unbound!]

[Special Form]with-status-report on-event exp ...
Set up build status reporting to the user using the ON-EVENT procedure; evaluate
EXP... in that context.

[Special Form]with-status-verbosity level exp ...
Set up build status reporting to the user at the given LEVEL: 0 means silent, 1 means
quiet, 2 means verbose. Evaluate EXP... in that context.

158

85 (guix store)

85.1 Overview

85.2 Usage

[Variable]%daemon-socket-uri

[Variable]%gc-roots-directory

[Variable]%default-substitute-urls

[Special Form]store-connection?

[Function]store-connection-version store
Return the protocol version of STORE as an integer.

[Special Form]store-connection-major-version

[Special Form]store-connection-minor-version

[Special Form]store-connection-socket

[Special Form]nix-server?

[Special Form]nix-server-version

[Special Form]nix-server-major-version

[Special Form]nix-server-minor-version

[Special Form]nix-server-socket

[Variable]current-store-protocol-version

[Function]cache-lookup-recorder component title
Return a procedure of two arguments to record cache lookups, hits, and misses for
COMPONENT. The procedure must be passed a Boolean indicating whether the
cache lookup was a hit, and the actual cache (a vhash).

[Special Form]mcached eq? (=> cache) mvalue object keys ...
[Special Form]mcached equal? (=> cache) mvalue object keys ...
[Special Form]mcached eq? mvalue object keys ...
[Special Form]mcached equal? mvalue object keys ...
[Special Form]mcached mvalue object keys ...

Run MVALUE, which corresponds to OBJECT/KEYS, and cache it; or return the
value associated with OBJECT/KEYS in the store’s object cache if there is one.

[Variable]&store-error

[Function]store-error? obj

[Variable]&store-connection-error

Chapter 85: (guix store) 159

[Function]store-connection-error? obj

[Function]store-connection-error-file obj

[Function]store-connection-error-code obj

[Variable]&store-protocol-error

[Function]store-protocol-error? obj

[Function]store-protocol-error-message obj

[Function]store-protocol-error-status obj

[Special Form]&nix-error

[Special Form]nix-error?

[Special Form]&nix-connection-error

[Special Form]nix-connection-error?

[Special Form]nix-connection-error-file

[Special Form]nix-connection-error-code

[Special Form]&nix-protocol-error

[Special Form]nix-protocol-error?

[Special Form]nix-protocol-error-message

[Special Form]nix-protocol-error-status

[Function]allocate-store-connection-cache name
Allocate a new cache for store connections and return its identifier. Said identifier
can be passed as an argument to

[Function]store-connection-cache store cache
Return the cache of STORE identified by CACHE, an identifier as returned by
’allocate-store-connection-cache’.

[Function]set-store-connection-cache store cache value
Return a copy of STORE where CACHE has the given VALUE. CACHE must be a
value returned by ’allocate-store-connection-cache’.

[Function]set-store-connection-cache! store cache value
Set STORE’s CACHE to VALUE.

This is a mutating version that should be avoided. Prefer the functional ’set-store-
connection-cache’ instead, together with using %STORE-MONAD.

[Special Form]hash-algo md5
[Special Form]hash-algo sha1
[Special Form]hash-algo sha256

[Special Form]build-mode normal
[Special Form]build-mode repair

Chapter 85: (guix store) 160

[Special Form]build-mode check

[Function]connect-to-daemon uri
Connect to the daemon at URI, a string that may be an actual URI or a file name,
and return an input/output port.

This is a low-level procedure that does not perform the initial handshake with the
daemon. Use ’open-connection’ for that.

[Function]open-connection [uri] [#:port] [#:reserve-space?] [#:cpu-affinity]
Connect to the daemon at URI (a string), or, if PORT is not #f, use it as the I/O
port over which to communicate to a build daemon.

When RESERVE-SPACE? is true, instruct it to reserve a little bit of extra space on
the file system so that the garbage collector can still operate, should the disk become
full. When CPU-AFFINITY is true, it must be an integer corresponding to an OS-
level CPU number to which the daemon’s worker process for this connection will be
pinned. Return a server object.

[Function]port->connection port [#:version]
Assimilate PORT, an input/output port, and return a connection to the daemon,
assuming the given protocol VERSION.

Warning: this procedure assumes that the initial handshake with the daemon has
already taken place on PORT and that we’re just continuing on this established
connection. Use with care.

[Function]close-connection server
Close the connection to SERVER.

[Special Form]with-store store exp ...
Bind STORE to an open connection to the store and evaluate EXPs; automatically
close the store when the dynamic extent of EXP is left.

[Function]set-build-options server [#:keep-failed?] [#:keep-going?]
[#:fallback?] [#:verbosity] [#:rounds] [#:max-build-jobs] [#:timeout]
[#:max-silent-time] [#:offload?] [#:use-build-hook?] [#:build-verbosity]
[#:log-type] [#:print-build-trace] [#:user-name]
[#:print-extended-build-trace?] [#:multiplexed-build-output?]
[#:build-cores] [#:use-substitutes?] [#:substitute-urls]
[#:terminal-columns] [#:locale]

[Function]set-build-options* . args

[Function]valid-path? server path
Return #t when PATH designates a valid store item and #f otherwise (an invalid
item may exist on disk but still be invalid, for instance because it is the result of an
aborted or failed build.)

A ’&store-protocol-error’ condition is raised if PATH is not prefixed by the store
directory (/gnu/store).

[Function]query-path-hash server path
Return the SHA256 hash of the nar serialization of PATH as a bytevector.

Chapter 85: (guix store) 161

[Function]hash-part->path server hash-part
Return the store path whose hash part is HASH-PART (a nix-base32 string). Return
the empty string if no such path exists.

[Function]query-path-info server path
Return the info (hash, references, etc.) for PATH.

[Function]add-data-to-store server name bytes [references]
Add BYTES under file NAME in the store, and return its store path. REFERENCES
is the list of store paths referred to by the resulting store path.

[Function]add-text-to-store store name text [references]
Add TEXT under file NAME in the store, and return its store path. REFERENCES
is the list of store paths referred to by the resulting store path.

[Function]add-to-store server basename recursive? hash-algo file-name
[#:select?]

Add the contents of FILE-NAME under BASENAME to the store. When RECUR-
SIVE? is false, FILE-NAME must designate a regular file–not a directory nor a sym-
link. When RECURSIVE? is true and FILE-NAME designates a directory, the con-
tents of FILE-NAME are added recursively; if FILE-NAME designates a flat file
and RECURSIVE? is true, its contents are added, and its permission bits are kept.
HASH-ALGO must be a string such as "sha256".

When RECURSIVE? is true, call (SELECT? FILE STAT) for each directory entry,
where FILE is the entry’s absolute file name and STAT is the result of ’lstat’; exclude
entries for which SELECT? does not return true.

[Function]add-file-tree-to-store server tree [#:hash-algo] [#:recursive?]
Add the given TREE to the store on SERVER. TREE must be an entry such as:

("my-tree" directory

("a" regular (data "hello"))

("b" symlink "a")

("c" directory

("d" executable (file "/bin/sh"))))

This is a generalized version of 'add-to-store'. It allows you to reproduce

an arbitrary directory layout in the store without creating a derivation.

[Function]file-mapping->tree mapping
Convert MAPPING, an alist like:

(("guix/build/utils.scm" . ".../utils.scm"))

to a tree suitable for 'add-file-tree-to-store' and 'interned-file-tree'.

[Function]binary-file name data [references]
Return as a monadic value the absolute file name in the store of the file containing
DATA, a bytevector. REFERENCES is a list of store items that the resulting text
file refers to; it defaults to the empty list.

Chapter 85: (guix store) 162

[Special Form]with-build-handler handler exp ...
Register HANDLER as a "build handler" and invoke THUNK. When

'build-things' is called within the dynamic extent of the call to THUNK,

HANDLER is invoked like so:

(HANDLER CONTINUE STORE THINGS MODE)

where CONTINUE is the continuation, and the remaining arguments are those that

were passed to 'build-things'.

Build handlers are useful to announce a build plan with 'show-what-to-build'

and to implement dry runs (by not invoking CONTINUE) in a way that gracefully

deals with "dynamic dependencies" such as grafts---derivations that depend

on the build output of a previous derivation.

[Function]map/accumulate-builds store proc lst [#:cutoff]
Apply PROC over each element of LST, accumulating ’build-things’ calls and coa-
lescing them into a single call.

CUTOFF is the threshold above which we stop accumulating unresolved nodes.

[Function]mapm/accumulate-builds mproc lst
Like ’mapm’ in %STORE-MONAD, but accumulate ’build-things’ calls and coalesce
them into a single call.

[Function]build-things store things [mode]
Build THINGS, a list of store items which may be either ’.drv’ files or outputs, and
return when the worker is done building them. Elements of THINGS that are not
derivations can only be substituted and not built locally. Alternately, an element of
THING can be a derivation/output name pair, in which case the daemon will attempt
to substitute just the requested output of the derivation. Return #t on success.

When a handler is installed with ’with-build-handler’, it is called any time ’build-
things’ is called.

[Function]build . args
Build THINGS, a list of store items which may be either ’.drv’ files or outputs, and
return when the worker is done building them. Elements of THINGS that are not
derivations can only be substituted and not built locally. Alternately, an element of
THING can be a derivation/output name pair, in which case the daemon will attempt
to substitute just the requested output of the derivation. Return #t on success.

When a handler is installed with ’with-build-handler’, it is called any time ’build-
things’ is called.

[Function]query-failed-paths server
Return the list of store items for which a build failure is cached.

The result is always the empty list unless the daemon was started with ’–cache-
failures’.

Chapter 85: (guix store) 163

[Function]clear-failed-paths server items
Remove ITEMS from the list of cached build failures.

This makes sense only when the daemon was started with ’–cache-failures’.

[Function]ensure-path server path
Ensure that a path is valid. If it is not valid, it may be made valid by running
a substitute. As a GC root is not created by the daemon, you may want to call
ADD-TEMP-ROOT on that store path.

[Function]find-roots server
Return a list of root/target pairs: for each pair, the first element is the GC root file
name and the second element is its target in the store.

When talking to a local daemon, this operation is equivalent to the ’gc-roots’ proce-
dure in (guix store roots), except that the ’find-roots’ excludes potential roots that
do not point to store items.

[Function]add-temp-root server path
Make PATH a temporary root for the duration of the current session. Return #t.

[Function]add-indirect-root server file-name
Make the symlink FILE-NAME an indirect root for the garbage collector: whatever
store item FILE-NAME points to will not be collected. Return #t on success.

FILE-NAME can be anywhere on the file system, but it must be an absolute file
name–it is the caller’s responsibility to ensure that it is an absolute file name.

[Function]add-permanent-root target
Add a garbage collector root pointing to TARGET, an element of the store, preventing
TARGET from even being collected. This can also be used if TARGET does not exist
yet.

Raise an error if the caller does not have write access to the GC root directory.

[Function]remove-permanent-root target
Remove the permanent garbage collector root pointing to TARGET. Raise an error
if there is no such root.

[Special Form]substitutable?

[Special Form]substitutable-path

[Special Form]substitutable-deriver

[Special Form]substitutable-references

[Special Form]substitutable-download-size

[Special Form]substitutable-nar-size

[Function]has-substitutes? server path
Return #t if binary substitutes are available for PATH, and #f otherwise.

[Function]substitutable-paths server paths
Return the subset of PATHS that is substitutable.

Chapter 85: (guix store) 164

[Function]substitutable-path-info server paths
Return information about the subset of PATHS that is substitutable. For each sub-
stitutable path, a ‘substitutable?’ object is returned; thus, the resulting list can be
shorter than PATHS. Furthermore, that there is no guarantee that the order of the
resulting list matches the order of PATHS.

[Special Form]path-info?

[Special Form]path-info-deriver

[Special Form]path-info-hash

[Special Form]path-info-references

[Special Form]path-info-registration-time

[Special Form]path-info-nar-size

[Function]built-in-builders store
Return the names of the supported built-in derivation builders supported by STORE.

[Function]references server path
Return the list of references of PATH.

[Function]references/cached store item
Like ’references’, but cache results.

[Function]references* . args
Return the list of references of PATH.

[Function]query-path-info* item
Monadic version of ’query-path-info’ that returns #f when ITEM is not in the store.

[Function]requisites store paths
Return the requisites of PATHS, including PATHS—i.e., their closures (all its refer-
ences, recursively).

[Function]referrers server path
Return the list of path that refer to PATH.

[Function]optimize-store server
Optimize the store by hard-linking identical files ("deduplication".) Return #t on
success.

[Function]verify-store store [#:check-contents?] [#:repair?]
Verify the integrity of the store and return false if errors remain, and true otherwise.
When REPAIR? is true, repair any missing or altered store items by substituting
them (this typically requires root privileges because it is not an atomic operation.)
When CHECK-CONTENTS? is true, check the contents of store items; this can take
a lot of time.

[Function]topologically-sorted store paths
Return a list containing PATHS and all their references sorted in topological order.

Chapter 85: (guix store) 165

[Function]valid-derivers server path
Return the list of valid "derivers" of PATH—i.e., all the .drv present in the store that
have PATH among their outputs.

[Function]query-derivation-outputs server path
Return the list of outputs of PATH, a .drv file.

[Function]live-paths server
Return the list of live store paths—i.e., store paths still referenced, and thus not
subject to being garbage-collected.

[Function]dead-paths server
Return the list of dead store paths—i.e., store paths no longer referenced, and thus
subject to being garbage-collected.

[Function]collect-garbage server [min-freed]
Collect garbage from the store at SERVER. If MIN-FREED is non-zero, then collect
at least MIN-FREED bytes. Return the paths that were collected, and the number
of bytes freed.

[Function]delete-paths server paths [min-freed]
Delete PATHS from the store at SERVER, if they are no longer referenced. If MIN-
FREED is non-zero, then stop after at least MIN-FREED bytes have been collected.
Return the paths that were collected, and the number of bytes freed.

[Function]import-paths server port
Import the set of store paths read from PORT into SERVER’s store. An error is
raised if the set of paths read from PORT is not signed (as per ’export-path #:sign?
#t’.) Return the list of store paths imported.

[Function]export-paths server paths port [#:sign?] [#:recursive?] [#:start]
[#:progress] [#:finish]

Export the store paths listed in PATHS to PORT, in topological order, signing them
if SIGN? is true. When RECURSIVE? is true, export the closure of PATHS—i.e.,
PATHS and all their dependencies.

START, PROGRESS, and FINISH are used to track progress of the data transfer.
START is a one-argument that is passed the list of store items that will be transferred;
it returns values that are then used as the initial state threaded through PROGRESS
calls. PROGRESS is passed the store item about to be sent, along with the values
previously return by START or by PROGRESS itself. FINISH is called when the last
store item has been called.

[Variable]current-build-output-port

[Special Form]%store-monad

[Special Form]store-bind

[Special Form]store-return

[Function]store-lift proc
Lift PROC, a procedure whose first argument is a connection to the store, in the store
monad.

Chapter 85: (guix store) 166

[Function]store-lower proc
Lower PROC, a monadic procedure in %STORE-MONAD, to a "normal" procedure
taking the store as its first argument.

[Function]run-with-store store mval [#:guile-for-build] [#:system] [#:target]
RunMVAL, a monadic value in the store monad, in STORE, an open store connection,
and return the result.

[Variable]%guile-for-build

[Special Form]current-system

[Special Form]set-current-system

[Special Form]current-target-system

[Special Form]set-current-target

[Function]text-file name text [references]
Return as a monadic value the absolute file name in the store of the file containing
TEXT, a string. REFERENCES is a list of store items that the resulting text file
refers to; it defaults to the empty list.

[Function]interned-file file [name] [#:recursive?] [#:select?]
Return the name of FILE once interned in the store. Use NAME as its store name,
or the basename of FILE if NAME is omitted.

When RECURSIVE? is true, the contents of FILE are added recursively; if FILE des-
ignates a flat file and RECURSIVE? is true, its contents are added, and its permission
bits are kept.

When RECURSIVE? is true, call (SELECT? FILE STAT) for each directory entry,
where FILE is the entry’s absolute file name and STAT is the result of ’lstat’; exclude
entries for which SELECT? does not return true.

[Function]interned-file-tree . args
Add the given TREE to the store on SERVER. TREE must be an entry such as:

("my-tree" directory

("a" regular (data "hello"))

("b" symlink "a")

("c" directory

("d" executable (file "/bin/sh"))))

This is a generalized version of 'add-to-store'. It allows you to reproduce

an arbitrary directory layout in the store without creating a derivation.

[Variable]%graft?

[Special Form]without-grafting mexp ...
Bind monadic expressions MEXP in a dynamic extent where ’%graft?’ is false.

[Special Form]set-grafting

[Special Form]grafting?

[Variable]%store-prefix

Chapter 85: (guix store) 167

[Function]store-path type hash name
Return the store path for NAME/HASH/TYPE.

[Function]output-path output hash name
Return an output path for OUTPUT (the name of the output as a string) of the
derivation called NAME with hash HASH.

[Function]fixed-output-path name hash [#:output] [#:hash-algo]
[#:recursive?]

Return an output path for the fixed output OUTPUT defined by HASH of type
HASH-ALGO, of the derivation NAME. RECURSIVE? has the same meaning as for
’add-to-store’.

[Function]store-path? path
Return #t if PATH is a store path.

[Function]direct-store-path? path
Return #t if PATH is a store path, and not a sub-directory of a store path. This
predicate is sometimes needed because files *under* a store path are not valid inputs.

[Function]derivation-path? path
Return #t if PATH is a derivation path.

[Function]store-path-base path
Return the base path of a path in the store.

[Function]store-path-package-name path
Return the package name part of PATH, a file name in the store.

[Function]store-path-hash-part path
Return the hash part of PATH as a base32 string, or #f if PATH is not a syntactically
valid store path.

[Function]direct-store-path path
Return the direct store path part of PATH, stripping components after
’/gnu/store/xxxx-foo’.

[Function]derivation-log-file drv
Return the build log file for DRV, a derivation file name, or #f if it could not be
found.

[Function]log-file store file
Return the build log file for FILE, or #f if none could be found. FILE must be an
absolute store file name, or a derivation file name.

168

86 (guix substitutes)

86.1 Overview

86.2 Usage

[Variable]%narinfo-cache-directory

[Function]call-with-connection-error-handling uri proc
Call PROC, and catch if a connection fails, print a warning and return #f.

[Function]lookup-narinfos cache paths [#:open-connection]
[#:make-progress-reporter]

Return the narinfos for PATHS, invoking the server at CACHE when no information
is available locally.

[Function]lookup-narinfos/diverse caches paths authorized?
[#:open-connection] [#:make-progress-reporter]

Look up narinfos for PATHS on all of CACHES, a list of URLS, in that order. That
is, when a cache lacks an AUTHORIZED? narinfo, look it up in the next cache, and
so on.

Return a list of narinfos for PATHS or a subset thereof. The returned narinfos
are either AUTHORIZED?, or they claim a hash that matches an AUTHORIZED?
narinfo.

169

87 (guix svn-download)

87.1 Overview

An <origin> method that fetches a specific revision from a Subversion

repository. The repository URL and REVISION are specified with a

<svn-reference> object. REVISION should be specified as a number.

87.2 Usage

[Special Form]svn-reference

[Special Form]svn-reference?

[Special Form]svn-reference-url

[Special Form]svn-reference-revision

[Special Form]svn-reference-recursive?

[Special Form]svn-reference-user-name

[Special Form]svn-reference-password

[Function]svn-fetch ref hash-algo hash [name] [#:system] [#:guile] [#:svn]
Return a fixed-output derivation that fetches REF, a <svn-reference> object. The
output is expected to have recursive hash HASH of type HASH-ALGO (a symbol).
Use NAME as the file name, or a generic name if #f.

[Function]download-svn-to-store store ref [name] [#:log]
Download from REF, a <svn-reference> object to STORE. Write progress reports to
LOG.

[Special Form]svn-multi-reference

[Special Form]svn-multi-reference?

[Special Form]svn-multi-reference-url

[Special Form]svn-multi-reference-revision

[Special Form]svn-multi-reference-locations

[Special Form]svn-multi-reference-recursive?

[Special Form]svn-multi-reference-user-name

[Special Form]svn-multi-reference-password

[Function]svn-multi-fetch ref hash-algo hash [name] [#:system] [#:guile]
[#:svn]

Return a fixed-output derivation that fetches REF, a <svn-multi-reference> object.
The output is expected to have recursive hash HASH of type HASH-ALGO (a sym-
bol). Use NAME as the file name, or a generic name if #f.

[Function]download-multi-svn-to-store store ref [name] [#:log]
Download from REF, a <svn-multi-reference> object to STORE. Write progress re-
ports to LOG.

170

88 (guix swh)

88.1 Overview

This module provides bindings to the HTTP interface of Software Heritage.

It allows you to browse the archive, look up revisions (such as SHA1

commit IDs), "origins" (code hosting URLs), content (files), etc. See

<https://archive.softwareheritage.org/api/> for more information.

The high-level 'swh-download' procedure allows you to download a Git

revision from Software Heritage, provided it is available.

88.2 Usage

[Variable]%swh-base-url

[Variable]%verify-swh-certificate?

[Variable]%allow-request?

[Function]request-rate-limit-reached? url method
Return true if the rate limit has been reached for URI.

[Special Form]origin?

[Special Form]origin-type

[Special Form]origin-url

[Function]origin-visits origin
Return the list of visits of ORIGIN, a record as returned by ’lookup-origin’.

[Function]lookup-origin url
Return an origin for URL.

[Special Form]visit?

[Special Form]visit-date

[Special Form]visit-origin

[Special Form]visit-url

[Special Form]visit-snapshot-url

[Special Form]visit-status

[Special Form]visit-number

[Function]visit-snapshot visit
Return the snapshot corresponding to VISIT or #f if no snapshot is available.

[Special Form]snapshot?

[Special Form]snapshot-id

[Special Form]snapshot-branches

Chapter 88: (guix swh) 171

[Function]lookup-snapshot-branch snapshot name
Look up branch NAME on SNAPSHOT. Return the branch, or return #f if it could
not be found.

[Special Form]branch?

[Special Form]branch-name

[Function]branch-target branch
Return the target of BRANCH, either a <revision> or a <release>.

[Special Form]release?

[Special Form]release-id

[Special Form]release-name

[Special Form]release-message

[Function]release-target release
Return the revision that is the target of RELEASE.

[Special Form]revision?

[Special Form]revision-id

[Special Form]revision-date

[Special Form]revision-directory

[Function]lookup-revision id
Return the revision with the given ID, typically a Git commit SHA1.

[Function]lookup-origin-revision url tag
Return a <revision> corresponding to the given TAG for the repository

coming from URL. Example:

(lookup-origin-revision "https://github.com/guix-mirror/guix/" "v0.8")

=> #<<revision> id: "44941..." ...>

The information is based on the latest visit of URL available. Return #f if

URL could not be found.

[Special Form]content?

[Special Form]content-checksums

[Special Form]content-data-url

[Special Form]content-length

[Function]lookup-content hash type
Return a content for HASH, of the given TYPE–e.g., "sha256".

[Special Form]directory-entry?

[Special Form]directory-entry-name

[Special Form]directory-entry-type

Chapter 88: (guix swh) 172

[Special Form]directory-entry-checksums

[Special Form]directory-entry-length

[Special Form]directory-entry-permissions

[Function]lookup-directory id
Return the directory with the given ID.

[Function]directory-entry-target entry
If ENTRY, a directory entry, has type ’directory, return its list of directory entries;
if it has type ’file, return its <content> object.

[Special Form]save-reply?

[Special Form]save-reply-origin-url

[Special Form]save-reply-origin-type

[Special Form]save-reply-request-date

[Special Form]save-reply-request-status

[Special Form]save-reply-task-status

[Function]save-origin url [type]
Request URL to be saved.

[Function]save-origin-status url type
Return the status of a /save request for URL and TYPE (e.g., "git").

[Special Form]vault-reply?

[Special Form]vault-reply-id

[Special Form]vault-reply-fetch-url

[Special Form]vault-reply-progress-message

[Special Form]vault-reply-status

[Special Form]vault-reply-swhid

[Function]query-vault id [kind] [#:archive-type]
Ask the availability of object ID (an SWHID) to the vault. Return #f if it could not
be found, or a <vault-reply> on success. ARCHIVE-TYPE can be ’flat for a tarball
containing a directory, or ’git-bare for a tarball containing a bare Git repository
corresponding to a revision.

Passing KIND (one of ’directory or ’revision) together with a raw revision or directory
identifier is deprecated.

[Function]request-cooking id [kind] [#:archive-type]
Request the cooking of object ID, an SWHID. Return a <vault-reply>. ARCHIVE-
TYPE can be ’flat for a tarball containing a directory, or ’git-bare for a tarball
containing a bare Git repository corresponding to a revision.

Passing KIND (one of ’directory or ’revision) together with a raw revision or directory
identifier is deprecated.

Chapter 88: (guix swh) 173

[Function]vault-fetch id [kind] [#:archive-type] [#:log-port]
Return an input port from which a bundle of the object with the given ID, an SWHID,
or #f if the object could not be found.

ARCHIVE-TYPE can be ’flat for a tarball containing a directory, or ’git-bare for a
tarball containing a bare Git repository corresponding to a revision.

[Function]commit-id? reference
Return true if REFERENCE is likely a commit ID, false otherwise—e.g., if it is a tag
name. This is based on a simple heuristic so use with care!

[Function]swh-download-directory id output [#:log-port]
Download from Software Heritage the directory with the given ID, and unpack it to
OUTPUT. Return #t on success and #f on failure.

[Function]swh-download url reference output [#:archive-type] [#:log-port]
Download from Software Heritage a checkout (if ARCHIVE-TYPE is ’flat) or a full Git
repository (if ARCHIVE-TYPE is ’git-bare) of the Git tag or commit REFERENCE
originating from URL, and unpack it in OUTPUT. Return #t on success and #f on
failure.

This procedure uses the "vault", which contains "cooked" directories in the form of
tarballs. If the requested directory is not cooked yet, it will wait until it becomes
available, which could take several minutes.

174

89 (guix transformations)

89.1 Overview

This module implements "package transformation options"---tools for

package graph rewriting. It contains the graph rewriting logic, but also

the tip of its user interface: command-line option handling.

89.2 Usage

[Function]options->transformation opts
Return a procedure that, when passed an object to build (package,

derivation, etc.), applies the transformations specified by OPTS and returns

the resulting objects. OPTS must be a list of symbol/string pairs such as:

((with-branch . "guile-gcrypt=master")

(without-tests . "libgcrypt"))

Each symbol names a transformation and the corresponding string is an argument

to that transformation.

[Function]manifest-entry-with-transformations entry
Return ENTRY with an additional ’transformations’ property if it’s not already there.

[Function]tunable-package? package
Return true if package PACKAGE is "tunable"–i.e., if tuning it for the host CPU is
worthwhile.

[Function]tuned-package p micro-architecture
Return package P tuned for MICRO-ARCHITECTURE.

[Function]show-transformation-options-help
Show basic help for package transformation options.

[Function]transformation-option-key? key
Return true if KEY is an option key (as returned while parsing options with
%TRANSFORMATION-OPTIONS) corresponding to a package transformation
option. For example, (transformation-option-key? ’with-input) => #t.

[Variable]%transformation-options

175

90 (guix ui)

90.1 Overview

User interface facilities for command-line tools.

90.2 Usage

[Function]display-hint message [port]
Display MESSAGE, a l10n message possibly containing Texinfo markup, to PORT.

[Function]make-user-module modules
Return a new user module with the additional MODULES loaded.

[Function]load* file user-module [#:on-error]
Load the user provided Scheme source code FILE.

[Function]warn-about-load-error file module args
Report the failure to load FILE, a user-provided Scheme file, without exiting. ARGS
is the list of arguments received by the ’throw’ handler.

[Function]show-version-and-exit [command]
Display version information for COMMAND and ‘(exit 0)’.

[Function]show-bug-report-information

[Function]make-regexp* regexp . flags
Like ’make-regexp’ but error out if REGEXP is invalid, reporting the error nicely.

[Function]string->number* str
Like ‘string->number’, but error out with an error message on failure.

[Function]size->number str
Convert STR, a storage measurement representation such as "1024" or "1MiB", to a
number of bytes. Raise an error if STR could not be interpreted.

[Function]show-derivation-outputs derivation
Show the output file names of DERIVATION, which can be a derivation or a deriva-
tion input.

[Function]build-notifier [#:dry-run?] [#:use-substitutes?] [#:verbosity]
Return a procedure suitable for ’with-build-handler’ that, when ’build-things’ is
called, invokes ’show-what-to-build’ to display the build plan. When DRY-RUN? is
true, the ’with-build-handler’ form returns without any build happening.

[Function]show-what-to-build store drv [#:dry-run?] [#:use-substitutes?]
[#:verbosity] [#:mode]

Show what will or would (depending on DRY-RUN?) be built in realizing the deriva-
tions listed in DRV using MODE, a ’build-mode’ value. The elements of DRV can be
either derivations or derivation inputs.

Chapter 90: (guix ui) 176

Return two values: a Boolean indicating whether there’s something to build, and a
Boolean indicating whether there’s something to download.

When USE-SUBSTITUTES?, check and report what is prerequisites are available for
download. VERBOSITY is an integer indicating the level of details to be shown:
level 2 and higher provide all the details, level 1 shows a high-level summary, and
level 0 shows nothing.

[Function]show-what-to-build* . args
Show what will or would (depending on DRY-RUN?) be built in realizing the deriva-
tions listed in DRV using MODE, a ’build-mode’ value. The elements of DRV can be
either derivations or derivation inputs.

Return two values: a Boolean indicating whether there’s something to build, and a
Boolean indicating whether there’s something to download.

When USE-SUBSTITUTES?, check and report what is prerequisites are available for
download. VERBOSITY is an integer indicating the level of details to be shown:
level 2 and higher provide all the details, level 1 shows a high-level summary, and
level 0 shows nothing.

[Function]show-manifest-transaction store manifest transaction
[#:dry-run?]

Display what will/would be installed/removed from MANIFEST by TRANSAC-
TION.

[Special Form]guard* (var clauses ...) exp ...
This variant of SRFI-34 ’guard’ does not unwind the stack before evaluating the tests
and bodies of CLAUSES.

[Function]call-with-error-handling thunk
Call THUNK within a user-friendly error handler.

[Special Form]with-error-handling body ...
Run BODY within a user-friendly error condition handler.

[Special Form]with-unbound-variable-handling exp ...
Capture ’unbound-variable’ exceptions in the dynamic extent of EXP... and report
them in a user-friendly way.

[Special Form]leave-on-EPIPE exp ...
Run EXP... in a context where EPIPE errors are caught and lead to ’exit’ with
successful exit code. This is useful when writing to the standard output may lead to
EPIPE, because the standard output is piped through ’head’ or similar.

[Function]read/eval str
Read and evaluate STR, raising an error if something goes wrong.

[Function]read/eval-package-expression str
Read and evaluate STR and return the package it refers to, or exit an error.

[Function]check-available-space need [directory]
Make sure at least NEED bytes are available in DIRECTORY. Otherwise emit a
warning.

Chapter 90: (guix ui) 177

[Function]indented-string str indent [#:initial-indent?]
Return STR with each newline preceded by INDENT spaces. When INITIAL-
INDENT? is true, the first line is also indented.

[Function]fill-paragraph str width [column]
Fill STR such that each line contains at most WIDTH characters, assuming that the
first character is at COLUMN.

When STR contains a single line break surrounded by other characters, it is converted
to a space; sequences of more than one line break are preserved.

[Variable]%text-width

[Function]texi->plain-text str
Return a plain-text representation of texinfo fragment STR.

[Function]package-description-string package
Return a plain-text representation of PACKAGE description field.

[Function]package-synopsis-string package
Return a plain-text representation of PACKAGE synopsis field.

[Function]string->recutils str
Return a version of STR where newlines have been replaced by newlines followed by
"+ ", which makes for a valid multi-line field value in the ‘recutils’ syntax.

[Function]package->recutils p port [width] [#:hyperlinks?] [#:extra-fields]
[#:highlighting]

Write to PORT a ‘recutils’ record of package P, arranging to fit within WIDTH
columns. EXTRA-FIELDS is a list of symbol/value pairs to emit. When HYPER-
LINKS? is true, emit hyperlink escape sequences when appropriate. Pass the synopsis
and description through HIGHLIGHTING, a one-argument procedure that may re-
turn a colorized version of its argument.

[Function]package-specification->name+version+output spec [output]
Parse package specification SPEC and return three value: the specified

package name, version number (or #f), and output name (or OUTPUT). SPEC may

optionally contain a version number and an output name, as in these examples:

guile

guile@@2.0.9

guile:debug

guile@@2.0.9:debug

[Function]pager-wrapped-port [port]
If PORT is a pipe to a pager created by ’with-paginated-output-port’, return the
underlying port. Otherwise return #f.

[Special Form]with-paginated-output-port port exp ... #:less-options opts
[Special Form]with-paginated-output-port port exp ...

Evaluate EXP... with PORT bound to a port that talks to the pager if standard
output is a tty, or with PORT set to the current output port.

Chapter 90: (guix ui) 178

[Function]relevance obj regexps metrics
Compute a "relevance score" for OBJ as a function of its number of matches of
REGEXPS and accordingly to METRICS. METRICS is list of field/weight pairs,
where FIELD is a procedure that returns a string or list of strings describing OBJ,
and WEIGHT is a positive integer denoting the weight of this field in the final score.

A score of zero means that OBJ does not match any of REGEXPS. The higher the
score, the more relevant OBJ is to REGEXPS.

[Function]package-relevance package regexps
Return a score denoting the relevance of PACKAGE for REGEXPS. A score of zero
means that PACKAGE does not match any of REGEXPS.

[Function]display-search-results matches port [#:regexps] [#:command]
[#:print]

Display MATCHES, a list of object/score pairs, by calling PRINT on each of them.
If PORT is a terminal, print at most a full screen of results. REGEXPS is a list of
regexps to highlight in search results.

[Special Form]with-profile-lock profile exp ...
Grab PROFILE’s lock and evaluate EXP... Call ’leave’ if the lock is already taken.

[Function]string->generations str
Return the list of generations matching a pattern in STR. This function accepts the
following patterns: "1", "1,2,3", "1..9", "1..", "..9".

[Function]string->duration str
Return the duration matching a pattern in STR. This function accepts the following
patterns: "1d", "1w", "1m".

[Function]matching-generations str profile [#:duration-relation]
Return the list of available generations matching a pattern in STR. See ’string-
>generations’ and ’string->duration’ for the list of valid patterns. When STR is a du-
ration pattern, return all the generations whose ctime has DURATION-RELATION
with the current time.

[Function]display-generation profile number
Display a one-line summary of generation NUMBER of PROFILE.

[Function]display-profile-content profile number
Display the packages in PROFILE, generation NUMBER, in a human-readable way.

[Function]display-profile-content-diff profile gen1 gen2
Display the changed packages in PROFILE GEN2 compared to generation GEN1.

[Function]roll-back* store profile
Like ’roll-back’, but display what is happening.

[Function]switch-to-generation* profile number
Like ’switch-to-generation’, but display what is happening.

Chapter 90: (guix ui) 179

[Function]delete-generation* store profile generation
Like ’delete-generation’, but display what is going on.

[Variable]%default-message-language

[Function]current-message-language
Return the language used for messages according to the current locale. Return
%DEFAULT-MESSAGE-LANGUAGE if that information could not be obtained.
The result is an ISO-639-2 language code such as "ar", without the territory part.

[Function]run-guix-command command . args
Run COMMAND with the given ARGS. Report an error when COMMAND is not
found.

[Function]run-guix . args
Run the ’guix’ command defined by command line ARGS. Unlike ’guix-main’, this
procedure assumes that locale, i18n support, and signal handling have already been
set up.

[Function]guix-main arg0 . args

[Variable]guix-warning-port

[Variable]program-name

[Special Form]info

[Special Form]leave args ...
Emit an error message and exit.

[Special Form]report-error

[Special Form]warning

[Function]G_ t-13c8accbfea35c4d-1d

[Function]N_ t-13c8accbfea35c4d-24 t-13c8accbfea35c4d-25
t-13c8accbfea35c4d-26

[Function]P_ msgid
Return the translation of the package description or synopsis MSGID.

[Function]location->string loc
Return a human-friendly, GNU-standard representation of LOC.

180

91 (guix upstream)

91.1 Overview

This module provides tools to represent and manipulate a upstream source

code, and to auto-update package recipes.

91.2 Usage

[Special Form]upstream-source

[Special Form]upstream-source?

[Special Form]upstream-source-package

[Special Form]upstream-source-version

[Special Form]upstream-source-urls

[Special Form]upstream-source-signature-urls

[Function]upstream-source-archive-types release
Return the available types of archives for RELEASE—a list of strings such as "gz"
or "xz".

[Special Form]upstream-source-input-changes

[Function]url-predicate matching-url?
Return a predicate that returns true when passed a package whose source is an <ori-
gin> with the URL-FETCH method, and one of its URLs passes MATCHING-URL?.

[Function]url-prefix-predicate prefix
Return a predicate that returns true when passed a package where one of its source
URLs starts with PREFIX.

[Function]coalesce-sources sources
Coalesce the elements of SOURCES, a list of <upstream-source>, that correspond to
the same version.

[Special Form]upstream-updater

[Special Form]upstream-updater?

[Special Form]upstream-updater-name

[Special Form]upstream-updater-description

[Special Form]upstream-updater-predicate

[Special Form]upstream-updater-latest

[Special Form]upstream-input-change?

[Special Form]upstream-input-change-name

[Special Form]upstream-input-change-type

Chapter 91: (guix upstream) 181

[Special Form]upstream-input-change-action

[Function]changed-inputs package package-sexp
Return a list of input changes for PACKAGE based on the newly imported S-
expression PACKAGE-SEXP.

[Variable]%updaters

[Function]lookup-updater package [updaters]
Return an updater among UPDATERS that matches PACKAGE, or #f if none of
them matches.

[Function]download-tarball store url signature-url [#:key-download]
Download the tarball at URL to the store; check its OpenPGP signature at
SIGNATURE-URL, unless SIGNATURE-URL is false. On success, return the
tarball file name; return #f on failure (network failure or authentication failure).
KEY-DOWNLOAD specifies a download policy for missing OpenPGP keys; allowed
values: ’interactive’ (default), ’always’, and ’never’.

[Function]package-archive-type package
If PACKAGE’s source is a tarball or zip archive, return its archive type–a string such
as "xz". Otherwise return #f.

[Function]package-latest-release package [updaters]
Return an upstream source to update PACKAGE, a <package> object, or #f if none
of UPDATERS matches PACKAGE. When several updaters match PACKAGE, try
them until one of them returns an upstream source. It is the caller’s responsibility to
ensure that the returned source is newer than the current one.

[Function]package-latest-release* package [updaters]
Like ’package-latest-release’, but ensure that the return source is newer than that of
PACKAGE.

[Function]package-update store package [updaters] [#:key-download]
Return the new version, the file name of the new version tarball, and input changes
for PACKAGE; return #f (three values) when PACKAGE is up-to-date; raise an
error when the updater could not determine available releases. KEY-DOWNLOAD
specifies a download policy for missing OpenPGP keys; allowed values: ’always’,
’never’, and ’interactive’ (default).

[Function]update-package-source package source hash
Modify the source file that defines PACKAGE to refer to SOURCE, an <upstream-
source> whose tarball has SHA256 HASH (a bytevector). Return the new version
string if an update was made, and #f otherwise.

182

92 (guix utils)

92.1 Overview

92.2 Usage

[Function]strip-keyword-arguments keywords args
Remove all of the keyword arguments listed in KEYWORDS from ARGS.

[Function]default-keyword-arguments args defaults
Return ARGS augmented with any keyword/value from DEFAULTS for keywords
not already present in ARGS.

[Special Form]substitute-keyword-arguments original-args ((kw var dflt ...)
exp) ...

Return a new list of arguments where the value for keyword arg KW is replaced by
EXP. EXP is evaluated in a context where VAR is bound to the previous value of the
keyword argument, or DFLT if given.

[Function]ensure-keyword-arguments args kw/values
Force the keywords arguments KW/VALUES in the keyword argument list ARGS.

For instance:

(ensure-keyword-arguments '(#:foo 2) '(#:foo 2))

=> (#:foo 2)

(ensure-keyword-arguments '(#:foo 2) '(#:bar 3))

=> (#:foo 2 #:bar 3)

(ensure-keyword-arguments '(#:foo 2) '(#:bar 3 #:foo 42))

=> (#:foo 42 #:bar 3)

[Function]%guix-source-root-directory
Return the source root directory of the Guix found in %load-path.

[Special Form]current-source-directory
Return the absolute name of the current directory, or #f if it could not be determined.

[Function]nix-system->gnu-triplet [system] [vendor]
Return a guess of the GNU triplet corresponding to Nix system identifier SYSTEM.

[Function]gnu-triplet->nix-system triplet
Return the Nix system type corresponding to TRIPLET, a GNU triplet as returned
by ‘config.guess’.

[Variable]%current-system

[Variable]%current-target-system

[Function]package-name->name+version spec [delimiter]

Chapter 92: (guix utils) 183

Given SPEC, a package name like "foo@@0.9.1b", return two values: "foo"

and "0.9.1b". When the version part is unavailable, SPEC and #f are

returned. Both parts must not contain any '@@'. Optionally, DELIMITER can be

a character other than '@@'.

[Function]target-linux? [target]
Does the operating system of TARGET use the Linux kernel?

[Function]target-hurd? [target]
Does TARGET represent the GNU(/Hurd) system?

[Function]target-mingw? [target]
Is the operating system of TARGET Windows?

[Function]target-x86-32? [target]
Is the architecture of TARGET a variant of Intel’s 32-bit architecture (IA32)?

[Function]target-x86-64? [target]
Is the architecture of TARGET a variant of Intel/AMD’s 64-bit architecture (x86 64)?

[Function]target-x86? [target]

[Function]target-arm32? [target]

[Function]target-aarch64? [target]

[Function]target-arm? [target]

[Function]target-ppc32? [target]

[Function]target-ppc64le? [target]

[Function]target-powerpc? [target]

[Function]target-riscv64? [target]
Is the architecture of TARGET a ’riscv64’ machine?

[Function]target-mips64el? [target]

[Function]target-64bit? [system]

[Function]ar-for-target [target]

[Function]as-for-target [target]

[Function]cc-for-target [target]

[Function]cxx-for-target [target]

[Function]ld-for-target [target]

[Function]pkg-config-for-target [target]

[Function]version-compare a b
Return ’> when A denotes a newer version than B, ’< when A denotes a older version
than B, or ’= when they denote equal versions.

[Function]version>? a b
Return #t when A denotes a version strictly newer than B.

Chapter 92: (guix utils) 184

[Function]version>=? a b
Return #t when A denotes a version newer or equal to B.

[Function]version-prefix version-string num-parts
Truncate version-string to the first num-parts components of the version. For exam-
ple, (version-prefix "2.1.47.4.23" 3) returns "2.1.47"

[Function]version-major+minor+point version-string
Return "major>.<minor>.<point>", where major, minor and point are the major,
minor and point version numbers from the version-string. For example, (version-
major+minor+point "6.4.5.2") returns "6.4.5" or (version-major+minor+point "1.19.2-
2581-324ca14c3003") returns "1.19.2".

[Function]version-major+minor version-string
Return "<major>.<minor>", where major and minor are the major and minor version
numbers from version-string.

[Function]version-major version-string
Return the major version number as string from the version-string.

[Function]version-unique-prefix version versions
Return the shortest version prefix to unambiguously identify VERSION among

VERSIONS. For example:

(version-unique-prefix "2.0" '("3.0" "2.0"))

=> "2"

(version-unique-prefix "2.2" '("3.0.5" "2.0.9" "2.2.7"))

=> "2.2"

(version-unique-prefix "27.1" '("27.1"))

=> ""

[Function]guile-version>? str
Return #t if the running Guile version is greater than STR.

[Function]version-prefix? v1 v2
Return true if V1 is a version prefix of V2:

(version-prefix? "4.1" "4.16.2") => #f

(version-prefix? "4.1" "4.1.2") => #t

[Function]string-replace-substring str substr replacement [start] [end]
Replace all occurrences of SUBSTR in the START–END range of STR by REPLACE-
MENT.

[Function]file-extension file
Return the extension of FILE or #f if there is none.

[Function]file-sans-extension file
Return the substring of FILE without its extension, if any.

Chapter 92: (guix utils) 185

[Function]tarball-sans-extension tarball
Return TARBALL without its .tar.* or .zip extension.

[Function]compressed-file? file
Return true if FILE denotes a compressed file.

[Function]switch-symlinks link target
Atomically switch LINK, a symbolic link, to point to TARGET. Works both when
LINK already exists and when it does not.

[Function]call-with-temporary-directory proc
Call PROC with a name of a temporary directory; close the directory and delete it
when leaving the dynamic extent of this call.

[Function]with-atomic-file-output file proc
Call PROC with an output port for the file that is going to replace FILE. Upon
success, FILE is atomically replaced by what has been written to the output port,
and PROC’s result is returned.

[Special Form]with-environment-variables variables exp ...
Evaluate EXP with the given environment VARIABLES set.

[Function]arguments-from-environment-variable variable
Retrieve value of environment variable denoted by string VARIABLE in the form of
a list of strings (‘char-set:graphic’ tokens) suitable for consumption by ‘args-fold’, if
VARIABLE is defined, otherwise return an empty list.

[Function]config-directory . t-1bee376549df88c2-2bb7

[Function]cache-directory . t-1bee376549df88c2-2bbf

[Function]readlink* file
Call ’readlink’ until the result is not a symlink.

[Function]go-to-location port line column
Jump to LINE and COLUMN (both one-indexed) in PORT. Maintain a source loca-
tion map such that this can boil down to seek(2) and a few read(2) calls, which can
drastically speed up repetitive operations on large files.

[Function]edit-expression source-properties proc [#:encoding]
[#:include-trailing-newline?]

Edit the expression specified by SOURCE-PROPERTIES using PROC, which should
be a procedure that takes the original expression in string and returns a new one.
ENCODING will be used to interpret all port I/O, it defaults to UTF-8. This pro-
cedure returns #t on success. When INCLUDE-TRAILING-NEWLINE? is true, the
trailing line is included in the edited expression.

[Function]delete-expression source-properties
Delete the expression specified by SOURCE-PROPERTIES.

Chapter 92: (guix utils) 186

[Function]filtered-port command input
Return an input port where data drained from INPUT is filtered through COMMAND
(a list). In addition, return a list of PIDs that the caller must wait. When INPUT is
a file port, it must be unbuffered; otherwise, any buffered data is lost.

[Function]decompressed-port compression input
Return an input port where INPUT is decompressed according to COMPRESSION,
a symbol such as ’xz.

[Function]call-with-decompressed-port compression port proc
Call PROC with a wrapper around PORT, a file port, that decompresses data read
from PORT according to COMPRESSION, a symbol such as ’xz.

[Function]compressed-output-port compression output [#:options]
Return an output port whose input is compressed according to COMPRESSION, a
symbol such as ’xz, and then written to OUTPUT. In addition return a list of PIDs
to wait for. OPTIONS is a list of strings passed to the compression program–e.g.,
’("–fast").

[Function]call-with-compressed-output-port compression port proc
[#:options]

Call PROC with a wrapper around PORT, a file port, that compresses data that goes
to PORT according to COMPRESSION, a symbol such as ’xz. OPTIONS is a list of
command-line arguments passed to the compression program.

[Function]canonical-newline-port port
Return an input port that wraps PORT such that all newlines consist

of a single linefeed.

[Function]string-distance s1 s2
Compute the Levenshtein distance between two strings.

[Function]string-closest trial tests [#:threshold]
Return the string from TESTS that is the closest from the TRIAL, according to
’string-distance’. If the TESTS are too far from TRIAL, according to THRESHOLD,
then #f is returned.

[Function]pretty-print-table rows [#:max-column-width] [#:left-pad]
Print ROWS in neat columns. All rows should be lists of strings and each row should
have the same length. The columns are separated by a tab character, and aligned
using spaces. The maximum width of each column is bound by MAX-COLUMN-
WIDTH. Each row is prefixed with LEFT-PAD spaces.

[Variable]&error-location

[Variable]&fix-hint

[Variable]<location>

[Special Form]location-column

[Special Form]location-file

[Special Form]location-line

Chapter 92: (guix utils) 187

[Special Form]location?

[Function]call-with-temporary-output-file proc
Call PROC with a name of a temporary file and open output port to that file; close
the file and delete it when leaving the dynamic extent of this call.

[Function]condition-fix-hint obj

[Function]error-location obj

[Function]error-location? obj

[Function]fix-hint? obj

[Function]location file line column
Return the <location> object for the given FILE, LINE, and COLUMN.

[Function]location->source-properties loc
Return the source property association list based on the info in LOC, a location
object.

[Function]source-properties->location loc
Return a location object based on the info in LOC, an alist as returned by Guile’s
‘source-properties’, ‘frame-source’, ‘current-source-location’, etc.

188

93 (guix workers)

93.1 Overview

This module implements "worker pools". Worker pools are the low-level

mechanism that's behind futures: there's a fixed set of threads

("workers") that one can submit work to, and one of them will eventually

pick the submitted tasks.

Unlike futures, these worker pools are meant to be used for tasks that

have a side-effect. Thus, we never "touch" a task that was submitted like

we "touch" a future. Instead, we simply assume that the task will

eventually complete.

93.2 Usage

[Special Form]pool?

[Function]make-pool [count] [#:thread-name]
Return a pool of COUNT workers. Use THREAD-NAME as the name of these
threads as reported by the operating system.

[Function]pool-enqueue! pool thunk
Enqueue THUNK for future execution by POOL.

[Function]pool-idle? pool
Return true if POOL doesn’t have any task in its queue and all the workers are
currently idle (i.e., waiting for a task).

[Special Form]eventually pool exp ...
Run EXP eventually on one of the workers of POOL.

