
Neural Network Diffusion

Kai Wang 1 Zhaopan Xu 1 Yukun Zhou 1 Zelin Zang 1 Trevor Darrell 2 Zhuang Liu * 3 Yang You * 1

Code: https://github.com/NUS-HPC-AI-Lab/Neural-Network-Diffusion

Abstract
Diffusion models have achieved remarkable suc-
cess in image and video generation. In this work,
we demonstrate that diffusion models can also
generate high-performing neural network param-
eters. Our approach is simple, utilizing an au-
toencoder and a standard latent diffusion model.
The autoencoder extracts latent representations
of a subset of the trained network parameters.
A diffusion model is then trained to synthesize
these latent parameter representations from ran-
dom noise. It then generates new representations
that are passed through the autoencoder’s decoder,
whose outputs are ready to use as new subsets of
network parameters. Across various architectures
and datasets, our diffusion process consistently
generates models of comparable or improved per-
formance over trained networks, with minimal
additional cost. Notably, we empirically find that
the generated models perform differently with the
trained networks. Our results encourage more ex-
ploration on the versatile use of diffusion models.

1. Introduction
The origin of diffusion models can be traced back to
non-equilibrium thermodynamics (Jarzynski, 1997; Sohl-
Dickstein et al., 2015). Diffusion processes were first uti-
lized to progressively remove noise from inputs and generate
clear images in (Sohl-Dickstein et al., 2015). Later works,
such as DDPM (Ho et al., 2020) and DDIM (Song et al.,
2021), refine diffusion models, with a training paradigm
characterized by forward and reverse processes.

At that time, the quality of images generated by diffu-
sion models had not yet reached a desired level. Guided-
Diffusion (Dhariwal & Nichol, 2021) conducts sufficient
ablations and finds a better architecture, which represents
the pioneering effort to elevate diffusion models beyond
GAN-based methods (Zhu et al., 2017; Isola et al., 2017) in

*Equal advising, 1National University of Singapore 2University
of California, Berkeley 3Meta AI Research.

arXiv preprint

Im
ag
e

N
oi
se

Forward Process

Reverse Process

M
od
el

In
iti
al
.

Adding Noise

SGD Optimization

Acc:76.6 Acc:64.0 Acc:42.1 Acc:1.4

min. max

Figure 1. The top: illustrates the standard diffusion process in
image generation. The bottom: denotes the parameter distribution
of batch normalization (BN) during the training CIFAR-100 with
ResNet-18. The upper half of the bracket: BN weights. The lower
half of the bracket: BN biases.

terms of image quality. Subsequently, GLIDE (Nichol et al.,
2021), Imagen (Saharia et al., 2022), DALL·E 2 (Ramesh
et al., 2022), and Stable Diffusion (Rombach et al., 2022)
achieve photorealistic images adopted by artists.

Despite the great success of diffusion models in visual gener-
ation, their potential in other domains remains relatively un-
derexplored. In this work, we demonstrate the surprising ca-
pability of diffusion models in generating high-performing
model parameters, a task fundamentally distinct from tradi-
tional visual generation. Parameter generation focuses on
creating neural network parameters that can perform well on
given tasks. It has been explored from prior and probability
modeling aspects, i.e. stochastic neural network (Sompolin-
sky et al., 1988; Bottou et al., 1991; Wong, 1991; Schmidt
et al., 1992; Murata et al., 1994) and Bayesian neural net-
work (Neal, 2012; Kingma & Welling, 2013; Rezende et al.,
2014; Kingma et al., 2015; Gal & Ghahramani, 2016). How-
ever, using a diffusion model in parameter generation has
not been well-explored yet.

Taking a closer look at the neural network training and dif-
fusion models, the diffusion-based image generation shares
commonalities with the stochastic gradient descent (SGD)
learning process in the following aspects (illustrated in

1

ar
X

iv
:2

40
2.

13
14

4v
1

 [
cs

.L
G

]
 2

0
Fe

b
20

24

https://github.com/NUS-HPC-AI-Lab/Neural-Network-Diffusion

Neural Network Diffusion

Fig. 1). i) Both neural network training and the reverse
process of diffusion models can be regarded as transitions
from random noise/initialization to specific distributions. ii)
High-quality images and high-performing parameters can
also be degraded into simple distributions, such as Gaussian
distribution, through multiple noise additions.

Based on the observations above, we introduce a novel ap-
proach for parameter generation, named neural network
diffusion (p-diff, p stands for parameter), which employs a
standard latent diffusion model to synthesize a new set of
parameters. That is motivated by the fact that the diffusion
model has the capability to transform a given random distri-
bution to a specific one. Our method is simple, comprising
an autoencoder and a standard latent diffusion model to
learn the distribution of high-performing parameters. First,
for a subset of parameters of models trained by the SGD
optimizer, the autoencoder is trained to extract the latent
representations for these parameters. Then, we leverage a
standard latent diffusion model to synthesize latent represen-
tations from random noise. Finally, the synthesized latent
representations are passed through the trained autoencoder’s
decoder to yield new high-performing model parameters.

Our approach has the following characteristics: i) It consis-
tently achieves similar, even enhanced performance than its
training data, i.e., models trained by SGD optimizer, across
multiple datasets and architectures within seconds. ii) Our
generated models have great differences from the trained
models, which illustrates our approach can synthesize new
parameters instead of memorizing the training samples. We
hope our research can provide fresh insights into expanding
the applications of diffusion models to other domains.

2. Nerual Network Diffusion
2.1. Preliminaries of diffusion models

Diffusion models typically consist of forward and reverse
processes in a multi-step chain indexed by timesteps. We
introduce these two processes in the following.

Forward process. Given a sample x0 ∼ q(x), the forward
process progressively adds Gaussian noise for T steps and
obtain x1, x2, · · · , xT . The formulation of this process can
be written as follows,

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI),

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1),
(1)

where q and N represent forward process and adding Gaus-
sian noise parameterized by βt, and I is the identity matrix.

Reverse process. Different from the forward process, the

reverse process aims to train a denoising network to recur-
sively remove the noise from xt. It moves backward on the
multi-step chain as t decreases from T to 0. Mathematically,
the reverse process can be formulated as follows,

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)),

pθ(x0:T) = p(xT)

T∏
t=1

pθ(xt−1|xt),
(2)

where p represents the reverse process, µθ(xt, t) and
Σθ(xt, t)) are the Gaussian mean and variance that esti-
mated by the denoising network parameter θ. The denoising
network in the reverse process is optimized by the standard
negative log-likelihood:

Ldm = DKL(q(xt−1|xt, x0)||pθ(xt−1|xt)), (3)

where the DKL(·||·) denotes the Kullback–Leibler (KL)
divergence that is normally used to compute the difference
between two distributions.

Training and inference procedures. The goal of the train-
ing diffusion model is to find the reverse transitions that
maximize the likelihood of the forward transitions in each
time step t. In practice, training equivalently consists of
minimizing the variational upper bound. The inference pro-
cedure aims to generate novel samples from random noise
via the optimized denoising parameters θ∗ and the multi-
step chains in the reverse process.

2.2. Overview

We propose neural network diffusion (p-diff), which aims
to generate high-performing parameters from random noise.
As illustrated in Fig. 2, our method consists of two processes,
named parameter autoencoder and generation. Given a set
of trained high-performing models, we first select a subset
of these parameters and flatten them into 1-dimensional
vectors. Subsequently, we introduce an encoder to extract
latent representations from these vectors, accompanied by a
decoder responsible for reconstructing the parameters from
latent representations. Then, a standard latent diffusion
model is trained to synthesize latent representations from
random noise. After training, we utilize p-diff to generate
new parameters via the following chain: random noise→
reverse process→ trained decoder→ generated parameters.

2.3. Parameter autoencoder

Preparing the data for training the autoencoder. In our
paper, we default to synthesizing a subset of model pa-
rameters. Therefore, to collect the training data for the
autoencoder, we train a model from scratch and densely

2

Neural Network Diffusion

EncoderIn
pu

t
Pa

ra
m

et
er

s

Latent
Representations

Parameter Autoencoder

D
ec

od
er

LDM

Random
Noise

Latent
Representations

Parameter Generation
(standard latent diffusion)

Generated Parameters
LDM

Inference

: Forward/Reverse Process/: Frozen

Random
Noise

D
ec

od
er

Figure 2. Our approach consists of two processes, named parameter autoencoder and generation. Parameter autoencoder aims to extract
the latent representations and reconstruct model parameters via the decoder. The extracted representations are used to train a standard
latent diffusion model (LDM). In the inference, the random noise is fed into LDM and trained decoder to obtain the generated parameters.

save checkpoints in the last epoch. It is worth noting that
we only update the selected subset of parameters via SGD
optimizer and fix the remained parameters of the model.
The saved subsets of parameters S = [s1, . . . , sk, . . . , sK]
is utilized to train the autoencoder, where K is the number
of the training samples. For some large architectures that
have been trained on large-scale datasets, considering the
cost of training them from scratch, we fine-tune a subset of
the parameters of the pre-trained model and densely save
the fine-tuned parameters as training samples.

Training parameter autoencoder. We then flatten
these parameters S into 1-dimensional vectors V =
[v1, . . . , vk, . . . , vK], where V ∈ RK×D and D is the size
of the subset parameters. After that, an autoencoder is
trained to reconstruct these parameters V . To enhance the
robustness and generalization of the autoencoder, we intro-
duce random noise augmentation in input parameters and
latent representations simultaneously. The encoding and
decoding processes can be formulated as,

Z = [z01 , . . . , z
0
k, . . . , z

0
K] = fencoder(V + ξV , σ)︸ ︷︷ ︸

encoding

;

V ′ = [v′1, · · · , v′k, · · · , v′K] = fdecoder(Z + ξZ , ρ)︸ ︷︷ ︸
decoding

,
(4)

where fencoder(·, σ) and fdecoder(·, ρ) denote the encoder
and decoder parameterized by σ and ρ, respectively. Z

represents the latent representations, ξV and ξZ denote ran-
dom noise that are added into input parameters V and latent
representations Z, and V ′ is the reconstructed parameters.
We default to using an autoencoder with a 4-layer encoder
and decoder. Same as the normal autoencoder training, we
minimize the mean square error (MSE) loss between V ′ and
V as follows,

LMSE =
1

K

∑
K

1
∥vk − v′k∥2, (5)

where v′k is the reconstructed parameters of k-th model.

2.4. Parameter generation

One of the most direct strategies is to synthesize the novel
parameters via a diffusion model. However, the memory
cost of this operation is too heavy, especially when the di-
mension of V is ultra-large. Based on this consideration, we
apply the diffusion process to the latent representations by
default. For Z = [z01 , · · · , z0k, · · · , z0K] extracted from pa-
rameter autoencoder, we use the optimization of DDPM (Ho
et al., 2020) as follows,

θ ← θ −∇θ||ϵ− ϵθ(
√
αtz

0
k +
√
1− αtϵ, t)||2, (6)

where t is uniform between 1 and T , the sequence of hy-
perparameters αt indicates the noise strength at each step,
ϵ is the added Gaussian noise, ϵθ(·) denotes the denoising
network that parameterized by θ. After finishing the training
of the parameter generation, we directly fed random noise

3

Neural Network Diffusion

Table 1. We present results in the format of ‘original / ensemble / p-diff’. Our method obtains similar or even higher performance than
baselines. The results of p-diff is average in three runs. Bold entries are best results.

Network\Dataset MNIST CIFAR-10 CIFAR-100 STL-10 Flowers Pets F-101 ImageNet-1K

ResNet-18 99.2 / 99.2 / 99.3 92.5 / 92.5 / 92.7 76.7 / 76.7 / 76.9 75.5 / 75.5 / 75.4 49.1 / 49.1 / 49.7 60.9 / 60.8 / 61.1 71.2 / 71.3 / 71.3 78.7 / 78.5 / 78.7
ResNet-50 99.4 / 99.3 / 99.4 91.3 / 91.4 / 91.3 71.6 / 71.6 / 71.7 69.2 / 69.1 / 69.2 33.7 / 33.9 / 38.1 58.0 / 58.0 / 58.0 68.6 / 68.5 / 68.6 79.2 / 79.2 / 79.3
ViT-Tiny 99.5 / 99.5 / 99.5 96.8 / 96.8 / 96.8 86.7 / 86.8 / 86.7 97.3 / 97.3 / 97.3 87.5 / 87.5 / 87.5 89.3 / 89.3 / 89.3 78.5 / 78.4 / 78.5 73.7 / 73.7 / 74.1
ViT-Base 99.5 / 99.4 / 99.5 98.7 / 98.7 / 98.7 91.5 / 91.4 / 91.7 99.1 / 99.0 / 99.2 98.3 / 98.3 / 98.3 91.6 / 91.5 / 91.7 83.4 / 83.4 / 83.4 84.5 / 84.5 / 84.7

ConvNeXt-T 99.3 / 99.4 / 99.3 97.6 / 97.6 / 97.7 87.0 / 87.0 / 87.1 98.2 / 98.0 / 98.2 70.0 / 70.0 / 70.5 92.9 / 92.8 / 93.0 76.1 / 76.1 / 76.2 82.1 / 82.1 / 82.3
ConvNeXt-B 99.3 / 99.3 / 99.4 98.1 / 98.1 / 98.1 88.3 / 88.4 / 88.4 98.8 / 98.8 / 98.9 88.4 / 88.4 / 88.5 94.1 / 94.0 / 94.1 81.4 / 81.4 / 81.6 83.8 / 83.7 / 83.9

into the reverse process and the trained decoder to generate
a new set of high-performing parameters. These generated
parameters are concatenated with the remained model pa-
rameters to form new models for evaluation. Neural network
parameters and image pixels exhibit significant disparities in
several key aspects, including data type, dimensions, range,
and physical interpretation. Different from images, neural
network parameters mostly have no spatial relevance, so
we replace 2D convolutions with 1D convolutions in our
parameter autoencoder and parameter generation processes.

3. Experiments
In this section, We first introduce the setup for reproducing.
Then, we report the result comparisons and ablation studies.

3.1. Setup

Datasets and architectures. We evaluate our approach
across a wide range of datasets, including MNIST (Le-
Cun et al., 1998), CIFAR-10/100 (Krizhevsky et al., 2009),
ImageNet-1K (Deng et al., 2009), STL-10 (Coates et al.,
2011), Flowers (Nilsback & Zisserman, 2008), Pets (Parkhi
et al., 2012), and F-101 (Bossard et al., 2014) to study the ef-
fectiveness of our method. We mainly conduct experiments
on ResNet-18/50 (He et al., 2016), ViT-Tiny/Base (Dosovit-
skiy et al., 2020), and ConvNeXt-T/B (Liu et al., 2022).

Training details. The autoencoder and latent diffusion
model both include a 4-layer 1D CNNs-based encoder and
decoder. We default to collecting 200 training data for all
architectures. For ResNet-18/50, we train the models from
scratch. In the last epoch, we continue to train the last two
normalization layers and fix the other parameters. We save
200 checkpoints in the last epoch, i.e., original models. For
ViT-Tiny/Base and ConvNeXt-T/B, we fine-tune the last two
normalization parameters of the released model in the timm
library (Wightman, 2019). The ξV and ξZ are Gaussian
noise with amplitude of 0.001 and 0.1. In most cases, the
autoencoder and latent diffusion training can be completed
within 1 to 3 hours on a single Nvidia A100 40G GPU.

Inference details. We synthesize 100 novel parameters by
feeding random noise into the latent diffusion model and
the trained decoder. These synthesized parameters are then

concatenated with the aforementioned fixed parameters to
form our generated models. From these generated models,
we select the one with the best performance on the training
set. Subsequently, we evaluate its accuracy on the validation
set and report the results. That is a consideration of mak-
ing fair comparisons with the models trained using SGD
optimization. We empirically find the performance on the
training set is good for selecting models for testing.

Baselines. 1) The best validation accuracy among the orig-
inal models is denoted as ‘original’. 2) Average weight
ensemble (Krogh & Vedelsby, 1994; Wortsman et al., 2022)
of original models is denoted as ‘ensemble’.

3.2. Results

Tab. 1 shows the result comparisons with two baselines
across 8 datasets and 6 architectures. Based on the re-
sults, we have several observations as follows: i) In most
cases, our method achieves similar or better results than
two baselines. This demonstrates that our method can ef-
ficiently learn the distribution of high-performing parame-
ters and generate superior models from random noise. ii)
Our method consistently performs well on various datasets,
which indicates the good generality of our method.

3.3. Ablation studies and analysis

Extensive ablation studies are conducted in this section
to illustrate the characteristics of our method. We default
to training ResNet-18 on CIFAR-100 and report the best,
average, and medium accuracy (if not otherwise stated).

The number of training models. Tab. 2(a) varies the size
of training data, i.e. the number of original models. We find
the performance gap of best results among different numbers
of the original models is minor. To comprehensively explore
the influences of different numbers of training data on the
performance stability, we also report the average (avg.) and
median (med.) accuracy as metrics of stability of our gener-
ated models. Notably, the stability of models generated with
a small number of training instances is much worse than
that observed in larger settings. This can be explained by
the learning principle of the diffusion model: the diffusion
process may be hard to model the target distribution well if

4

Neural Network Diffusion

Table 2. p-diff main ablation experiments. We ablate the number of original models K, the location of applying our approach, and the
effect of noise augmentation. The default settings are K = 200, applying p-diff on the deep BN parameters (between layer16 to 18), and
using noise augmentation in the input parameters and latent representations. Defaults are marked in gray . Bold entries are best results.

(a) Large K can improve the
performance stability of our
method.
K best avg. med.

1 76.6 70.7 73.2
10 76.5 71.2 73.8
50 76.7 71.3 74.3
200 76.9 72.4 75.6
500 76.8 72.3 75.4

(b) P-diff works well on deep layers. The
index of layer is aligned with the standard
ResNet-18.

parameters best avg. med.

original models 76.7 76.6 76.6
BN-layer10 to 14 76.8 71.9 75.3
BN-layer14 to 16 76.9 72.2 75.5
BN-layer16 to 18 76.9 72.4 75.6

(c) Noise augmentation makes p-diff stronger.
Adding noise on latent representations is more im-
portant than on parameters.

noise augmentation best avg. med.

original models 76.7 - -
no noise 76.7 65.8 65.0

+ para. noise 76.7 66.7 67.3
+ latent noise 76.7 72.1 75.3

+ para. and latent noise 76.9 72.4 75.6

Table 3. We present result comparisons of original, ensemble, and p-diff under synthesizing entire model parameters setting. Our method
demonstrates good generalization on ConvNet-3 and MLP-3. Bold entries are best results.

(a) Result comparisons on ConvNet-3 (includes three convolu-
tional layers and one linear layer.
Dataset\Network ConvNet-3

original ensemble p-diff parameter number

CIFAR-10 77.2 77.3 77.5 24714
CIFAR-100 57.2 57.2 57.3 70884

(b) Result comparisons on MLP-3 (includes three linear layers
and ReLU activation function).
Dataset\Network MLP-3

original ensemble p-diff parameter number

MNIST 85.3 85.2 85.4 39760
CIFAR-10 48.1 48.1 48.2 155135

only a few input samples are used for training.

Where to apply p-diff. We default to synthesizing the pa-
rameters of the last two normalization layers. To investigate
the effectiveness of p-diff on other depths of normalization
layers, we also explore the performance of synthesizing the
other shallow-layer parameters. To keep an equal number
of BN parameters, we implement our approach to three
sets of BN layers, which are between layers with different
depths. As shown in Tab. 2(b), we empirically find that our
approach achieves better performances (best accuracy) than
the original models on all depths of BN layers settings. An-
other finding is that synthesizing the deep layers can achieve
better accuracy than generating the shallow ones. This is
because generating shallow-layer parameters is more likely
to accumulate errors during the forward propagation than
generating deep-layer parameters.

Noise augmentation. Noise augmentation is designed to
enhance the robustness and generalization of training the au-
toencoder. We ablate the effectiveness of applying this aug-
mentation in the input parameters and latent representations,
respectively. The ablation results are presented in Tab. 2(c).
Several observations can be summarized as follows: i) Noise
augmentation plays a crucial role in generating stable and
high-performing models. ii) The performance gains of ap-
plying noise augmentation in the latent representations are
larger than in the input parameters. iii) Our default set-
ting, jointly using noise augmentation in parameters and
representations obtains the best performances (includes best,

average, and medium accuracy).

Generalization on entire model parameters. Until now,
we have evaluated the effectiveness of our approach in syn-
thesizing a subset of model parameters, i.e., batch normal-
ization parameters. What about synthesizing entire model
parameters? To evaluate this, we extend our approach to
two small architectures, namely MLP-3 (includes three lin-
ear layers and ReLU activation function) and ConvNet-3 (in-
cludes three convolutional layers and one linear layer). Dif-
ferent from the aforementioned training data collection strat-
egy, we individually train these architectures from scratch
with 200 different random seeds. We take CIFAR-10 as
an example and show the details of these two architectures
(convolutional layer: kernel size × kernel size, the number
of channels; linear layer: input dimension, output dimen-
sion) as follows:

•ConvNet-3: conv1. 3×3, 32, conv2. 3×3, 32, conv3. 3×3,
32, linear layer. 2048, 10.
•MLP-3: linear layer1. 3072, 50, linear layer2. 50, 25,
linear layer3. 25, 10.

We present result comparisons between our approach and
two baselines (i.e., original and ensemble) at Tab. 3. We
report the comparisons and parameter numbers of ConvNet-
3 on CIFAR-10/100 and MLP-3 on CIFAR-10 and MNIST
datasets. These experiments demonstrate the effectiveness
and generalization of our approach in synthesizing entire
model parameters, i.e., achieving similar or even improved

5

Neural Network Diffusion

performances over baselines. These results suggest the
practical applicability of our method. However, we can
not synthesize the entire parameters of large architectures,
such as ResNet, ViT, and ConvNeXt series. It is mainly
constrained by the limitation of the GPU memory.

Parameter patterns of original models. Experimental re-
sults and ablation studies demonstrate the effectiveness of
our method in generating neural network parameters. To
explore the intrinsic reason behind this, we use 3 random
seeds to train ResNet-18 model from scratch and visualize
the parameters in Fig. 3. We visualize the heat map of pa-
rameter distribution via min-max normalization in different
layers individually. Based on the visualizations of the param-
eters of convolutional (Conv.-layer2) and fully connected
(FC-layer18) layers, there indeed exist specific parameter
patterns among these layers. Based on the learning of these
patterns, our approach can generate high-performing neural
network parameters.

4. Is P-diff Only Memorizing?
In this section, we mainly investigate the difference between
original and generated models. We first propose a similarity
metric. Then several comparisons and visualizations are
conducted to illustrate the characteristics of our approach.

Questions and experiment designs. Here, we first ask
the following questions: 1) Does p-diff just memorize the
samples from the original models in the training set? 2) Is
there any difference among adding noise or fine-tuning the
original models, and the models generated by our approach?
In our paper, we hope that our p-diff can generate some new
parameters that perform differently than the original models.
To verify this, we design experiments to study the differ-
ences between original, noise-added, fine-tuned, and p-diff
models by comparing their predictions and visualizations.

Similarity metric. We conduct experiments on CIFAR-
100 (Krizhevsky et al., 2009) with ResNet-18 (He et al.,
2016) under the default setting, i.e. only generating the
parameters of the last two batch normalization layers. We
measure the similarity between the two models by calcu-
lating the Intersection over Union (IoU) on their wrong
predictions. The IoU can be formulated as follows,

IoU = |Pwrong
1 ∩ Pwrong

2 |/|Pwrong
1 ∪ Pwrong

2 |, (7)

where Pwrong
· denotes the indexes of wrong predictions on

the validation set, ∩ and ∪ represent union and intersection
operations. A higher IoU indicates a greater similarity be-
tween the predictions of the two models. From now on, we
use IoU as the similarity metric in our paper. To mitigate
the influence of the performance contrasts in experiments,
we select models that perform better than 76.5% by default.

C
on

v.
-la

ye
r2

FC
-la

ye
r1

8

Seed 1 Seed 2 Seed 3

Min Max

Figure 3. Visualizing the parameter distributions of convolutional
(Conv.-layer2) and fully connected (FC-layer18) layers. Parame-
ters from different layers show variant patterns while these param-
eters from the same layer show similar patterns. The index of layer
is aligned with the standard ResNet-18.

Similarity of predictions. We evaluate the similarity be-
tween the original and p-diff models. For each model, we
obtain its similarity by averaging the IoUs with other models.
We introduce four comparisons: 1) similarity among origi-
nal models; 2) similarity among p-diff models; 3) similarity
between original and p-diff models; and 4) max similarity
(nearest neighbor) between original and p-diff models. We
calculate the IoUs for all models in the above four compar-
isons and report their averaged values in Fig. 4(a).

One can find that the differences among generated models
are much larger than the differences among the original
models. Another finding is that even the maximum similar-
ity between the original and generated models is also lower
than the similarity among the original models. It shows our
p-diff can generate new parameters that perform differently
with their training data (i.e. original models).

We also compare our approach with the fine-tuned and noise-
added models. Specifically, we randomly choose one gen-
erated model, and search its nearest neighbor (i.e. max
similarity) from the original models. Then, we fine-tune
and add random noise from the nearest neighbor to obtain
corresponding models. After that, we calculate the similar-
ity of the original with fine-tuned and noise-added models,
respectively. Finally, we repeat this operation fifty times
and report their average IoUs for analysis. In this experi-
ment, we also constraint the performances of all models,
i.e., only good models are used here for reducing the bias of
visualization. We empirically set the amplitude of random
noise with the range from 0.01 to 0.1 to prevent substantial
performance drops.

Based on the results in Fig. 4(b), we find that the perfor-
mances of fine-tuned and noise-added models are hard to

6

Neural Network Diffusion

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Si
m

ila
rit

y

Among original
Among p-diff
Between original and p-diff
Between original and p-diff (max)

(a) Similarity comparisons of original and p-
diff models.

0.84 0.89 0.94 0.99
Similarity

76.4

76.5

76.6

76.7

76.8

Ac
c.

Original model accuracy range
Fine-tuned
Noise-added
P-diff

(b) Similarity comparisons of fine-tuned, noise-
added, and p-diff models.

Original
Adding noise
P-diff

(c) t-SNE of the latent representations
of original, p-diff, and adding noise.

Figure 4. The similarity represents the Intersection of Union (IoU) over wrong predictions between/among two models (a) shows the
comparisons in four cases: similarity among original models and p-diff models, similarity between original and p-diff models, and the
maximum similarity (nearest neighbor) between original and p-diff models. (b) displays the accuracy and max similarity of fine-tuned,
noise-added, and p-diff models. All the maximum similarities are calculated with the original models. (c) presents the t-SNE (Van der
Maaten et al., 2008) of latent representations of the original models, p-diff models, and adding noise operation.

outperform the original models. Besides, the similarities
between fine-tuned or noise-added and original models are
very high, which indicates these two operations can not
obtain novel but high-performing models. However, our
generated models achieve diverse similarities and superior
performances compared to the original models.

Comparison of latent representations. In addition to pre-
dictions, we assess the distributions of latent representations
for the original and generated models using t-SNE (Van der
Maaten et al., 2008). To identify the differences between
our approach and the operation of adding noise to the la-
tent representations of original models, we also include the
adding noise operation as a comparison in Fig. 4(c). The
added noise is random Gaussian noise with an amplitude
of 0.1. One can find that p-diff can generate novel latent
representations while adding noise just makes interpolation
around the latent representations of original models.

The trajectories of p-diff process. We plot the generated
parameters of different time steps in the inference stage to
form trajectories to explore its generation process. Five
trajectories (initialized by 5 random noise) are shown in
Fig. 5(a). We also plot the average parameters of the origi-
nal models and their standard deviation (std). As the time
step increases, the generated parameters are overall close
to the original models. Although we keep a narrow per-
formance range constraint for visualization, there is still a
certain distance between the end points (orange triangles)
of trajectories and average parameters (five-pointed star).
Another finding is that the five trajectories are diverse.

From memorizing to generate new parameters. To in-

vestigate the impact of the number of original models (K)
on the diversity of generated models, we visualize the max
similarities between original and generated models with
different K in Fig. 5(b). Specifically, we continually gener-
ate parameters until 50 models perform better than 76.5%
in all cases. The generated models almost memorize the
original model when K = 1, as indicated by the narrow sim-
ilarity range and high value. The similarity range of these
generated models becomes larger as K increases, demon-
strating our approach can generate parameters that perform
differently from the original models.

5. Related Work
Diffusion models. Diffusion models have achieved re-
markable results in visual generation. These methods (Ho
et al., 2020; Dhariwal & Nichol, 2021; Ho et al., 2022;
Peebles & Xie, 2022; Hertz et al., 2023; Li et al., 2023)
are based on non-equilibrium thermodynamics (Jarzynski,
1997; Sohl-Dickstein et al., 2015), and the its pathway is
similar to GAN (Zhu et al., 2017; Isola et al., 2017; Brock
et al., 2018a), VAE (Kingma & Welling, 2013; Razavi et al.,
2019), and flow-based model (Dinh et al., 2014; Rezende
& Mohamed, 2015). Diffusion models can be categorized
into three main branches. The first branch focuses on en-
hancing the synthesis quality of diffusion models, exem-
plified by models like DALL·E 2 (Ramesh et al., 2022),
Imagen (Saharia et al., 2022), and Stable Diffusion (Rom-
bach et al., 2022). The second branch aims to improve
the sampling speed, including DDIM (Song et al., 2021),
Analytic-DPM (Bao et al., 2022), and DPM-Solver (Lu
et al., 2022). The final branch involves reevaluating diffu-

7

Neural Network Diffusion

Start point
End point
Std of original models
Mean of original models

(a) Visualization of parameter trajectories of p-diff.

1 10 50 200 500
The number of original model, i. e. , training data of p-diff.

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Si
m

ila
rit

y

K=1 Sim. 96~98 (%)
K=10 Sim. 91~97 (%)
K=50 Sim. 87~97 (%)
K=200 Sim. 85~98 (%)
K=500 Sim. 85~97 (%)

(b) IoUs of high-performing (Acc.≥76.5%) generated models.

Figure 5. (a) shows the parameter trajectories of our approach and original models distribution via t-SNE. (b) illustrates max IoUs between
generated and original models in different K settings. Sim. denotes similarity.

sion models from a continuous perspective, like score-based
models (Song & Ermon, 2019; Feng et al., 2023).

Parameter generation. HyperNet (Ha et al., 2017) dy-
namically generates the weights of a model with variable
architecture. Smash (Brock et al., 2018b) introduces a flexi-
ble scheme based on memory read-writes that can define a
diverse range of architectures. (Peebles et al., 2023) collect
23 million checkpoints and train a conditional generator
via a transformer-based diffusion model. MetaDiff (Zhang
& Yu, 2023) introduces a diffusion-based meta-learning
method for few-shot learning, where a layer is replaced by
a diffusion U-Net (Ronneberger et al., 2015). HyperDiffu-
sion (Erkoç et al., 2023) directly utilizes a diffusion model
on MLPs to generate new neural implicit fields. Different
from them, we analyze the intrinsic differences between
images and parameters and design corresponding modules
to learn the distributions of the high-performing parameters.

Stochastic and Bayesian neural networks. Our approach
could be viewed as learning a prior over network parameters,
represented by the trained diffusion model. Learning param-
eter priors for neural networks has been studied in classical
literature. Stochastic neural networks (SNNs) (Sompolin-
sky et al., 1988; Bottou et al., 1991; Wong, 1991; Schmidt
et al., 1992; Murata et al., 1994) also learn such priors
by introducing randomness to improve the robustness and
generalization of neural networks. The Bayesian neural net-
works (Neal, 2012; Kingma & Welling, 2013; Rezende et al.,
2014; Kingma et al., 2015; Gal & Ghahramani, 2016) aims
to model a probability distribution over neural networks to
mitigate overfitting, learn from small datasets, and asses the
uncertainty of model predictions. (Graves, 2011) propose
an easily implementable stochastic variational method as
a practical approximation to Bayesian inference for neural

networks. They introduce a heuristic pruner to reduce the
number of network weights, resulting in improved general-
ization. (Welling & Teh, 2011) combine Langevin dynamics
with SGD to incorporate a Gaussian prior into the gradient.
This transforms SGD optimization into a sampling process.
Bayes by Backprop (Blundell et al., 2015) learns a probabil-
ity distribution prior over the weights of a neural network.
These methods mostly operate in small-scale settings, while
p-diff shows its effectiveness in real-world architectures.

6. Discussion and Conclusion
Neural networks have several popular learning paradigms,
such as supervised learning (Krizhevsky et al., 2012; Si-
monyan & Zisserman, 2014; He et al., 2016; Dosovitskiy
et al., 2020), self-supervised learning (Devlin et al., 2018;
Brown et al., 2020; He et al., 2020; 2022), and more. In this
study, we observe that diffusion models can be employed to
generate high-performing and novel neural network param-
eters, demonstrating their superiority. Using diffusion steps
for neural network parameter updates shows a potentially
novel paradigm in deep learning.

However, we acknowledge that images/videos and parame-
ters are signals of different natures, and this distinction must
be handled with care. Additionally, even though diffusion
models have achieved considerable success in image/video
generation, their application to parameters remains relatively
underexplored. These pose a series of challenges for neural
network diffusion. We propose an initial approach to ad-
dress some of these challenges. Nevertheless, there are still
unresolved challenges, including memory constraints for
generating the entire parameters of large architectures, the
efficiency of structure designs, and performance stability.

8

Neural Network Diffusion

Acknowledgments. We thank Kaiming He, Dianbo Liu,
Mingjia Shi, Zheng Zhu, Bo Zhao, Jiawei Liu, Yong Liu,
Ziheng Qin, Zangwei Zheng, Yifan Zhang, Xiangyu Peng,
Hongyan Chang, David Yin, Dave Zhenyu Chen, Ahmad
Sajedi, and George Cazenavette for valuable discussions
and feedbacks.

References
Bao, F., Li, C., Zhu, J., and Zhang, B. Analytic-DPM: an

analytic estimate of the optimal reverse variance in diffu-
sion probabilistic models. In ICLR, 2022. URL https:
//openreview.net/forum?id=0xiJLKH-ufZ.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wier-
stra, D. Weight uncertainty in neural network. In ICML.
PMLR, 2015.

Bossard, L., Guillaumin, M., and Van Gool, L. Food-101–
mining discriminative components with random forests.
In ECCV. Springer, 2014.

Bottou, L. et al. Stochastic gradient learning in neural
networks. Proceedings of Neuro-Nımes, 91(8), 1991.

Brock, A., Donahue, J., and Simonyan, K. Large scale gan
training for high fidelity natural image synthesis. arXiv
preprint arXiv:1809.11096, 2018a.

Brock, A., Lim, T., Ritchie, J., and Weston, N. SMASH:
One-shot model architecture search through hypernet-
works. In ICLR, 2018b. URL https://openreview.
net/forum?id=rydeCEhs-.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
NeurIPS, 33, 2020.

Coates, A., Ng, A., and Lee, H. An analysis of single-layer
networks in unsupervised feature learning. In Proceed-
ings of the fourteenth international conference on arti-
ficial intelligence and statistics. JMLR Workshop and
Conference Proceedings, 2011.

Cristianini, N., Shawe-Taylor, J., et al. An introduction to
support vector machines and other kernel-based learning
methods. Cambridge university press, 2000.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In CVPR. Ieee, 2009.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dhariwal, P. and Nichol, A. Diffusion models beat gans on
image synthesis. NeurIPS, 34, 2021.

Dinh, L., Krueger, D., and Bengio, Y. Nice: Non-linear
independent components estimation. arXiv preprint
arXiv:1410.8516, 2014.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Erkoç, Z., Ma, F., Shan, Q., Nießner, M., and Dai, A. Hyper-
diffusion: Generating implicit neural fields with weight-
space diffusion. arXiv preprint arXiv:2303.17015, 2023.

Feng, B. T., Smith, J., Rubinstein, M., Chang, H., Bouman,
K. L., and Freeman, W. T. Score-based diffusion models
as principled priors for inverse imaging. arXiv preprint
arXiv:2304.11751, 2023.

Gal, Y. and Ghahramani, Z. Dropout as a bayesian approxi-
mation: Representing model uncertainty in deep learning.
In ICML. PMLR, 2016.

Graves, A. Practical variational inference for neural net-
works. NeurIPS, 24, 2011.

Ha, D., Dai, A. M., and Le, Q. V. Hypernetworks. In ICLR,
2017. URL https://openreview.net/forum?
id=rkpACe1lx.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In CVPR, 2016.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Mo-
mentum contrast for unsupervised visual representation
learning. In CVPR, 2020.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick,
R. Masked autoencoders are scalable vision learners. In
CVPR, 2022.

Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K.,
Pritch, Y., and Cohen-or, D. Prompt-to-prompt im-
age editing with cross-attention control. In ICLR,
2023. URL https://openreview.net/forum?
id=_CDixzkzeyb.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. NeurIPS, 33, 2020.

Ho, J., Chan, W., Saharia, C., Whang, J., Gao, R., Gritsenko,
A., Kingma, D. P., Poole, B., Norouzi, M., Fleet, D. J.,
et al. Imagen video: High definition video generation
with diffusion models. arXiv preprint arXiv:2210.02303,
2022.

9

https://openreview.net/forum?id=0xiJLKH-ufZ
https://openreview.net/forum?id=0xiJLKH-ufZ
https://openreview.net/forum?id=rydeCEhs-
https://openreview.net/forum?id=rydeCEhs-
https://openreview.net/forum?id=rkpACe1lx
https://openreview.net/forum?id=rkpACe1lx
https://openreview.net/forum?id=_CDixzkzeyb
https://openreview.net/forum?id=_CDixzkzeyb

Neural Network Diffusion

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. Image-to-
image translation with conditional adversarial networks.
In CVPR, 2017.

Jarzynski, C. Equilibrium free-energy differences from
nonequilibrium measurements: A master-equation ap-
proach. Physical Review E, 56(5), 1997.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Kingma, D. P., Salimans, T., and Welling, M. Variational
dropout and the local reparameterization trick. NeurIPS,
28, 2015.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
NeurIPS, 25, 2012.

Krogh, A. and Vedelsby, J. Neural network ensembles, cross
validation, and active learning. NeurIPS, 7, 1994.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11), 1998.

Li, A. C., Prabhudesai, M., Duggal, S., Brown, E., and
Pathak, D. Your diffusion model is secretly a zero-shot
classifier. arXiv preprint arXiv:2303.16203, 2023.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Dollár, P., and Zitnick, C. L. Microsoft coco:
Common objects in context. In Computer Vision–ECCV
2014: 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part V 13, pp. 740–
755. Springer, 2014.

Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T.,
and Xie, S. A convnet for the 2020s. In CVPR, 2022.

Long, J., Shelhamer, E., and Darrell, T. Fully convolutional
networks for semantic segmentation. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 3431–3440, 2015.

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu, J.
DPM-solver: A fast ODE solver for diffusion probabilis-
tic model sampling in around 10 steps. In Oh, A. H.,
Agarwal, A., Belgrave, D., and Cho, K. (eds.), NeurIPS,
2022. URL https://openreview.net/forum?
id=2uAaGwlP_V.

Murata, N., Yoshizawa, S., and Amari, S.-i. Network infor-
mation criterion-determining the number of hidden units
for an artificial neural network model. IEEE transactions
on neural networks, 5(6), 1994.

Neal, R. M. Bayesian learning for neural networks, volume
118. Springer Science & Business Media, 2012.

Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin,
P., McGrew, B., Sutskever, I., and Chen, M. Glide:
Towards photorealistic image generation and editing
with text-guided diffusion models. arXiv preprint
arXiv:2112.10741, 2021.

Nilsback, M.-E. and Zisserman, A. Automated flower clas-
sification over a large number of classes. In 2008 Sixth
Indian conference on computer vision, graphics & image
processing. IEEE, 2008.

Parkhi, O. M., Vedaldi, A., Zisserman, A., and Jawahar, C.
Cats and dogs. In CVPR. IEEE, 2012.

Peebles, W. and Xie, S. Scalable diffusion models with
transformers. arXiv preprint arXiv:2212.09748, 2022.

Peebles, W., Radosavovic, I., Brooks, T., Efros, A. A., and
Malik, J. Learning to learn with generative models of
neural network checkpoints, 2023. URL https://
openreview.net/forum?id=JXkz3zm8gJ.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M.
Hierarchical text-conditional image generation with clip
latents. arXiv preprint arXiv:2204.06125, 1(2), 2022.

Razavi, A., Van den Oord, A., and Vinyals, O. Generating
diverse high-fidelity images with vq-vae-2. NeurIPS, 32,
2019.

Ren, S., He, K., Girshick, R., and Sun, J. Faster r-cnn:
Towards real-time object detection with region proposal
networks. Advances in neural information processing
systems, 28, 2015.

Rezende, D. and Mohamed, S. Variational inference with
normalizing flows. In ICML. PMLR, 2015.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochas-
tic backpropagation and approximate inference in deep
generative models. In ICML. PMLR, 2014.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In CVPR, 2022.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Con-
volutional networks for biomedical image segmentation.
In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Confer-
ence, Munich, Germany, October 5-9, 2015, Proceedings,
Part III 18, pp. 234–241. Springer, 2015.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton,
E. L., Ghasemipour, K., Gontijo Lopes, R., Karagol Ayan,

10

https://openreview.net/forum?id=2uAaGwlP_V
https://openreview.net/forum?id=2uAaGwlP_V
https://openreview.net/forum?id=JXkz3zm8gJ
https://openreview.net/forum?id=JXkz3zm8gJ

Neural Network Diffusion

B., Salimans, T., et al. Photorealistic text-to-image diffu-
sion models with deep language understanding. NeurIPS,
35, 2022.

Schmidt, W. F., Kraaijveld, M. A., Duin, R. P., et al. Feed
forward neural networks with random weights. In ICPR.
IEEE Computer Society Press, 1992.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In ICML. PMLR, 2015.

Sompolinsky, H., Crisanti, A., and Sommers, H.-J. Chaos
in random neural networks. Physical review letters, 61
(3), 1988.

Song, J., Meng, C., and Ermon, S. Denoising diffu-
sion implicit models. In ICLR, 2021. URL https:
//openreview.net/forum?id=St1giarCHLP.

Song, Y. and Ermon, S. Generative modeling by estimating
gradients of the data distribution. NeurIPS, 32, 2019.

Tian, Z., Shen, C., Chen, H., and He, T. Fcos: A simple and
strong anchor-free object detector. IEEE T-PAMI, 44(4):
1922–1933, 2020.

Van der Maaten, L., Hinton, G., and Van der Maaten, L.
Visualizing data using t-sne. JMLR, 9(11), 2008.

Welling, M. and Teh, Y. W. Bayesian learning via stochastic
gradient langevin dynamics. In ICML, 2011.

Wightman, R. Pytorch image models. https://github.
com/rwightman/pytorch-image-models,
2019.

Wong, E. Stochastic neural networks. Algorithmica, 6(1-6),
1991.

Wortsman, M., Ilharco, G., Gadre, S. Y., Roelofs, R.,
Gontijo-Lopes, R., Morcos, A. S., Namkoong, H.,
Farhadi, A., Carmon, Y., Kornblith, S., et al. Model
soups: averaging weights of multiple fine-tuned models
improves accuracy without increasing inference time. In
ICML, pp. 23965–23998. PMLR, 2022.

Zhang, B. and Yu, D. Metadiff: Meta-learning with con-
ditional diffusion for few-shot learning. arXiv preprint
arXiv:2307.16424, 2023.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. Unpaired
image-to-image translation using cycle-consistent adver-
sarial networks. In ICCV, 2017.

11

https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Neural Network Diffusion

A. Experimental Settings
In this section, we introduce detailed experiment settings, datasets, and instructions of code for reproducing.

A.1. Training recipe

We provide our basic training recipe with specific details in Tab. 4. This recipe is based on the setting of ResNet-18 with
CIFAR-100 dataset. We introduce these details of general training hyperparameters, autoencoder, and latent diffusion model,
respectively. It may be necessary to make adjustments to the learning rate and the training iterations for other datasets.

Training Setting Configuration

K, i.e., the number of original models 200
batch size 200
Autoencoder

optimizer AdamW
learning rate 1e-3
training iterations 30, 000
optimizer momentum betas=(0.9, 0.999)
weight decay 2e-6
ξV , i.e., noise added on the input parameters 0.001
ξZ , i.e., noise added on the latent representations 0.1
Diffusion

optimizer AdamW
learning rate 1e-3
training iterations 30, 000
optimizer momentum betas=(0.9, 0.999)
weight decay 2e-6
ema β 0.9999
betas start 1e-4
betas end 2e-2
betas schedule linear
T , i.e., maximum time steps in the training stage 1000

Table 4. Our basic training recipe based on CIFAR100 dataset and ResNet-18 backbone.

A.2. Datasets

We evaluate the effectiveness of p-diff on 8 datasets. To be specific, CIFAR-10/100 (Krizhevsky et al., 2009). The CIFAR
datasets comprise colored natural images of dimensions 32× 32, categorized into 10 and 100 classes, respectively. Each
dataset consists of 50,000 images for training and 10,000 images for testing. ImageNet-1K (Deng et al., 2009) derived from
the larger ImageNet-21K dataset, ImageNet-1K is a curated subset featuring 1,000 categories. It encompasses 1,281,167
training images and 50,000 validation images. STL-10 (Coates et al., 2011) comprises 96× 96 color images, spanning 10
different object categories. It serves as a versatile resource for various computer vision tasks, including image classification
and object recognition. Flowers (Nilsback & Zisserman, 2008) is a dataset comprising 102 distinct flower categories,
with each category representing a commonly occurring flower species found in the United Kingdom. Pets (Parkhi et al.,
2012) includes around 7000 images with 37 categories. The images have large variations in scale, pose, and lighting.
F-101 (Bossard et al., 2014) consists of 365K images that are crawled from Google, Bing, Yelp, and TripAdvisor using the
Food-101 taxonomy.

In the appendix, we extend our p-diff in object detection, semantic segmentation, and image generation tasks. Therefore, we
also introduce the extra-used datasets in the following. COCO (Lin et al., 2014) consists of over 200,000 images featuring
complex scenes with 80 object categories. It is widely used for object detection and segmentation tasks. We implement
image generation task on CIFAR-10.

12

Neural Network Diffusion

Table 5. Comparison of using 1D CNNs and fully connected (FC) layers. 1D CNNs perform better than FC layers, especially in memory
and time.

Arch. Method Dataset Time (s)↓ Best↑ Average↑ Median↑ Worst↑ Memory (MB)↓
ConvNet-3 FC MNIST 17 98.0 90.1 93.6 70.2 1375
ConvNet-3 1D CNNs MNIST 16 99.2 92.1 94.2 73.6 1244

A.3. Instructions for code

We have submitted the source code as the supplementary materials in a zipped file named as ‘p-diff.zip’ for reproduction. A
README is also included for the instructions for running the code.

B. Explorations of Designs and Strategies
In this section, we introduce the reasons for the designs and strategies of our approach.

B.1. Why 1D CNNs?

Considering the great differences between visual data and neural network parameters, we default to using 1D CNNs in
parameter autoencoder and generation. The detailed designs of 1D CNNs can be found in the following. Each layer in 1D
CNNs includes two 1D convolutional layers with a normalization layer and an activation layer. More details of the 1D
CNNs can be found at core/module/modules in our code zip file.

Here naturally raises a question: are there alternatives to 1D CNNs? We can use pure fully connected (FC) layers as
an alternative. To answer this question, we compare the performance of FC layers and 1D CNNs. The experiments are
conducted on MNIST with ConvNet-3 as the backbone. Based on our experimental results in Tab. 5, 1D CNNs consistently
outperform FC in all architectures. Meanwhile, the memory occupancy of 1D CNNs is smaller than FC.

Table 6. Comparison of using batch normalization, group normalization, and instance normalization in our approach. We also report the
results without normalization. ‘norm.’ denotes normalization. Default settings are marked in gray . Bold entries are best results.

(a) Results on CIFAR-10.

norm. best avg. med.

original 94.3 - -
no norm. 94.0 82.8 80.1

BN 88.7 84.3 88.2
GN 94.3 89.8 93.9
IN 94.4 88.5 94.2

(b) Results on MNIST.

norm. best avg. med.

original 99.6 - -
no norm. 99.5 84.1 98.4

BN 99.3 86.7 99.1
GN 99.6 93.2 99.3
IN 99.6 92.7 99.4

(c) Results on CIFAR-100.

norm. best avg. med.

original 76.7 - -
no norm. 76.1 67.4 69.9

BN 75.9 70.7 73.3
GN 76.8 72.1 75.8
IN 76.9 72.4 75.6

B.2. Is variational autoencoder an alternative to our approach?

Variational autoencoder (VAE) (Cristianini et al., 2000) can be regarded as a probabilistic generative model and achieve
many remarkable results in the generation area. We also implement VAE to generate neural network parameters. We first
introduce the details of VAE in our experiment. We implement vanilla VAE using the same backbone of the autoencoder in
p-diff for a fair comparison. We evaluate the VAE generator in the case of different K and compare its best, average, and
medium performances with p-diff generated models. Based on the results in Tab. 7, our approach outperforms VAE by a
large margin in all cases. Another interesting finding is that the average performance of VAE generated models goes down
as the number of original models increases.

B.3. Which normalization strategy is suitable?

Considering the intrinsic difference between images and neural network parameters, we explore the influence of different
normalization strategies. We ablate batch normalization (BN), group normalization (GN), and instance normalization (IN)
on CIFAR-10, MNIST, and CIFAR-100, respectively. We also implement our method without normalization for additional

13

Neural Network Diffusion

Table 7. Comparisons between VAE and our proposed p-diff. VAE performs worse than our approach, especially on the metric of average
and medium accuracy.

(a) Result of VAE

num. of original models best avg. med.

1 75.6 61.2 70.4
10 76.5 65.8 71.5
50 76.5 63.0 71.8

200 76.7 62.7 70.8
500 76.7 62.6 71.9

(b) P-diff vs VAE, improvements are reported in ().

num. of original models best avg. med.

1 76.6 (+1.0) 70.7 (+9.5) 73.2 (+2.8)
10 76.5 (+0.0) 71.2 (+5.4) 73.8 (+2.3)
50 76.7 (+0.2) 71.3 (+8.3) 74.3 (+2.5)

200 76.9 (+0.2) 72.4 (+9.7) 75.6 (+4.8)
500 76.8 (+0.1) 72.3 (+9.7) 75.4 (+3.5)

comparison. Their best, average, and medium performances of 100 generated models are reported in Tab. 6. Based on the
results, we have the following observations: 1) BN obtains the worst overall performance on all three metrics. Since BN
operates in the batch dimension and introduces undesired correlations among model parameters 2) GN and IN perform
better than without normalization, i.e. ‘no norm.’ in the Tab. 6. That could be explained by some outlier parameters affecting
the performance a lot. 3) From the metrics, we find our method has good generalization among channel-wise normalization
operations, such as GN and IN.

Table 8. We design ablations about the intensity of input noise ξV and latent noise ξZ , generating variant types of parameters. ‘para.’
denotes parameter. Default settings are marked in gray . Bold entries are best results.

(a) Ablation of input noise ξV .

para. noise best avg. med.

1e-4 76.7 72.1 75.6
1e-3 76.9 72.4 75.6
1e-2 76.3 70.4 74.4
1e-1 76.8 71.4 75.1

(b) Ablation of latent noise ξZ .
latent noise best avg. med.

1e-3 76.7 67.3 73.2
1e-2 76.6 70.1 74.7
1e-1 76.9 72.6 75.6
1e-0 76.7 74.0 75.0

(c) Ablation of types of parameters.
para. type original best avg. med.

linear 76.6 76.6 47.3 71.1
conv 76.2 76.2 71.3 76.1

shortcut 75.9 76.0 73.6 75.7
bn 76.7 76.9 72.4 75.6

C. More Ablations
In this section, we introduce more ablation studies of our method. Same as the main paper, if not otherwise stated, we
default to training ResNet-18 on CIFAR-100 and report the best, average, and medium accuracy.

C.1. The intensity of noise added into input parameters

In the main paper, we ablate the effectiveness of the added noise into input parameters. Here, we study the impact of the
intensity of this noise. Specifically, we explore four levels of noise intensity and report their best, average, and medium
results in Tab. 8(a). One can find that, our default intensity achieves the best overall performance. Both too-large and
too-small noise intensities fail to obtain good results. That can be explained by that the too-large noise may destroy the
original distribution of parameters while too-small noise can not provide enough effectiveness of augmentation.

C.2. The intensity of noise added into latent representations

Similar to Sec. C.1, we also ablate the noise intensity added into latent representations. As shown in Tab. 8(b), the
performance stability of generated models becomes better as the noise intensity increases. However, too-large noise also
breaks the distribution of the original latent representations.

C.3. The generalization on other types of parameters

In the main paper, we investigate the effectiveness of our approach in generating normalization parameters. We also evaluate
our approach on other types of parameters, such as linear, convolutional, and shortcut layers. Here, we show the details

14

Neural Network Diffusion

Table 9. Exploring the influence of maximum time steps in the training stage. We conduct experiments on CIFAR-10, MNIST, and
CIFAR-100 datasets, respectively. Bold entries are best results.

(a) Results on CIFAR-10.

maximum step best avg. med.

10 94.4 82.0 93.8
100 94.3 94.3 94.3
1000 94.4 88.5 94.2
2000 94.3 85.8 94.2

(b) Results on MNIST.

maximum step best avg. med.

10 99.6 89.9 98.9
100 99.6 99.6 99.6

1000 99.6 92.7 99.4
2000 99.6 94.1 99.5

(c) Results on CIFAR-100.

maximum step best avg. med.

10 76.6 70.6 74.9
100 76.8 75.9 76.5
1000 76.9 72.4 75.6
2000 76.8 73.1 75.1

of the above three type layers as follows: 1) linear layer: the last linear layer of ResNet-18. 2) convolutional layer: first
convolutional layer of ResNet-18. 3) shortcut layer: the shortcut layer between 7th and 8th layer of ResNet-18. The training
data preparation is the same as we mentioned in the main paper. As illustrated in Tab. 8, we find our approach consistently
achieves similar or improved performance compared to the original models.

D. Open Explorations
D.1. Do we need to train 1000-step diffusion model?

We default to training the latent diffusion model via random sampling from 1000 time steps. Can we reduce the number
of time steps in the training stage? To study the impact of the time steps, we conduct an ablation and report the results in
Tab. 9. Several findings can be summarized as follows: 1) Too small time steps might not be strong enough to generate
high-performing models with good stability. 2) The best stability performances are obtained by setting the maximum time
steps as 100. 3). Increasing the maximum time steps from 1000 to 2000 can not improve the performance. We will further
upgrade our design based on this exploration.

D.2. Potential applications

Neural network diffusion can be utilized or help the following potential research areas. 1) Parameters initialization: our
approach can generate high-performing initialized parameters. Therefore, that would speed up the optimization and reduce
the overall cost of training. 2) Domain adaptation: our approach may have three benefits in the domain adaptation area.
First, we can directly use the diffusion process to learn the well-performed models trained by different domain data. Second,
some hard adaptations can be achieved by our approach. Third, the adaptation efficiency might be improved largely.

E. Other Finding and Comparison Results
E.1. How to select generated parameters?

P-diff can rapidly generate numerous high-performance models. How do we evaluate these models? There are two primary
strategies. The first one is to directly test them on the validation set and select the best-performing model. The second one is
to compute the loss of model outputs compared to the ground truth on the training set to choose a model. We generated
hundred model parameters with performance distributions in different intervals and displayed their accuracy curves on both
the training and validation sets in Fig. 6(a). The experimental results indicate that p-diff exhibits a high level of consistency
between the training and validation sets. To provide a fair comparison with baseline methods, we default to choose the
model that performs the best results on the training set and compare it with the baseline.

E.2. Parameter visualization

To provide a more intuitive understanding, we compare the parameters generated by our approach, SGD optimization
(original), and randomly initialized. Taking ResNet-18 as an example, we report the mean, std, accuracy (acc.), and IoU of
the normalization layer parameters of training on CIFAR-100 in Fig. 6(b). There is a significant difference between the
parameters generated by our approach and the randomly initialized parameters, mean: 0.37 vs 0.36, std: 0.22 vs 0.21 The
IoU between ours and SGD is 0.87. This visualization and results confirm that the diffusion process can learn the patterns of

15

Neural Network Diffusion

0 20 40 60 80 100
index of generated model

90

92

94

96

98

100
ac

cu
ra

cy
 o

n
C

IF
A

R
-1

0

validation set
training set

(a) Accuracy distribution in p-diff models.

Visualization of R-18 BN parametersmin. max

mean: 0.37 std: 0.22 acc: 76.6% mean: 0.36 std: 0.21 acc: 76.8%

Similarity: 0.87

mean: 0.50 std: 0.50 acc: 1.3%

in
iti

al
.

or
ig

in
al

p-
di

ff

(b) Visualization of initial, SGD-trained, p-diff generated model.

Figure 6. P-diff can generate models with great consistency on both training and validation sets contrast compared to the original model.
(a) shows the accuracy distribution of training and validation sets in hundred p-diff models. (b) displays a heat map of initial, SGD-trained,
p-diff generated parameters of the normalization layer in ResNet-18.

15x faster

19s 300s

(a) Acc. of R-18.

44x faster

45s 2000s

(b) Acc. of ViT-Base.

Figure 7. We compare the accuracy curves of our method and SGD under three cases. (a): ResNet-18 on CIFAR-100. (b): ViT-Base on
ImageNet-1K. Our approach speeds up at least 15 × than standard SGD process.

high-performance parameters and generate new good models from random noise. More importantly, our generated model
has a great behavior contrast compared to the original model, which is reflected in the low IoU value.

E.3. Efficiency of parameter generation

To evaluate the generation efficiency of our method, we compare the validation accuracy curves of our method and SGD
training among the following cases: 1) parameter diffusion with ResNet-18 on CIFAR-100; 2) parameter diffusion with
ViT-Base on ImageNet-1K. We utilize the random initialized parameters for our method and SGD to make a fair comparison.
As illustrated in Fig. 7, our method can speed up at least 15 × compared to the SGD without performance drops. On
ImageNet-1K, we can speed up by 44 × when compared to the vanilla SGD optimization, which illustrates the more
significant potential when applying our approach to large training datasets.

F. Generalization on Other Tasks
We implement our method for other visual tasks, i.e., object detection, semantic segmentation, image generation. Experi-
mental results illustrate the ability of our method to generalize to various tasks.

F.1. Object detection

Faster R-CNN (Ren et al., 2015) utilizes a region proposal network (RPN) which shares full-image convolutional features
with the detection network to improve Fast R-CNN on object detection task. The FCOS (Fully Convolutional One-

16

Neural Network Diffusion

Stage) (Tian et al., 2020) model is a single-stage object detection model that simplifies the detection process by eliminating
the need for anchor boxes. In the object detection task, We implement Faster R-CNN (Ren et al., 2015) and FCOS (Tian
et al., 2020) with ResNet-50 backbone on the COCO (Lin et al., 2014) dataset based on torch/torchvision. Considering the
time cost of data for p-diff, we directly use the pre-trained parameters as our first training data, then fine-tune it to obtain
other training data. The parameters of the boxing predictor layer are generated by p-diff. We report the results in Tab. 10.
Our method can get models with similar or even better performance than the original model in seconds.

model/performance best original mAP best p-diff mAP

Faster R-CNN 36.9 37.0
FCOS 39.1 39.1

Table 10. P-diff in object detection task. We report the mAP of best original model and best p-diff generated model.

F.2. Semantic segmentation

Fully Convolutional Network (FCN) (Long et al., 2015) was designed to efficiently process and analyze images at the pixel
level, allowing for the semantic segmentation of objects within an image. Following the approach in object detection, we
implement semantic segmentation task using FCN (Long et al., 2015) with ResNet-50 backbone to evaluate a subset of
COCO val2017, on the 20 categories that are present in the Pascal VOC dataset. We generate a subset of the parameters
of backbone and report the results in Tab. 11. Our approach can generate high-performing neural network parameters in
semantic segmentation task.

model/performance original p-diff
mean IoU pixelwise acc. mean IoU pixelwise acc.

FCN 60.5 91.4 60.7 91.5

Table 11. P-diff in semantic segmentation task. We report mean IoU and pixelwise accuracy of best original model and best p-diff model.

F.3. Image generation

model/performance original FID p-diff FID

DDPM UNet 3.17 3.19

Table 12. P-diff in image generation task. We report
the FID score on the CIFAR-10 dataset.

DDPM (Ho et al., 2020) is a diffusion-based method in image generation,
where UNet (Ronneberger et al., 2015) is used to model the noise. In
the image generation task, we use p-diff to generate a subset of model
parameters of UNet. For comparison, we evaluate the p-diff model’s FID
score on the CIFAR-10 dataset and report the results in Tab. 12. The best
p-diff generated UNet get similar performance to the original model.

17

https://pytorch.org/vision/stable/models.html

