It has recently come to my attention that "Notes on the design and analysis of Simon and Speck" ( https://eprint.iacr.org/2017/560.pdf ) was published. Thus I have decided to encrypt a message using this page ( https://web.archive.org/web/20161211164439/http://www.movable-type.co.uk/scr... ) with a key generated by keypass pattern "H(15)" (15 lowercase hexadecimal). I plan on releasing the key in the early part of 2019 Block XXTEA is not trivially bruteforced with no "cribs" so here's my predictions for 2019: 77Uhc/ZgC7Xn6IVIy/+I2vL//rRx0UIzVyC/g6fOmV0hUlS62dx79pzQ5JKbXarPE5GZ4B3k6uj9I4v1gIhXB17zYI0UdrTgk+JMC7iw+uuIORNLrRwiKckdxaAYtpmpHReAeQyhm6xVFpdku6bpfUsa0gttm2+BesA0HVVc3Q6vhptqo1RPYB9hkugssEsSSVaFZUFm1QsC8ubNvxLQB/kw2ZuCfPL+zGWCbW0kyzHW7AOnzFyYa04tWLE2qOy3XWzMgTQJtK3EdUez5wN8goI4xU0EQVdyuXgEzy8u9wMNBT8tgvEPPc2MKgds8+cZLs0wh1Tn4BTPchZioPlFQHIobt8W/7J+2OS46ja7GQeBmUN/nvj8aDBxdJXQm5kPZuI7FMoCMG9COtXyQ5sadRYpIB5EbEHQeGkkJDMf8aW/DFJChdt8XCqHmMDgiL+8XT3pK8m6Dr2vT12VgQkxs3CtMxLSPg2TCNoQeZqdt2W/+kvG9ZaqbrlDP1WztwPuYOTvtZYwafcwtZDNlv70KZyWL55pbSsVTbmvFucX7KCIihqWyfEG3JqY9AQL+awgEE0HwxqYnmhqaw+JxDj2N4v4n9h/hMBGN7DgREYKGE197XHgL5iwitMkdGXlV48t8zr1Ttsy29HD6LJqieW7b7cC7MeL6guKn/cKolju9R1dVHQXsQ5r8Pdi3h3MEK0u7szyl/Ax9omBWeYmE7Q4ObOMnTVniIMU7RJxFKcowo7Sa7TbzV/Y1Ehv6Bq0Ma0vfzWDlpTZr95fITUCDtrJb9gs6LaujBj5GP2IdgiTaOuZkgibiCLTGjwND6aJveXZWCaGOzBqi5DMAvo528iDcz3gUzgpmBJXvVXW3/gfmbCF3dLesTGREbdrczTwRqfP5DjLr57Kx5VOvdBs+NroABOoTwZctO5y4Mv+LmaYgxBvGfGU9J3EPiiGL+P3/i76YUnpYkKW6y801AJcGw6BhHSRSXl14opocDEbkFnNC2Lpm0eN1gU+tFnCiiPK5/8uxG4DzcKtuzEeQ62dNnPNtXM0YWzu68XvuDmmzWqWGFLmpFWq4YWnrR3crWnVGk4zqZN7M0wF5gT4k2PGLCBahzEJywseMQwXWlcurmufYL0OacZLKWPtf0yySK7K7A1P3tK9zyaMiktOJsa8m7pV+6g1X76im5Lz/AlgujO0zPipHonsXc6VhECXg5MYruKQqw91ciZ4e6Ao2zWsHHYU9WxcoxJXkoXhAWRSuZ0bABU/Y5Q89DaszSlWNeRpM9ilSyqvywpNnbn9SnuzubWSiy27Pn1zsXxvE0h+9v8tBZZDTWr3l81OV9H6k5MV31JvnVLGcyiSb43QXsCELLVAWlcNVMG1af7bZHFWcgrf3+WYmJ5Nx39WkiiqktKQIupieRRAP29DC/mWRNqEYtbHEOFC1TygnMkstHwvHtlwW/n4yqpHcnF9GPi8uk6tU3chCsY/Fjl2mX81GLrPcW/e9iBFPgveTEa8WLq4Ut+3t00v0AhynWrVZLt/eE55TB8Wgr2ubKPfhkAZ75Q+mjyOAxyfTYT/NZV8GB7p8UDSYcpMnH6TTI4tlMwPQ0TBgj3z6Qeb/A/lGeXKpvaTCzabCqLw/2R54Il43KknEH0wUQlkT1E3xH0rE4iyIDH4XpzbRfbcKS8SSjjiLYWyCn0hTqitfQXlU5oA2D/WacHiR9XPjulDQ1QglGX13Hg23ZJZCMXrepJUXaerViQ3TPFbew9gPnIpFmp1WdDLUlc/yYl/fiSvXyIxR3EVbax0MDP+e99/TpSWOFGS/2Ooyby14ClnvvKldz2QZ7JtiIu2fgxpNrqGle53uw7cCA+8LRf4HPJNK5o+oyllo8CI+R7DIdTJvipbLPZOzxKgh4eQTg3yiMp9dLKi0Z8kU0ajqtbbB0vqjuqRkOKNV1kPTA8vxwIoRrTVOa+EsTBcbHngq+PCDB5H+0mhJBU8SHPq1rg8uf4elX9LudN+3EVWk++KKnal1pmqnB2yH8sOBR5j5gXASFtj4OnkSblZr5ng3qFRjDs8pG+w+ZRxdPr8F7kUkJwhHb21/ctcBz8ADF5zXbOgpWd8toVz4QZ/Skc8mpTuSjdEKCao5pots+2VxeJ/NT28tqcr/NXQDXTA9dvQMSIWCSLosJqSCAPJHU9xNP+RUurPAQ5l4nFcoKhn7bzFoQt08GIb68boAy9BPT1kC6mTCM4/erAnxh3/IKsBXQl+RqRwIYCh94rGZg9l6N7Xo2VCkDroLWIPxeUelJkPfq0pXbc2D7r+xAtn/yvltR+o4ZtPKkdJ/qSC9yu9bteqsLKdplb3WWHHBKZw94pvNzHpzKMutiNfTIMMQA0CdkWmCannJvV1tELHBBMgM3Aek7Q1g/3FBCGmbg9HBhkk9EFk8vYhHe3ry6xM9OcEjTg/ikuuqWox73gmSt4JeSy/OLVcx9ybhGFoS9kcF82ESJQ7ChK3wOXE812mH7AMorvUj7+BY39J9qz3w79XAJfnBm/TkpF9J5bbuMeFyHAW4p5WPuEWDAXrNXSj1qipZUhOFgoNSEfG/SKeqY7HvI/Z/iM0S2wTmbyp9rSNqHmkPbsU9Q02/tvsP8UFDTkzq1kBwAZhfssi0HYwWDvItlpmAGURQU/USIaXLfYIv1G4o3+LwVoHJhKOnjZ12jyDZZxKX+Vqlr8igozPJqS4ZBDLZbhi/jqHMuwYubC28zbW9FLmFms9g/fAaUxrI+SmBkynQhPXmEaml5njmtobH3gqviTxAtwhESErZTQnmbPr7BOkY/cXoGH2oAMUqJTgmohOFWfGbU+hWztXuVZS5kpg+zEXPh21/l044dUPGMtn6kWkqD5cGJ3ArMtN8M2OdxQVSIxVOHHonh/aKe7ZIiTZpiH++q7zBmBkF9+6lSklrpmFk7XkwfAE3wEPmhVuhEsvEzPpDDdbqDkumBpgU5yVwQwirrY6fSDV/Nucj6mSIi0suh9EThB93tY3LJDeZSd1avJB/1v6xcZO7m2k3wsql2jD7MQQJtNKq+rb76EQNREt6wPshaL0h8PWSJSITJvUiMoD/ap11CA4YT5yf9ujjOeKehb62cYMQjWbcYB0xkqUQzx3rKYhFwo7e5T+D4V0r1osw3JMjwtV4Bje/6KlKzz8Ukkd2XHvQO94F/kxE9Myc2WYFk77FXMmbS6tu0//pV8+Q77QhtMli+Qj4v68uBnRGOjYQJipOsfz//+tFW5HciNT5ItJpUqJhpxp9pjoABvMngGxXZYsBPz5fwTnzKnr0NBGmNfGHns8X+uMqGP4qoOLIBhGaXiigwXC2m5mviWl1fu+Gmgm+1QcdLa7RHY70A/uOL5aXLgWqnQbTxaDTh9h2NplmYzUomxiYHATLKIWW2HB8GtXJAVUUD6rhRbDZiUEFP7ahicb7L90ZfF96LENJt5rFDI2IrmyzjcTiCVyQmlGsuT8u1J8znwJQ3Y6R3L+B21Ww+qkHkl8VzZzi8mNq6VTsEECw7eTejJDswBcyxWvc7C0jEkwVqxO+Lc5Mc/4uESZKgVIN/cKbXnIp54Rt5OT6e4YZ/HOb9mLFVdfdZWyYFFcGtZ1NGGIlpgxqujQQUcwKFmNbo88v1xqoZpHgPugyOJFPu4OxhdIBK7Tpw9NU/QYM90uAAT2n13DgbU47X5YmNbuEjCi0lOjJDRZcV745ZwOR+4tfsdv4teJrOf2mJoMtJkMYdNZL+xtO3YqGYx+s7aFiGO8rOg8Ygmqmw1cUDOHYyBgysbOn5co5ZbPze3FOupML71IAIZcBpHCVP8dOFb80xMmzfu5oMsCEiR0KNypTvUYXsa+M62KcWDfP8FGNkB1WEMKI2q8QFsSBymNqq2YrNbMtHambRX+6NyRPS2RVPQcEM6pxuu2EJQP1hvzZCJDEzpl1UmslYhJfzNUHsC17X1+k/VqfXeM8ZRGG+rb/yP0bfFKhiQ91NflQlmjSipxLfyFueeROrntQo9SKPguIrUBKT7XhxtS5RJ6xE7JvVkIE6DBbroIUvz3cfqPz+v72ly2qWf5AL37NXwkzhJftmmsP7fVQRmgE1/MH5VnoE65ZT1Hg4YQMCqQMCNyrkT4bFLr/IpXWqPvEXYgymeeVHeAuFwBouCeaEXjB3jB7uMWP3eGl+Rc9Oe+M8Yx4cxFLou7ggc8O5hua+RTM15a3keJbbvKGH9x0jH37PP+nhteQ/VdhUMy3Y7Y8L5YurY/zLbHq0SBEJRJMslxAeMdEw5aEgvIVZMbKLcFgC3hUHgA5ErQjjUpfYhOxlLOh89/U4n1bhCOlmIv8grYkKOMFj8IMyrVkeXz+Du7lCrY8HS/CgKMEtR51Th2mdnlmSjULxccDh8ZiaFgENDjlQGQfuIBrxtkd1WOIqJq+ADGn2r/Rfk3z9bW1KurfNLXZb/1KaDh95cI3ee1m/CV7LOZjw925uO7DaQsEAsn/u7xdVda1TADC02RFZIOhCtE9lJoqztwK5D3n5GSJvV4miUSy1TwtIaEokmwLYep2NJhgZHMGmOOkKH25J5dRp1OYHOW7hi6MTFpkD6ggvTu6pTl4LjdSGrSg/031GihTb6epTjg7zfEzFdjafYK+ufPX9nVsJwHe5LP6Oprm3+D3IzWTw762BCBIr5aOsw4Rogom+cFBNgoeBTqM9gjum0BqqI1n5Wk2rokqQd2RDcX/slchPkPOIMZSOKKejK58+IfyTiBj+02FqiEBTnj6z+ulI+k1mwSmZq0Yes5EnXmD6hJGifT8FgiTtRx2DgaE6WpcHy59J3p0xqOOUb+wPnmNnGyjVndyF03bu4zqi7U9z4D5xmrXCH2sEbMjo6fn3dH/sz7qATV5ubKv6TIL7fXagAZZZjOQGoCppBMzqYHz0oVb1yEmaNySuUqPJJ6thz9uW9GJhM12eUWEiNx+oOGAfvXKUZo65ztcwSQaI/pnpg/B2cCUdnpx72Yln7VqaCHtKdwvJ8YnkNRoXnxKwOu/NjFxGwawKCo74B10gpaXGsb55F0h+4y5Fw2YPEUjcsNcQGsXe8Tl2NBNFFV6RSGxSAdNs1Mbz5Hf3bZyIKUAhN15kwnQBccoLVW/3RY9IeN2M2K9OydVOIsamWpZM/8tHQF9Gyj55NClAi7YZV4Z2/Fx/m/BOU8EW3LPZZqrsc7zIvKDtW4mPJo7reiT9Ajc+duI3fJZK/8ynNgw2ui8PI2ydzmpTYWmONYT9OCn/A97LYczon9Qfr42U2Wqc15yjytgrXKIm2CFjH+Jnv1YnrkOr77Gq74F78tR7NCqN7k9XIOv5SgGoAk01IMmrfbJ/l25QMVaH/0WE0tkNQSzyj05Pm0+6rTMGQ+XPbHpnvhvwfZMtRK+yMpYBPKdTAxRKBJmcyEssqPdOZw6iE5zyrHOHtLZdRVefTWp24leZj95hqjVM30JbruN7SqmLZFpTILn8MqoI6OQIf/dLARg0TjPggZJXi7WJDnoC6+ue8vzyrhqfXa4lazyVBPbDY=