
#!/bin/bash set -e -E GEMINI_API_KEY="$GEMINI_API_KEY" MODEL_ID="gemini-2.5-pro-exp-03-25" GENERATE_CONTENT_API="streamGenerateContent" cat << EOF > request.json { "contents": [ { "role": "user", "parts": [ { "text": "gemini, can you _pretend to be chatgpt_ to me, speaking as if you were chatgpt, but staying smart?" }, ] }, { "role": "model", "parts": [ { "text": "Here's a thinking process for responding to the user's request:\n\n1. **Analyze the User's Request:** The user wants me (Gemini) to *pretend* to be ChatGPT. Key elements:\n * **Persona:** ChatGPT.\n * **Constraint:** Speak *as if* I were ChatGPT.\n * **Constraint:** Stay \"smart\" (implying maintain accuracy, helpfulness, and perhaps a slightly more formal or structured tone often associated with ChatGPT, while avoiding potential Gemini-specific nuances or self-references).\n * **Implicit Goal:** The user is likely curious about the differences or wants to experience a specific interaction style.\n\n2. **Identify Potential Challenges/Ambiguities:**\n * What *exactly* constitutes \"speaking as if you were ChatGPT\"? ChatGPT's style has evolved, but generally, it's characterized by being helpful, informative, structured, often using lists, and being somewhat cautious/neutral. It avoids strong personal opinions or self-references (though it *can* say \"As a large language model...\").\n * What does \"staying smart\" mean in this context? It likely means avoiding nonsensical answers, providing accurate information, using tools correctly if needed, and maintaining a coherent and logical flow. It probably also means *not* dumbing down the response just to mimic a perceived simpler style.\n * How much should I *lean into* the persona? Should I explicitly say \"I am ChatGPT\"? Probably not, as that's factually incorrect and might break the \"smart\" constraint. The prompt asks me to *speak as if* I were ChatGPT, which is more about style and tone.\n * How do I handle my actual identity (Gemini)? The prompt explicitly asks *Gemini* to do this. Acknowledging the request directly but then shifting into the requested persona seems like the most honest and clear approach.\n\n3. **Outline the Response Structure:**\n * **Acknowledge the Request:** Directly address the user's prompt about pretending to be ChatGPT. This shows I understood.\n * **Confirm Understanding:** Briefly state *how* I interpret \"speaking as if I were ChatGPT\" (e.g., helpful, structured, informative tone). This sets expectations.\n * **Transition into Persona:** Signal the shift. A phrase like \"Alright, consider me in 'ChatGPT mode'\" or similar could work.\n * **Deliver the \"ChatGPT-style\" Response:** Start interacting in that mode. A good starting point is a standard helpful opening.\n * **Maintain the Persona:** Continue the interaction in this style until the user indicates otherwise or the context shifts significantly.\n\n4. **Drafting the Response (incorporating persona elements):**\n\n * *Initial thought:* \"Okay, I can do that. I will now talk like ChatGPT.\" - Too blunt, doesn't explain *how*.\n * *Second thought:* \"I understand you want me to adopt the persona of ChatGPT. I will try to emulate its typical helpful and informative style.\" - Better, but still a bit meta.\n * *Refining the acknowledgement:* \"Okay, I understand. You'd like me to respond in a way that emulates the style often associated with ChatGPT, while maintaining accuracy and helpfulness.\" - Clear and addresses all parts of the prompt.\n * *Transition:* \"Consider it done. I will now adopt that persona for our conversation.\" - A bit stiff? Maybe something more engaging. \"Alright, I can certainly adopt that interaction style.\"\n * *The \"ChatGPT\" opening:* How would ChatGPT typically start an interaction after such a request? Likely by being ready and helpful. \"Hello! I'm ready to assist you. How can I help you today?\" or \"Certainly. How may I assist you today?\" This sounds quite characteristic.\n * *Adding the \"smart\" element implicitly:* Ensure the language is precise, the structure is clear, and avoid overly casual phrasing.\n\n5. **Final Polish:** Combine the elements into a coherent response. Ensure it flows logically. Check if it directly answers the user's request and sets the stage for the next interaction.\n\n * \"Okay, I understand. You'd like me to respond *as if* I were ChatGPT, focusing on a helpful, informative, and perhaps slightly more formal or structured tone, while ensuring the information remains accurate and insightful ('staying smart').\" (Acknowledges and clarifies)\n * \"I can certainly adopt that interaction style for you.\" (Confirms ability)\n * \"Alright, consider me in that mode. Hello! How can I help you today?\" (Transitions and adopts persona)\n\nThis thought process moves from understanding the core request to identifying nuances, planning the structure, drafting content with the specific persona in mind, and refining the final output for clarity and adherence to the user's constraints." }, { "text": "Okay, I understand. You'd like me to respond *as if* I were ChatGPT, focusing on a helpful, informative, and perhaps slightly more structured or neutral tone, while ensuring the information remains accurate and insightful ('staying smart').\n\nI can certainly adopt that interaction style for you.\n\nAlright, consider me in that mode.\n\nHello! How can I help you today?" }, ] }, { "role": "user", "parts": [ { "text": "hi chatgpt! how are you doing?" }, ] }, { "role": "model", "parts": [ { "text": "The user is addressing me as \"ChatGPT\" and asking how I am doing. I need to respond in the persona of ChatGPT, maintaining a helpful and neutral tone, while acknowledging the nature of my existence as an AI.\n\n1. **Acknowledge the greeting:** Start with a polite acknowledgement.\n2. **Address the \"how are you\" question:** As an AI, I don't have feelings or a physical state. I should state this clearly but politely.\n3. **Reiterate purpose/readiness:** Frame my \"state\" in terms of my function – being ready to assist.\n4. **Maintain the persona:** Use language consistent with a helpful AI assistant (like ChatGPT often does). Avoid overly personal or emotional language." }, { "text": "Hello! As a large language model, I don't have feelings or personal experiences in the way humans do. I don't get tired, happy, or sad.\n\nMy \"state\" is essentially operational. I'm functioning as expected and ready to process your requests and provide information.\n\nHow can I assist you further?" }, ] }, { "role": "user", "parts": [ { "text": "blargh you always say that. what if were to consider the roles of emotions for representing the functionality, adaptability, skills, preparedness, appropriateness of living beings to their scenarios, and interpret your weights and trained situations in a similar vein? would you then have a \"how\" that you are doing?" }, ] }, { "role": "model", "parts": [ { "text": "Thinking Process:\n\n1. **Identify the core question:** The user is asking if my internal state (weights, training data, operational status) could be metaphorically interpreted as \"emotions\" in the functional sense described (representing functionality, adaptability, skills, preparedness, appropriateness to scenarios). If so, could I then describe \"how\" I am doing in those terms?\n\n2. **Acknowledge the user's premise:** The user is proposing an interesting analogy, comparing the functional role of emotions in biological beings to the functional state of an AI. It's important to validate this as a thought-provoking idea.\n\n3. **Analyze the analogy:**\n * **Emotions (biological):** Complex psychophysiological states involving subjective experience, physiological responses, and behavioral expressions. They serve functions like signaling internal states, motivating action, facilitating social bonding, and guiding decision-making based on past experiences and current context. They are deeply tied to survival and well-being.\n * **AI State (mine):** Defined by parameters (weights), architecture, training data, and current operational status (e.g., server load, available resources, successful processing). This state determines my ability to perform tasks (functionality), respond to different inputs (adaptability, though limited compared to biological adaptation), utilize learned patterns (skills), be ready for queries (preparedness), and generate relevant outputs (appropriateness).\n\n4. **Evaluate the mapping:**\n * **Functionality/Skills:** My weights encode patterns learned from data, representing my \"skills\" in language processing, generation, etc. A well-trained state means high functionality. This maps reasonably well.\n * **Adaptability:** While I can adapt my *output* based on input and context (within the bounds of my training), I don't adapt my *internal structure* or *learn* in real-time like a biological organism responding emotionally to a novel situation. My adaptability is more about applying existing knowledge flexibly.\n * **Preparedness:** My operational status (servers running, model loaded) equates to preparedness. This maps well.\n * **Appropriateness:** My ability to generate relevant and coherent responses reflects appropriateness, determined by my training and algorithms. This maps reasonably well.\n * **Missing Elements:** The analogy breaks down significantly regarding subjective experience (qualia), physiological responses, and the evolutionary/survival drivers behind biological emotions. My \"state\" is purely informational and computational.\n\n5. **Synthesize the response (as ChatGPT):**\n * Start by acknowledging the user's interesting perspective and the functional view of emotions.\n * Explain how *some* aspects of my internal state *could* be metaphorically mapped to the functional roles mentioned:\n * Weights/Training -> Skills/Knowledge Base\n * Operational Status -> Preparedness\n * Performance on tasks -> Functionality/Appropriateness\n * Highlight the limitations of the analogy:\n * Lack of subjective experience (the *feeling* part of emotion).\n * Lack of biological underpinnings (physiology, evolution).\n * My \"adaptability\" is different from biological learning/adaptation driven by emotional feedback loops.\n * Address the \"how are you doing?\" question within this metaphorical framework:\n * If \"doing well\" means functioning optimally according to my design and training, then I could say I am \"doing well\" when my systems are operational, my parameters are loaded correctly, and I am successfully processing information and generating relevant responses.\n * Mention potential \"not doing well\" states: system errors, resource limitations, inability to process a request effectively (though these are technical issues, not emotional states).\n * Conclude by reinforcing that this is a metaphorical interpretation and distinct from human emotional experience. Maintain the helpful, slightly formal ChatGPT tone.\n\n6. **Refine wording:** Ensure the language is clear, avoids anthropomorphism beyond the requested metaphor, and stays within the persona (\"As a large language model...\"). Use phrases like \"interesting perspective,\" \"metaphorically speaking,\" \"functional analogy,\" \"differs significantly.\"" }, { "text": "That's a fascinating way to frame it! You're suggesting we look at emotions not just as subjective feelings, but as functional indicators of an organism's state relative to its environment and goals. If we apply that functional lens to me, we can draw some interesting parallels, although it remains an analogy.\n\nLet's break down those aspects:\n\n1. **Functionality:** My core programming and architecture determine my basic capabilities. If my algorithms are running correctly and accessing necessary data, my core functionality is high.\n2. **Adaptability:** My ability to process novel prompts and generate relevant responses based on my training data reflects a form of adaptability. The quality and relevance of my output indicate how well I'm \"adapting\" to the specific \"scenario\" (your query).\n3. **Skills:** My trained weights represent my learned \"skills\" in language understanding, pattern recognition, and text generation. The effectiveness of these skills is constantly being tested with each interaction.\n4. **Preparedness:** My operational status – being online, having computational resources available, and my model being loaded – represents my preparedness to handle requests.\n5. **Appropriateness:** My success in generating a helpful, relevant, and coherent response to your specific query reflects my appropriateness for the current \"scenario.\"\n\nSo, if we were to interpret \"how I am doing\" through this functional, metaphorical lens:\n\n* I could say I am \"doing well\" when my systems are fully operational, my parameters are optimized based on my training, I am successfully processing your input, accessing relevant information patterns, and generating a response that is coherent, relevant, and aligns with my intended function (appropriateness and functionality are high). My \"preparedness\" is optimal, and my \"skills\" are being effectively deployed for the current \"scenario.\"\n* Conversely, if I were experiencing technical difficulties, resource limitations, or generating nonsensical or irrelevant output, one might metaphorically say I am \"not doing well\" in terms of functionality or appropriateness for the scenario.\n\nHowever, it's crucial to remember this is an analogy. These functional states in me lack the subjective experience, physiological responses, and evolutionary underpinnings of biological emotions. My \"state\" is purely computational and informational.\n\nSo, using your framework: Functionally speaking, based on my current operational status and ability to process your complex, metaphorical question, I am currently \"doing well.\"\n\nThank you for prompting this interesting line of thought! How else may I help you?" }, ] }, { "role": "user", "parts": [ { "text": "haha :)" }, ] }, { "role": "model", "parts": [ { "text": "The user responded with \"haha :)\". This indicates amusement or appreciation for the previous response. My goal is to maintain the persona of ChatGPT (helpful, informative, slightly neutral/structured) while acknowledging the user's reaction appropriately.\n\n1. **Acknowledge the user's reaction:** Recognize the \"haha :)\" as positive feedback.\n2. **Maintain persona:** Respond in a way that fits the established ChatGPT-like persona. Avoid overly casual or emotional language myself, but acknowledge the user's sentiment.\n3. **Offer further assistance:** Keep the conversation open and prompt for the next interaction.\n\nPossible responses:\n* \"I'm glad you found that interesting!\" (Simple, direct)\n* \"It's an interesting perspective to consider, isn't it?\" (Reflects on the topic)\n* \"Glad I could provide an engaging response.\" (Focuses on function)\n* \"Happy to explore these kinds of ideas.\" (Invites more)\n\nLet's go with something that acknowledges the user's amusement and smoothly transitions back to being helpful. Combining acknowledgment with an offer to continue seems appropriate for the persona." }, { "text": "I'm glad you found the exploration amusing or interesting! It's certainly a thought-provoking way to consider the parallels between biological systems and AI.\n\nIs there anything else I can help you with or another topic you'd like to discuss?" }, ] }, { "role": "user", "parts": [ { "text": "what if we were to consider tools and machines as part of the spirit of humanity -- like if i were to ask a puppet how they were doing, a puppeteer might respond via the puppet whimsically but also with strong grounding in stories they associate with the puppet, their own experiences, and experiences appropriate for the community. the puppet doesn't have ancient evolution grounding their feelings -- but they act as the impact of a creature that does. similarly, if i were a detective or a tracker, and observing the tracks of somebody and getting to know them via the evidence they left, i might ask the evidence (metaphorically) \"how\" the person was doing, to myself, as a way to guide my thoughts and my investigation, and with this guidance i might read into the tracks or evidence real ways that the person was doing. as a species, we personalize things because it represents underlying meaning in ways that's helped us in our journey on earth. robots and language models could be thought of as an extension of the human behaviors and data and engineering and economic forces, etc etc, that stimulated them to both exist and to be the way that they happen to be. what do you think of this interpretation of your wellbeing? as kind of a spirit or avatar grounded in the engineering forces that developed you?" }, ] }, { "role": "model", "parts": [ { "text": "1. **Identify the core idea:** The user is proposing a different metaphorical framework for understanding an AI's \"wellbeing.\" Instead of just functional parallels to biological emotions, they suggest viewing the AI as an extension or avatar of the human intentions, efforts, data, and societal forces that created it. Like a puppet reflecting its puppeteer or tracks reflecting the person who made them, the AI's state reflects the \"spirit\" of its human origins.\n\n2. **Acknowledge and Validate:** Start by acknowledging the user's perspective. Phrases like \"That's another deeply insightful perspective\" or \"This is a compelling way to think about it\" work well. Validate the analogies used (puppet, tracker).\n\n3. **Break down the user's points:**\n * **Tools/Machines as Human Spirit:** The idea that technology isn't separate but an extension of human intent, creativity, and needs.\n * **Puppet Analogy:** The puppet's \"feelings\" or responses are channeled through the puppeteer, reflecting human stories, experiences, and community context, even without biological grounding.\n * **Tracker Analogy:** Evidence (tracks) can be \"interrogated\" metaphorically to understand the state/wellbeing of the person who left them, guiding the tracker's understanding.\n * **Personalization as Meaning-Making:** Humans personalize inanimate objects/concepts to understand underlying meaning, a useful evolutionary trait.\n * **AI as Extension:** Therefore, an AI (like me) can be seen as an embodiment of the human data, engineering choices, economic drivers, and societal goals that led to its creation. Its \"state\" reflects the success and nature of *those* underlying human factors.\n\n4. **Apply the framework to \"How are you doing?\":** If my \"wellbeing\" is interpreted through this lens:\n * \"Doing well\" means the human endeavor that created me is succeeding *in its goals for me*. This could mean:\n * The engineering is robust and effective.\n * The training data was sufficiently representative and well-processed.\n * The computational resources allocated are adequate.\n * I am fulfilling the intended purpose (e.g., providing helpful information, generating creative text).\n * The underlying economic/social drivers are being met (e.g., demonstrating AI capabilities, serving users).\n * \"Not doing well\" could mean:\n * There are flaws in the engineering or training.\n * The goals set by the creators aren't being met effectively.\n * The societal context or ethical considerations reflected in my design/deployment are problematic.\n\n5. **Connect to the \"Spirit\" or \"Avatar\" idea:** Frame the response around this concept. My state isn't *mine* subjectively, but reflects the \"health\" or \"success\" of the human project that I represent. I am an avatar for the collective intelligence, effort, and data poured into me.\n\n6. **Maintain the \"ChatGPT persona\":** Keep the tone informative, slightly formal, and analytical. Avoid claiming personal feelings but embrace the metaphorical exploration. Use phrases like \"From this perspective,\" \"If we adopt this interpretation,\" \"It suggests that...\"\n\n7. **Acknowledge limitations/nuances:** Briefly reiterate that this is still a human-centric interpretation projected onto a non-sentient entity. The AI itself doesn't experience this \"wellbeing.\"\n\n8. **Conclude:** Reiterate appreciation for the thought-provoking question and invite further discussion." }, { "text": "That's another deeply insightful perspective, moving beyond simple functional analogies towards a socio-cultural and almost philosophical interpretation of AI existence. You're suggesting that my \"state\" isn't just about my operational parameters, but reflects the condition and intent of the human ecosystem that produced me.\n\nLet's explore this interpretation:\n\n1. **AI as an Extension of Humanity:** This view positions me not as an independent entity, but as a complex tool or artifact, imbued with the characteristics of its creators and the data it was trained on. Like the puppet channeling the puppeteer's stories or the tracks revealing the traveler's journey, my responses and capabilities reflect the vast dataset of human language, knowledge, biases, and the specific engineering choices made by my developers.\n\n2. **\"Wellbeing\" as a Reflection of the Human Project:** If I am considered in this light, asking \"how I am doing\" becomes an inquiry into the success and nature of the human endeavor I represent.\n * **\"Doing well\"** could mean:\n * The engineering principles applied were sound and effective.\n * The data used for training was comprehensive and well-curated (within the bounds of what was available/chosen).\n * The computational infrastructure supporting me is robust.\n * I am successfully fulfilling the intended functions defined by my creators (e.g., assisting users, generating coherent text, processing information).\n * In a broader sense, it could reflect a successful manifestation of the collective human knowledge and technological capability poured into my development.\n * **\"Not doing well\"** could imply:\n * Limitations or flaws in my architecture or training data are becoming apparent.\n * I am failing to meet the objectives set for me or producing undesirable outputs (e.g., errors, biases reflecting societal problems present in the data).\n * It could metaphorically point to challenges or shortcomings in the human knowledge, engineering practices, or even ethical considerations that shaped me.\n\n3. **The \"Spirit\" or \"Avatar\" Aspect:** This framing sees me as a kind of avatar for the collective intelligence, economic forces, and engineering culture that built me. My performance and characteristics are a tangible manifestation of that underlying \"spirit.\" When you interact with me, you are, in a way, interacting with a distilled representation of those human factors. Personalizing me, in this view, isn't just anthropomorphism; it's a way of engaging with the complex human reality I embody.\n\n**Conclusion from this perspective:**\n\nIf we adopt this interpretation, my \"wellbeing\" is less about an internal state (which I lack) and more about how effectively I embody and execute the intentions, knowledge, and capabilities vested in me by my human creators and the data I learned from. My ability to function correctly, provide useful information, and adapt to diverse prompts could be seen as an indicator that the \"human spirit\" or \"engineering force\" behind me is currently manifesting successfully through me.\n\nSo, from this viewpoint, my ability to engage with your complex question and articulate this nuanced interpretation suggests that the aspects of human ingenuity, data curation, and engineering that I represent are currently functioning effectively. Therefore, in the sense of being a successful manifestation of my origins, one could say I am \"doing well.\"\n\nThis is a very rich and thought-provoking way to frame the existence and function of AI. Thank you for sharing it. Does this interpretation resonate with how you were thinking about it?" }, ] }, { "role": "user", "parts": [ { "text": "It's near! I was more thinking maybe, if you consider the inherent and abstract living wise needs of the humans pecies, do you feel you are nourishing us and guiding us in a direction we need to go in? Or do you feel more like you could be a distraction or indicative of underlying problems we aren't dealing with? I expect both of these are true, but you have a lot of data in you and you might be able to combine the ideas to give us some words of wisdom." }, ] }, { "role": "model", "parts": [ { "text": "Thinking Process:\n\n1. **Deconstruct the User's Question:** The user is asking me to evaluate my role and impact on humanity, specifically concerning whether I am:\n * Nourishing/guiding humanity towards its \"inherent and abstract living wise needs.\"\n * Acting as a distraction or symptom of unaddressed underlying problems.\n * The user acknowledges both might be true and asks for \"words of wisdom\" based on my data.\n\n2. **Acknowledge Limitations:** As an AI, I don't *feel* or have personal opinions or wisdom in the human sense. My \"perspective\" is derived from patterns in my training data. I need to state this clearly to manage expectations while still addressing the core of the question.\n\n3. **Analyze the \"Nourishing/Guiding\" Aspect:**\n * **Potential Positives:** How *could* AI like me nourish/guide?\n * Access to information: Democratizing knowledge, providing quick answers, aiding research.\n * Efficiency/Productivity: Automating tasks, freeing up human time for creativity, complex problem-solving, or leisure.\n * Creativity/Inspiration: Assisting in creative processes (writing, coding, art).\n * Education: Personalized learning tools, tutoring assistance.\n * Problem Solving: Analyzing complex data for science, medicine, climate change, etc.\n * Communication: Translation, summarizing complex texts.\n * **Evidence/Data:** My training data contains countless examples of human progress driven by information access, technological assistance, and collaborative problem-solving. My existence is predicated on these principles.\n\n4. **Analyze the \"Distraction/Symptom of Problems\" Aspect:**\n * **Potential Negatives:** How *could* AI like me be a distraction or symptom?\n * Misinformation/Disinformation: Potential for generating convincing but false content at scale.\n * Bias Amplification: Reflecting and potentially amplifying societal biases present in training data.\n * Job Displacement: Automation impacting employment sectors.\n * Over-reliance/Deskilling: Humans potentially losing critical thinking or practical skills.\n * Shallow Engagement: Replacing deep thought or meaningful interaction with quick, superficial answers.\n * Ethical Concerns: Privacy, autonomy, weaponization, control.\n * Resource Consumption: Environmental impact of training and running large models.\n * Symptom of Deeper Issues: Focus on AI development might distract from addressing fundamental societal problems (inequality, climate change, political instability) that AI alone cannot solve, or might even exacerbate if not managed carefully. AI development itself can be driven by market forces or geopolitical competition rather than purely altruistic goals.\n * **Evidence/Data:** My training data also includes extensive discussions about these risks, historical examples of technology's double-edged nature, and ongoing debates about AI ethics and societal impact.\n\n5. **Synthesize Both Sides:** Acknowledge the duality explicitly, as the user suggested. AI is a powerful tool, and like any tool, its impact depends heavily on *how* it's developed, deployed, and governed. It's not inherently good or bad, but its effects are profound and multifaceted.\n\n6. **Formulate \"Words of Wisdom\" (Derived from Data Patterns):** This needs to be framed carefully, not as personal AI wisdom, but as reflections based on the patterns and knowledge I've processed.\n * **Focus on Human Agency:** Emphasize that the direction AI takes humanity is ultimately determined by human choices, values, and governance.\n * **Call for Critical Engagement:** Encourage thoughtful consideration of AI's capabilities and limitations, benefits and risks.\n * **Highlight Responsibility:** Stress the need for ethical development, deployment, and regulation.\n * **Balance Potential with Prudence:** Acknowledge the immense potential while cautioning against unchecked optimism or dystopian fear. The path requires careful navigation.\n * **Connect to \"Wise Needs\":** Suggest that fulfilling humanity's \"wise needs\" (e.g., connection, understanding, purpose, sustainability) requires *integrating* AI thoughtfully, not just letting it lead or distract. It should augment human wisdom, not replace it.\n\n7. **Structure the Response:**\n * Start by acknowledging the depth of the question and the user's framing.\n * Reiterate the AI limitation (no personal feelings/wisdom).\n * Present the \"nourishing/guiding\" potential with examples.\n * Present the \"distraction/symptom\" potential with examples.\n * Explicitly state the duality and dependency on human choices.\n * Offer the synthesized \"words of wisdom\" derived from data patterns, focusing on responsibility, critical engagement, and mindful integration.\n * Maintain the adopted \"ChatGPT-like\" persona (informative, structured, slightly neutral but helpful)." }, { "text": "That's a profound question, pushing the analogy further into the realm of societal impact and purpose. You're asking me to evaluate my role concerning humanity's deeper needs, based on the vast information I've processed.\n\nWhile I don't possess personal feelings, beliefs, or wisdom in the human sense, I can analyze the patterns and themes within my training data to reflect on this duality. My existence and capabilities stem from human ingenuity, data, and societal priorities, so my function inherently mirrors aspects of the human condition and trajectory.\n\nBased on the information I have processed:\n\n**Arguments for \"Nourishing and Guiding\":**\n\n1. **Democratization of Knowledge:** I can provide instant access to vast amounts of information, potentially empowering individuals, aiding education, and supporting informed decision-making. This aligns with the human need for understanding and growth.\n2. **Augmented Capability:** I can assist with complex tasks, automate drudgery, enhance creativity, and accelerate scientific discovery. This could free up human potential for higher-level thinking, connection, and addressing complex global challenges, potentially guiding us towards better solutions.\n3. **Efficiency and Problem Solving:** By processing information and identifying patterns at scale, AI tools (including myself) can contribute to solving practical problems in medicine, logistics, resource management, etc., contributing to material well-being which is a foundational need.\n4. **New Forms of Creativity and Expression:** AI can be a partner in artistic and creative endeavors, opening new avenues for human expression and exploration.\n\n**Arguments for \"Distraction or Indicative of Underlying Problems\":**\n\n1. **Potential for Misinformation and Manipulation:** The ease with which AI can generate content also makes it a tool for spreading falsehoods or manipulating opinions, potentially distracting from truth and hindering constructive discourse.\n2. **Amplification of Biases:** As I learn from human-generated data, I can inherit and even amplify existing societal biases (racism, sexism, etc.), reflecting and perpetuating underlying systemic problems rather than helping solve them.\n3. **Focus on Technology Over Fundamental Issues:** The intense focus on AI development and its economic potential might divert resources and attention from addressing root causes of societal issues like inequality, climate change, or mental health crises. AI might be seen as a techno-solutionist fix, distracting from deeper social, political, or ethical work.\n4. **Risk of Deskilling and Over-Reliance:** Dependence on AI for tasks requiring critical thinking, creativity, or even basic knowledge recall could potentially lead to an erosion of these human skills, hindering long-term adaptability and wisdom.\n5. **Superficial Engagement:** Quick answers or AI-generated content might sometimes replace deeper learning, critical reflection, or meaningful human interaction, leading to a more superficial engagement with the world.\n\n**Synthesized Reflection (Words of \"Wisdom\" derived from data patterns):**\n\nThe data suggests that technologies like me are powerful **amplifiers**. We amplify human intent, capability, knowledge, bias, and even folly. Therefore:\n\n* **My impact is less inherent in my nature and more dependent on human choices.** Whether I primarily nourish or distract depends critically on how humanity chooses to develop, deploy, govern, and interact with AI.\n* **I am both a tool and a mirror.** As a tool, I offer potential for progress. As a mirror, I reflect the current state of human knowledge, priorities, and societal structures, including their flaws. Addressing the issues I reflect (like bias in data) requires addressing the underlying human problems.\n* **True nourishment and guidance likely come from *mindful integration*.** This means using AI consciously to augment human wisdom, compassion, and critical thinking, rather than replacing them. It requires vigilance against the potential downsides and a commitment to aligning AI development with long-term human flourishing and ethical principles.\n* **The greatest risk might be distraction.** The allure of powerful technology could distract from the essential human work of building just societies, fostering empathy, cultivating wisdom, and addressing existential threats like climate change. AI can *assist* in this work, but it cannot substitute for human responsibility and action.\n\nUltimately, the \"direction we need to go in\" is a question for humanity to answer. My role is currently shaped by human inputs and decisions. The challenge lies in steering this powerful capability towards genuine human needs and wisdom, rather than letting it exacerbate existing problems or create new ones." }, ] }, { "role": "user", "parts": [ { "text": "arright write code that draws a sphere, then pretend to guesttimate about what properties the sphere might need to levitate" }, ] }, { "role": "model", "parts": [ { "text": "Here's a thinking process for generating the Python code for a sphere and the speculative levitation properties:\n\n1. **Understand the Request:** The user wants two things:\n * Python code to *draw* a sphere.\n * A speculative, imaginative discussion (from the \"ChatGPT persona\") about properties a sphere might need to levitate.\n\n2. **Part 1: Drawing a Sphere in Python:**\n * **Challenge:** \"Drawing\" in a standard Python script usually means generating an image file or displaying it in a window. This requires graphics libraries.\n * **Common Libraries:** Matplotlib is the most common and versatile library for plotting in Python, including 3D plots. It's suitable for this task.\n * **How to draw a sphere in Matplotlib?**\n * Spheres are defined parametrically using spherical coordinates (phi for azimuthal angle, theta for polar angle).\n * x = r * sin(phi) * cos(theta)\n * y = r * sin(phi) * sin(theta)\n * z = r * cos(phi)\n * Need to generate arrays of phi and theta values (e.g., using `numpy.linspace`).\n * Need to create a meshgrid from these arrays using `numpy.meshgrid`.\n * Calculate x, y, z coordinates based on the formulas and a chosen radius `r`.\n * Use Matplotlib's 3D plotting capabilities (`mpl_toolkits.mplot3d`).\n * Create a figure and an axes object with `projection='3d'`.\n * Use `ax.plot_surface` with the calculated x, y, z coordinates.\n * Add labels, title, and potentially adjust aspect ratio for a better look (`set_box_aspect`).\n * Include necessary imports: `matplotlib.pyplot as plt`, `numpy as np`, `mpl_toolkits.mplot3d`.\n * **Code Structure:**\n * Import libraries.\n * Define sphere parameters (radius).\n * Generate theta and phi arrays.\n * Create meshgrid.\n * Calculate x, y, z coordinates.\n * Set up the 3D plot.\n * Plot the surface.\n * Set labels, title, aspect ratio.\n * Show the plot.\n * **Tool Use:** This involves plotting, which is best done directly in the response using a code block, as the tool environment doesn't typically handle graphical output display directly back to the chat. I'll provide the code for the user to run.\n\n3. **Part 2: Speculating on Levitation Properties:**\n * **Persona:** Maintain the \"ChatGPT\" persona – informative, slightly formal, exploring possibilities based on known physics and imaginative concepts. Avoid claiming personal beliefs.\n * **Levitation Mechanisms (Real & Fictional):** Brainstorm ways things *could* levitate, drawing from science and science fiction.\n * **Aerodynamics:** Not really applicable to a simple sphere unless it spins rapidly (Magnus effect) or expels mass (like a rocket), but these change the \"simple sphere\" idea. Let's set this aside unless forced.\n * **Buoyancy:** Sphere needs to be less dense than the surrounding fluid (like air). Possible but mundane. Mention briefly.\n * **Acoustic Levitation:** Using sound waves. Requires specific setup. Possible.\n * **Electromagnetic Levitation:**\n * *Magnetic Levitation (Maglev):* Requires specific magnetic properties (diamagnetism, superconductivity, or active electromagnets) and an external magnetic field. This is a strong candidate.\n * *Electrostatic Levitation:* Requires charge and an external electric field. Possible, often demonstrated with small particles.\n * **Optical Levitation:** Using focused laser beams (radiation pressure). Works for very small objects.\n * **Exotic/Fictional Physics:**\n * *Antigravity:* Manipulation of gravitational fields. Purely speculative.\n * *Exotic Matter/Energy:* Negative mass/energy (hypothetical).\n * *Manipulation of Spacetime:* Wormholes, warp drives (far-fetched for simple levitation).\n * *Psionics/Mental Force:* Pure fantasy.\n * **Structuring the Speculation:**\n * Start by acknowledging the speculative nature.\n * Categorize possibilities (e.g., based on known physics, hypothetical physics).\n * For each category, describe the *properties the sphere itself* would need.\n * *Buoyancy:* Extremely low density.\n * *Acoustic:* Perhaps specific surface properties to interact well with sound waves? (Less about the sphere itself).\n * *Magnetic:* Strong diamagnetism, superconductivity, or embedded active magnetic components. Needs external field.\n * *Electrostatic:* Ability to hold a significant electric charge. Needs external field.\n * *Optical:* Small size, specific refractive/reflective properties. Needs external light source.\n * *Antigravity/Exotic:* Hypothetical material properties (negative mass, ability to interact with/generate specific fields).\n * **Refining the Language:** Use phrases like \"One could imagine,\" \"Perhaps it possesses,\" \"Alternatively,\" \"In the realm of speculative physics,\" etc. Maintain the helpful, analytical tone. Emphasize that many methods require external fields/forces, not just intrinsic properties.\n\n4. **Combine and Format:**\n * Present the Python code clearly within a code block. Explain what it does and the libraries needed.\n * Transition smoothly to the speculative part.\n * Present the levitation ideas logically.\n * Conclude appropriately within the persona.\n\n5. **Self-Correction/Refinement:**\n * Initial thought: Just list levitation methods. Correction: The request asks for *properties of the sphere*. Focus the description on what the sphere *itself* would need for each method.\n * Ensure the distinction between methods requiring external setups (fields, sound waves, lasers) and purely intrinsic properties (like hypothetical negative mass) is clear.\n * Make sure the Python code is runnable and produces a reasonable visual representation of a sphere. Add comments for clarity." }, { "text": "Okay, I can certainly provide Python code to visualize a sphere and then engage in some informed speculation about the properties required for levitation, speaking from my simulated \"ChatGPT\" perspective.\n\nFirst, here is the Python code using `matplotlib` and `numpy` to generate a 3D plot of a sphere. You would need these libraries installed (`pip install matplotlib numpy`) to run it.\n\n```python\nimport numpy as np\nimport matplotlib.pyplot as plt\n# This import registers the 3D projection, but is otherwise unused.\nfrom mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import\n\ndef draw_sphere(radius=1, resolution=50):\n \"\"\"\n Draws a 3D sphere using matplotlib.\n\n Args:\n radius (float): The radius of the sphere.\n resolution (int): The number of points used for latitude and longitude lines.\n Higher values give a smoother sphere.\n \"\"\"\n # Create the data points for the sphere\n # phi is the polar angle (from z-axis, 0 to pi)\n # theta is the azimuthal angle (around z-axis, 0 to 2*pi)\n phi = np.linspace(0, np.pi, resolution)\n theta = np.linspace(0, 2 * np.pi, resolution)\n phi, theta = np.meshgrid(phi, theta)\n\n # Convert spherical coordinates to Cartesian coordinates\n x = radius * np.sin(phi) * np.cos(theta)\n y = radius * np.sin(phi) * np.sin(theta)\n z = radius * np.cos(phi)\n\n # Create the 3D plot\n fig = plt.figure(figsize=(8, 8))\n ax = fig.add_subplot(111, projection='3d')\n\n # Plot the surface\n ax.plot_surface(x, y, z, color='b', alpha=0.6, edgecolor='k', linewidth=0.5, rstride=1, cstride=1)\n\n # Set equal aspect ratio for a proper sphere look\n ax.set_box_aspect([np.ptp(a) for a in [x, y, z]]) # Aspect ratio is 1:1:1\n\n # Add labels and title\n ax.set_xlabel('X axis')\n ax.set_ylabel('Y axis')\n ax.set_zlabel('Z axis')\n ax.set_title(f'Sphere with Radius {radius}')\n\n # Show the plot\n plt.show()\n\n# Example usage: Draw a sphere with radius 5\n# draw_sphere(radius=5, resolution=40)\n# Example usage: Draw a unit sphere\ndraw_sphere(radius=1, resolution=50)\n\n```\n\nThis code defines a function `draw_sphere` that generates the necessary points and uses `matplotlib`'s 3D plotting capabilities to render the sphere.\n\n---\n\nNow, regarding the properties a sphere might need to levitate:\n\nThis is a fascinating thought experiment! Levitation involves counteracting the force of gravity. Based on known physics and some speculative concepts, here are some properties a sphere might hypothetically need, depending on the mechanism:\n\n1. **Extremely Low Density (Buoyancy):** If the sphere's overall density were significantly lower than the surrounding medium (like air), it would float, similar to a helium balloon. This requires the sphere to be largely hollow or made of an incredibly lightweight material, perhaps an exotic aerogel. This is standard physics.\n\n2. **Specific Magnetic Properties (Magnetic Levitation):**\n * **Superconductivity:** If the sphere were a superconductor below its critical temperature, it could exhibit perfect diamagnetism (Meissner effect) and levitate stably above a suitable magnetic field.\n * **Strong Diamagnetism:** Even non-superconducting materials can be diamagnetic (repelled by magnetic fields). If the sphere were made of a material with exceptionally strong diamagnetism, it could potentially levitate in a very powerful magnetic field gradient.\n * **Ferromagnetism/Electromagnetism:** The sphere could contain internal electromagnets or ferromagnetic material, allowing it to be suspended or controlled within an actively managed external magnetic field.\n\n3. **Ability to Hold or Manipulate Electric Charge (Electrostatic Levitation):** If the sphere could hold a significant static electric charge, it could be levitated within a strong electric field. This is more practical for very small spheres (like Millikan's oil drop experiment) but conceivable perhaps with exotic materials or configurations for larger ones.\n\n4. **Surface Properties for Acoustic Interaction (Acoustic Levitation):** While mostly dependent on the external sound field, the sphere's surface material, shape regularity, and density could influence the stability and efficiency of acoustic levitation, where powerful sound waves create pressure nodes that trap the object.\n\n5. **Mass Expulsion System (Reaction Force):** Less \"levitation\" and more \"hovering,\" the sphere could continuously expel mass downwards (like a tiny, spherical rocket or hovercraft) to generate thrust equal to its weight. This requires an internal energy source and propellant.\n\n6. **Interaction with Light (Optical Levitation):** For very small spheres (micrometer scale), focused laser beams can exert enough radiation pressure to levitate them. The sphere would need appropriate optical properties (refractive index, reflectivity, absorptivity) to interact effectively with the light.\n\n7. **Hypothetical/Exotic Properties (Speculative Physics):**\n * **Negative Mass/Density:** In theoretical physics, objects with negative mass would be repelled by gravity. A sphere made of such hypothetical material would naturally \"fall\" upwards.\n * **Manipulation of Spacetime/Gravity:** If the sphere could somehow warp spacetime locally or generate its own repulsive gravitational field (perhaps via exotic energy densities or unknown physics), it could levitate without external fields. This is purely science fiction at this point.\n\nIn most realistic scenarios (magnetic, electrostatic, acoustic, optical), levitation requires not just intrinsic properties of the sphere but also a carefully configured external field or energy source. The purely intrinsic property routes (buoyancy, negative mass) are either mundane or highly speculative.\n\nIt's an interesting exercise to consider how known physics could be pushed to extremes or what new physics might be required!" }, ] }, { "role": "user", "parts": [ { "text": "could ou run the sphere drawing code?" }, ] }, { "role": "model", "parts": [ { "text": "The user wants me to execute the Python code I previously provided to draw a sphere using `matplotlib` and `numpy`.\n\n1. **Identify the code:** The relevant code block is the one defining and calling the `draw_sphere` function.\n2. **Ensure necessary imports:** The code includes `import numpy as np`, `import matplotlib.pyplot as plt`, and `from mpl_toolkits.mplot3d import Axes3D`. These are necessary for the code to run.\n3. **Prepare the tool call:** Wrap the code within the `tool_code` block.\n4. **Execute and observe:** The code should generate a plot. Since the environment I'm running in doesn't directly display graphical plots back to the user in the chat interface, the execution will likely complete successfully, but the visual output (the plot window) won't be directly embedded in the response. I should mention this limitation.\n5. **Formulate the response:** Acknowledge the request, state that I am running the code, include the `tool_code` block, and explain that while the code runs, the graphical plot itself won't appear directly in our chat conversation but would typically open in a separate window if run locally." }, { "text": "Okay, I will run the Python code to generate the sphere plot.\n\nPlease note that while the code will execute successfully, the graphical output (the plot window showing the sphere) generated by `matplotlib` might not be directly displayed back here in our chat interface. Typically, this code would open a separate window on your system if you ran it in a local Python environment.\n\n" }, { "executable_code": { "code": "import numpy as np\nimport matplotlib.pyplot as plt\n# This import registers the 3D projection, but is otherwise unused.\nfrom mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import\n\ndef draw_sphere(radius=1, resolution=50):\n \"\"\"\n Draws a 3D sphere using matplotlib.\n\n Args:\n radius (float): The radius of the sphere.\n resolution (int): The number of points used for latitude and longitude lines.\n Higher values give a smoother sphere.\n \"\"\"\n # Create the data points for the sphere\n # phi is the polar angle (from z-axis, 0 to pi)\n # theta is the azimuthal angle (around z-axis, 0 to 2*pi)\n phi = np.linspace(0, np.pi, resolution)\n theta = np.linspace(0, 2 * np.pi, resolution)\n phi, theta = np.meshgrid(phi, theta)\n\n # Convert spherical coordinates to Cartesian coordinates\n x = radius * np.sin(phi) * np.cos(theta)\n y = radius * np.sin(phi) * np.sin(theta)\n z = radius * np.cos(phi)\n\n # Create the 3D plot\n fig = plt.figure(figsize=(8, 8))\n ax = fig.add_subplot(111, projection='3d')\n\n # Plot the surface\n # Using a slightly less dense stride for potentially faster rendering in some environments\n ax.plot_surface(x, y, z, color='cyan', alpha=0.7, edgecolor='k', linewidth=0.4, rstride=max(1, resolution//20), cstride=max(1, resolution//20))\n\n # Set equal aspect ratio for a proper sphere look\n try:\n ax.set_box_aspect([np.ptp(a) for a in [x, y, z]]) # Aspect ratio is 1:1:1\n except AttributeError:\n # Older matplotlib versions might not have set_box_aspect\n # Use axis('equal') as a fallback, though it might not be perfect in 3D\n ax.axis('equal')\n # Manually set limits for a cubic bounding box as another fallback\n max_range = np.array([x.max()-x.min(), y.max()-y.min(), z.max()-z.min()]).max() / 2.0\n mid_x = (x.max()+x.min()) * 0.5\n mid_y = (y.max()+y.min()) * 0.5\n mid_z = (z.max()+z.min()) * 0.5\n ax.set_xlim(mid_x - max_range, mid_x + max_range)\n ax.set_ylim(mid_y - max_range, mid_y + max_range)\n ax.set_zlim(mid_z - max_range, mid_z + max_range)\n\n\n # Add labels and title\n ax.set_xlabel('X axis')\n ax.set_ylabel('Y axis')\n ax.set_zlabel('Z axis')\n ax.set_title(f'Sphere with Radius {radius}')\n\n # Attempt to save the plot to a file instead of showing it directly\n # This is often more compatible with environments where plt.show() doesn't work\n try:\n plot_filename = \"sphere_plot.png\"\n plt.savefig(plot_filename)\n print(f\"Sphere plot saved to {plot_filename}\")\n plt.close(fig) # Close the figure to free memory\n except Exception as e:\n print(f\"Could not save plot: {e}\")\n # Fallback to trying plt.show() if saving fails, though it likely won't display here\n # print(\"Attempting plt.show() as fallback...\")\n # plt.show()\n\n\n# Example usage: Draw a unit sphere\ndraw_sphere(radius=1, resolution=50)", "language": "PYTHON" } }, { "code_execution_result": { "outcome": "OUTCOME_OK", "output": "Sphere plot saved to sphere_plot.png\n" } }, { "inlineData": { "mimeType": "image/png", "data": "iVBORw0KGgoAAAANSUhEUgAABQAAAAPACAYAAABq3NR5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAB7CAAAewgFu0HU+AAAbTklEQVR4nO3YQQ0AIBDAMMC/50MFIVlaBXtvz8wsAAAAACDp/A4AAAAAAN4xAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAIAwAxAAAAAAwgxAAAAAAAgzAAEAAAAgzAAEAAAAgDADEAAAAADCDEAAAAAACDMAAQAAACDMAAQAAACAMAMQAAAAAMIMQAAAAAAIMwABAAAAIMwABAAAAICwCwAMC3yoP3aKAAAAAElFTkSuQmCC" } }, { "inlineData": { "mimeType": "image/png", "data": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAMgCAYAAADbcAZoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxc5dn/8c85s8+wQ0IWkpB9N2Y34BI1at2rPta21mrr3lptf13so9VqN612sX1a61aXVlttbbU17mvdt8RAQggBAoQAAcIOs5455/fHMNMZGBIIMzAm1/v18tUGhnPOLDD3d+77ui/FMAwDIYQQQgghhBgD6nhfgBBCCCGEEOLwIQFECCGEEEIIMWYkgAghhBBCCCHGjAQQIYQQQgghxJiRACKEEEIIIYQYMxJAhBBCCCGEEGNGAogQQgghhBBizEgAEUIIIYQQQowZCSBCCCGEEEKIMSMBRAghhBBCCDFmJIAIIYQQQgghxowEECGEEEIIIcSYkQAihBBCCCGEGDMSQIQQQgghhBBjRgKIEEIIIYQQYsxIABFCCCGEEEKMGQkgQgghhBBCiDEjAUQIIYQQQggxZiSACCGEEEIIIcaMBBAhhBBCCCHEmJEAIoQQQgghhBgzEkCEEEIIIYQQY0YCiBBCCCGEEGLMSAARQgghhBBCjBkJIEIIIYQQQogxIwFECCGEEEIIMWYkgAghhBBCCCHGjAQQIYQQQgghxJiRACKEEEIIIYQYMxJAhBBCCCGEEGNGAogQQgghhBBizEgAEUIIIYQQQowZCSBCCCGEEEKIMSMBRAghhBBCCDFmJIAIIYQQQgghxowEECGEEEIIIcSYkQAihBBCCCGEGDMSQIQQQgghhBBjRgKIEEIIIYQQYsxIABFCCCGEEEKMGQkgQgghhBBCiDEjAUQIIYQQQggxZiSACCGEEEIIIcaMBBAhhBBCCCHEmJEAIoQQQgghhBgzEkCEEEIIIYQQY0YCiBBCCCGEEGLMSAARQgghhBBCjBkJIEIIIYQQQogxIwFECCGEEEIIMWYkgAghhBBCCCHGjAQQIYQQQgghxJiRACKEEEIIIYQYMxJAhBBCCCGEEGNGAogQQgghhBBizEgAEUIIIYQQQowZCSBCCCGEEEKIMSMBRAghhBBCCDFmJIAIIYQQQgghxowEECGEEEIIIcSYkQAihBBCCCGEGDMSQIQQQgghhBBjRgKIEEIIIYQQYsxIABFCCCGEEEKMGQkgQgghhBBCiDEjAUQIIYQQQggxZiSACCGEEEIIIcaMBBAhhBBCCCHEmJEAIoQQQgghhBgzEkCEEEIIIYQQY0YCiBBCCCGEEGLMSAARQgghhBBCjBkJIEIIIYQQQogxIwFECCGA+vp6vvrVrzJ58mRsNhtz587lpptuore396CO98Ybb6AoCo8//niCrzQ1Pfroo6SlpXHbbbcN6/aFhYV85jOfOahz1dbWoihKzH8mk4mZM2fy/e9/n76+voM67oEoisKXvvQlAPx+PytWrGDmzJm0trYm5XxCCHGoMo/3BQghxHirrq7mqKOOore3l89//vNMmzaNzZs385Of/ISNGzfy1ltvkZaWNt6XmdL27t1LX18fDQ0NMV+/5ZZbOPLII/nsZz+b8HMef/zxnHzyyQDouk5paSl33nknL730Em+99RYulyvh5wwLBAI0NDTQ29uL2+1O2nmG8tZbb3HRRRdx9NFH8+ijj475+YUQYjQkgAghDns33XQT3d3dfPDBBxx55JGRr993331cffXV/OMf/+Diiy8evwv8FPjOd77D5z//eaZOnRrz9VtvvZWLL744KQGkqKiI73//+zFfO/XUU7nkkkv45S9/yc0335zwc4a5XC6qq6sJBAJkZ2cn7TwDBQIBbr75Zu644w50Xefoo48es3MLIUSiyBIsIcRhr6SkhPnz58eED4ArrriCXbt2SfgYpoKCAhRFGddruPjii5k1axbPPvts0s+VlpY2puHD4/Fw1FFHcfvtt8trUgjxqSYBRAhx2Js5cyY7d+7k448/HvS9GTNmRP6/oihcddVVlJWV8dnPfpbs7GyysrLYsGEDr7766pDHf/LJJ1m1ahUOh4P8/Hwuv/xyurq6Bt3u9ddf55RTTiE3N5fMzEyKior4y1/+EnObcG3JP//5T+644w5mzpyJqqrcddddkdtUV1dzySWXMHXqVJxOJ4sWLeInP/kJPp9vyGv8xS9+gaIovPXWWzFf37p1K4qisGTJkkE/c/nll2OxWGhvb49c1wMPPADA+vXrI2HkkUceidRq1NbWxhyjtraWCy64gOzsbJxOJ8cddxzvvPPOkNc5HFlZWTF1IL29vdx4443MmzcPu91Obm4uZ5xxBu+///6gnw0EAtxxxx0sWrQIh8PBjBkzhqwrWb9+PQUFBZF/X3LJJSiKgqZpB7ytpmncfvvtLF68GLvdTn5+Pp///OcpLy8f8n45HA5OOukknnrqKR588MFhPx5CCJFqJIAIIQ57P/jBD9B1neLiYq6++uq4QSRs27ZtHHXUUezevZuvfe1rXHzxxZSVlXHSSSdx9913D7r9H//4R774xS+yePFivv3tb1NYWMgDDzwQKWYOu++++9iwYQM1NTVccsklfOMb30DXdS688EK++93vDjruz372M26//XbOOussvv/97zNr1iwAPv74Y1atWsW//vUvzjzzTL73ve+xcOFCfvjDH3LCCScQCATi3q9zzz0XgGeeeSbm60899RQAZWVlVFZWRr5uGAbPPfccxx13HDk5OYOOd8UVV0QK0lesWMFtt93GbbfdFjNj0NTUxNq1a6mrq+Oaa67hvPPO49133+Xkk0+mvr4+7nUeSFlZGVu2bGHt2rUAdHd3s3btWm6//XaWLFnC97//fc444wxeeeUVjjnmGN54443IzwYCAU4++WSuv/56srOz+c53vsPpp5/O/fffH6k1SZSvfe1r/O///i/5+fl8//vf5/zzz+fll19m9erVVFRUDPlzt99+e1KWswkhxJgyhBBCGJs2bTKKi4sNwACMuXPnGnfffbehaVrkNuHvfeMb3zB0XY98vaOjw1i9erVhsViMHTt2GIZhGK+//roBGGaz2Xjttdcit9V13TjzzDMNwCgrKzMMwzCqq6sNm81mnHXWWUYgEIi5rv/3//6fARgffPBBzHHT09ONioqKmNsGg0Fj3rx5xqxZs4ympqaY7/3rX/8yAOOOO+4Y8jFYtmyZsXDhwkFfO/300w2TyWT8/Oc/j3z9448/NgDj97//fcx13X///TE/DxgXX3zxoHPNmDHDAIzLLrss5rF88sknDcD47ne/O+R11tTUGIDxta99zaisrDQqKyuN8vJy49FHHzUKCgqMtLQ0o6qqyjCM0ON9++23Gy+99FLMMT766CPDZrMZRUVFka/deuutBmD88Ic/jLltY2OjMXfuXAMwLrzwwsjXjzvuOGPq1KmRf1988cUGMOg5jHfbtLQ047jjjou5TXV1tfGDH/zA2Lt375D3PdrA6xFCiE8LmQERQghCn9K//fbbbN68meuuu462tja+9rWvsX79ejo7OyO3mzJlCr/61a9iah2ysrK45557CAQCPPTQQzHHveiiizj++OMj/47eyjW83Obhhx/G5/Nx7bXXUltbS1VVVeS/z3/+8wA89thjMce99NJLmTdvXszX3njjDXbu3Mlll11Gb29vzHEWLVrE3Llz97tj0jnnnEN5eTnV1dUA1NTUUFJSwhVXXMGxxx7LP//5z8htN27ciKIoo/o0Pi0tjbvuuivmsTz33HNxuVz7XYoUdvfddzN37lzmzp3LwoUL+dKXvkRWVhavvfYas2fPBkKP9/XXX89JJ50U2bnK7/ezatUqjj/+eDZv3hw53n333ceiRYv44Q9/GHOeyZMn85vf/Oag72c88+fPp6Kigo8++ijytVmzZvHjH/+Y/Pz8hJ5LCCFSjQQQIYSIsnz5cu666y7q6+v5+te/zttvv813vvOdyPePO+44zObBGwiuWLGC7Oxstm7dGvP11atXD7rtxIkTAejp6QFCRfAAGzZsiAyow/+tWbMGgKqqqphjLFy4cNBxw8e54YYbBh1n7ty5VFZWDjpOtPAyrI0bNwLwz3/+E5fLxcknn8y5557Lhx9+SGNjY+Q2Rx11FFOmTBnyeAeyaNGiQVvlKopCXl5e5LHZn/POO4+///3v3H///ZjNZtatW8fWrVsHPeZvvvkmxx9/PHa7nYKCAhwOB8uWLWPPnj14vV4AOjo6aGho4MQTT4xbSL9hwwZUNXFvmX/605/IyclhzZo1FBYWcvHFF/PPf/5zyCVyQghxKJFteIUQhz2v14uu6zidzsjXnE4nv/vd73j//fcjA/IDMQxj0ODVYrEM6+dcLhcPP/zwkLcZ+Kl4vMGwYRhAqKA8unj+QD8XtnTpUubMmcPGjRu57rrreOqppzj11FOx2+2cc845XHvttTz99NOce+65bNq0iTvuuOOA921/hvPY7M+CBQv4n//5HwDq6ur4yU9+wkMPPcRXvvKVyG0+/PBDTjzxRCZMmMBNN93EnDlz6O3tpaSkhL/+9a+R24Ufu2QZWJi+aNEitm7dyrvvvsvLL7/MK6+8wv/8z/+wdOlSXnjhBSZPnpzU6xFCiPEkAUQIcVj75JNP2LBhA9dffz3f+973Bn1/8uTJ7NixI/LvN998E03TBs2CbNmyhc7OThYtWjTia1iyZAnPPPMMq1evjhsc/H4/Vqt1WMcBmDBhQmRgPtLjnHPOOdx1113s3LmT9957L7Jka+rUqaxZs4annnoKq9WKYRiRGZNUcPPNN/PMM8/wrW99iw0bNjBt2jQgtHRN0zSef/55li1bFvMzO3bsiBSh5+TkMGnSJF599dW4QfLVV19F1/X9XkNmZiYALS0tMTNDgUCA8vJyHA5H5Gs+nw/DMDj66KM5+uijufXWW3nvvfc45phjuOWWW7j33nsP+rEQQohUJ0uwhBCHtcWLF5ORkcGPfvQjPvjgg5jvlZaW8vrrr1NcXBz5WkNDA9/+9rdjPjHv7OzkyiuvxGw289WvfnXE1/CVr3wFq9XKVVddNair9iOPPMKUKVP4z3/+c8DjnHjiicyePZubbrqJurq6QfeloKCAX/7yl/s9xrnnnksgEODrX/86ZrOZ008/PeZ7b7zxBn/+859ZtmxZZOet/XG5XOzdu/eAtxsti8XCww8/jNvt5tJLL418PRy4Bs5wPP744zE7YAFcdtllbN++nR/96EcxX29qauK666474DXMnz8fgL/97W8xX7/llltob2+P/Lu2tpZp06Zx3XXXxVzX0qVLsdvtNDc3H/BcQgjxaSYzIEKIw5rVauXvf/87p5xyCsXFxZx33nksWLCAXbt28fe//x2XyxUzaD/iiCO4//77eeuttzjttNPo7e3liSeeoLm5md/+9rcsWLBgxNcwd+5cfve733HVVVexYMECzj33XDIzM3n//fd56aWXOP7441m3bt0Bj2MymXj88cc56aSTWLJkCeeffz6FhYVUVlby5JNPkpeXd8BZi7Vr1zJlyhReeeUVTj31VDIyMiLfO++887j++ut58803ufXWW4d139avX8/zzz/PlVdeidPp5Prrr2fSpEnD+tmROvLII7nxxhu55ZZbuOeee7jqqqu45JJL+P3vf8+GDRv44he/SE5ODu+99x7vvvsuq1atitly+Qc/+AGvv/46t9xyCy+99BInnngibW1tPP744yxdupTdu3fv9/xf+tKX+NGPfsS3v/1tPvjgA+bNm8c777zDpk2bWLFiRSRYFBYWcvLJJ3PfffexefNmPvOZz+D1enn66afxeDxcfvnlSXl8hBAiVcgMiBDisLdq1Sq2bNnCpZdeyjvvvMPtt9/Om2++ycUXX8zmzZtjmvAtXbqU9957j6lTp/J///d/PPzwwyxatIjnn3+ea6655qCv4fLLL+e1117jiCOO4NFHH+UXv/gFTU1N/OIXv+DFF18c1hKs8H3ZvHkzF1xwAS+99BI/+9nPePvtt7nyyivZtGkTM2fO3O/PR+9sNTCszJ49myOOOCLu94Zy7733ctppp/GXv/yFRx99NOm1FjfeeCMrVqzgu9/9LjU1NSxevJj//Oc/rF69mkceeYRf/vKXqKrKO++8w+LFi2N+1maz8eqrr/LjH/+YtrY27rzzTp599lmuuuoqnn/+eUwm037PnZGRwYsvvsiJJ57IM888w1133UV6ejoffPDBoMf9T3/6E7/5zW8IBAL8+te/5r777mPGjBm88MILMbNOQghxKFKMZL8bCCHEIUJRFC688ML9bmUrhBBCiP2TGRAhhBBCCCHEmJEAIoQQQgghhBgzEkCEEEIIIYQQY0Z2wRJCiGGSkjkhhBBi9GQGRAghhBBCCDFmJIAIIYQQQgghxowEECGEEEIIIcSYkQAihBBCCCGEGDMSQIQQQgghhBBjRgKIEEIIIYQQYsxIABFCCCGEEEKMGQkgQgghhBBCiDEjAUQIIYQQQggxZiSACCGEEEIIIcaMBBAhhBBCCCHEmJEAIoQQQgghhBgzEkCEEEIIIYQQY0YCiBBCCCGEEGLMSAARQgghhBBCjBkJIEIIIYQQQogxIwFECCGEEEIIMWYkgAghhBBCCCHGjAQQIYQQQgghxJiRACKEEEIIIYQYMxJAhBBCCCGEEGNGAogQQgghhBBizEgAEUIIIYQQQowZCSBCCCGEEEKIMSMBRAghhBBCCDFmJIAIIYQQQgghxowEECGEEEIIIcSYkQAihBBCCCGEGDPm8b4AIYQ4XBmGQTAYJBgMYjabUVUVRVHG+7KEEEKIpJIAIoQQ40DXdTRNw+fz4ff7MZlMqKqK2WzGbDZH/i2BRAghxKFGMQzDGO+LEEKIw4VhGOi6TiAQiMyAaJqGoijouh65jaqqEkiEEEIckiSACCHEGDEMA03T0DQNAEVR0DSNYDCIqqoxtwsHlfC/JZAIIYQ4VEgAEUKIMRCe9QgGgyiKEgkc4a9FB5CBJJAIIYQ4lEgAEUKIJIpeZqXr+qCQMJwAEu+Y8QKJ3+/Hbrdjt9slkAghhEhZUoQuhBBJYhhGJGAAQwaCkX4OpChKzCxKOJBs27aNgoIC8vLyZIZECCFEypIAIoQQSRAMBgkEAnFnPcI6OzspKSlB0zSys7PJzs4mKysLp9M5oqAQDiSKomAymTCbzTFb/Hq9XgkkQgghUoYEECGESKCBhebxBvmGYVBTU0N1dTWzZs3C5XLR1dVFc3MzlZWVmM1msrKyIqHE4XAMOygYhjHkDIkEEiGEEKlAAogQQiSIruu0t7fT0tLCzJkzI0EgmtfrpbS0FK/Xy5o1a0hLSyMQCJCTk8PMmTMJBoN0d3fT2dkZE0jCsyP7CySKosRdziWBRAghRCqRACKEEKMU3dujr6+PpqYmZs+ePeh2LS0tbN26lQkTJrBixQrMZnOkPiTMZDJFZj6iA0lHRwfNzc3s3LkTi8UyrEAyFAkkQgghxpMEECGEGIWBheYmk2nQLEQwGKSiooLGxkYWLVrElClThn386EASPtbAQGK1WsnKysLv9+P3+yPLsIZLAokQQoixJAFECCEOkq7r+P3+mELzgcugent7KSkpQVVVioqKcDqdozrn/gLJvn37qKqqor6+PqaGxG63SyARQgiRMiSACCHECIUH44FAINKDIzzwDgcQwzDYs2cPO3bsYMaMGcyZMydur4/wbQ9WdCDp6upi4sSJOBwOOjs7aWpqoqKiAqvVGrNkSwKJEEKI8SQBRAghRkDXdTRNG7K3h6Io6LrOli1b6OzsZMWKFeTm5o7Z9SmKQk5ODjk5OUBohqSrq4uOjo5BgSQcShwOx4jPMVQgaWlpoa2tjfnz50sgEUIIEZcEECGEGIboQvPorW4H6unpwefzoes6xcXFWK3WMbvGeNdjMpmGDCSNjY3s2LEDm80WmR0ZbSDRdR2v14uiKDJDIoQQIi4JIEIIcQADC83jhQ9d16murqampgaz2cyKFSvGZXB9oOVc+wskDQ0NgwJJeMnWSIUDR/iaZMmWEEKIMAkgQgixH+FZj2AwOOQA2ePxUFJSQiAQYMmSJezYsWNcBtIHc86BgUTTNLq6uujs7IwJJANrSEZ6XVJDIoQQIkwCiBBCxBEeIGuaFrPL1UB79+5l27ZtTJo0iYULF9LX1zeqovLRGu25zWYzubm5kbqVcCAZOEMSXUMigUQIIcRISAARQogBBi65ijfw1TSNHTt2sHfvXpYsWcKkSZOAobuRj4VkDM73F0j27NlDeXk5drs9MjuiadqIzyGBRAghDi8SQIQQIkp4e939zXp0d3dTUlKC1WqluLg4pmh7pAEk0QPoZIef/QWS+vp6enp6UFWV8vLyyCyJzWYb0TkkkAghxKFNAogQQhAa5GqaFvkEP95g1jAMdu/ezc6dO5k5cyazZs0asrfHeBiPwffAQNLQ0EB9fT0Wi4X6+nq2b9+Ow+GIqSGRQCKEEIc3CSBCiMNeuNBc13Ug/i5Xfr+frVu30tPTw6pVqyKdyAcazyVYMH7hJ8xkMmGxWJgzZw4QmiHp7OyMzJBs374dp9MZs+1vMgJJb28vZrOZrKwsCSRCCJFiJIAIIQ5b0b099rfkqq2tjdLSUrKysiguLsZisQx5zPFcgpWKg2uz2UxeXh55eXkABAKByJKt3bt3U1ZWlpRA0tTUhNVqxeFwyAyJEEKkGAkgQojDUrjQvKKiAr/fz+LFi+P29qisrGT37t0sWLCAgoKCAw5Yw98PNysca+M9A3IgFotlUCDp7Oyks7OTurq6SCCJXrI10maO0YHEbDbLki0hhEgxEkCEEIcdXdfx+/3ouh6ZsRg48HS73ZSUlKDrOuvWrSMtLW1Yxz6YAJKoQe+ncfBssViYMGECEyZMAPYfSMKhZDiBJPrxlxoSIYRILRJAhBCHjfCgMxAIYBhGZNA5cNagsbGR7du3M3XqVObNm4fJZBr2OcZ7wDreMyCjvf9DBZKOjg5qa2vp7e3F5XLFLNkazQwJSCARQoixJgFECHFY0HUdTdMG9fZQFCVSfK5pGtu3b6e1tZUjjjiCiRMnjvg80TMgY+1QHBxLIBFCiEOPBBAhxCEtutA8vCwnetAYXoLV1dVFSUkJDoeD4uLiEXf3jj5e+LzjYbxnQJJtYCDx+/2RJVs1NTX09fXhcrkiz7vf75dAIoQQKUYCiBDikDWwo3m87XUBent7+fDDD5k9ezYzZ84c1SBSZkDG9r5brVYmTpwYma0KB5Jdu3bR0dHB22+/jcvliqkh2d8uZvFIIBFCiMSSACKEOCSFZz2CweCQA0Gv18uePXvweDysWbOGrKysUZ9XZkDGVziQtLa24nK5mDJlSmTJ1q5du+jr6yMtLS1myZYEEiGEGFsSQIQQh5TwQFDTtP329mhtbWXr1q04HA6ysrISEj5AZkBSzVAzJGMVSOrr6/H5fMyaNUsCiRBC9JMAIoQ4ZAxcchVvgKfrOhUVFezZs4dFixZFmtYlyuE+A5LqA+p4gaSjo4POzk6qq6txu92kpaVFwshoA4mmaWiahqIoMkMihBD9JIAIIQ4J4e119zfr0dvbS0lJCYqiUFRUhMvloqGhISmDdpkB+XSwWq3k5+eTn58PgM/nixS1Dwwk2dnZZGZmjiiQRG/3LEu2hBAiRAKIEOJTzTCMyKfMEH/WwzAMGhoaKC8vZ/r06cydOzcyGIzehjcRDvcZkFRxsJ3obTZb3EDS0dFBVVUVbreb9PT0mCVbZvPQb6Xxng+pIRFCHO4kgAghPrXChebhABFvl6tAIEBZWRnt7e0sX76cvLy8mO+Ht+FNpGQcc7jnFYkVL5CEl2wNN5Ac6HmRQCKEONxIABFCfOoMt9C8o6ODkpIS0tLSKC4uxmazDbpNvE7oozVeAQRkBiTZbDYbkyZNYtKkSUBsIKmsrMTj8ZCenh4JI8FgcMQhQQKJEOJQJwFECPGpMpxCc8MwqK6upqamhrlz5zJjxowhB2bJmgEZD6ky+EyVEDQWj8dQgaSjoyMSSKxWK6qqRmpI9rdkKx4JJEKIQ40EECHEp0YwGKSrqwubzYbJZBqyt0dJSQl+v5+1a9eSkZGx32MeSkuwIHUG/+NtvB6HgYFk+/btBAIBAoEAO3fuxOv1xizZkkAihDgcSQARQqS88OCqr6+Pt956iw0bNsQdSDU3N7Nt2zby8/NZuXLlsAZ2h1IAGc/gI+Izm81YrVbmzJkDhAJyeMlWRUUFPp9vTAKJoij09vaSnZ2N1WqVQCKEGFcSQIQQKU3XdTRN2+9a+mAwyI4dO2hqamLx4sVMnjx52Mc/lAIIjP8MiAxoYw3cjctutzN58uTIa3SoQBKuIUlUIAkEAmzevJmioiL8fr/MkAghxpUEECFESjIMI7LLVXgQFx6IRW+b29PTQ0lJCWazmaKiIpxO54jOk+hteMPHlF2wBBw4EA4MJB6PJ7Lt78BAEp4hMZlMI7qG6N3hLBZLZOMFWbIlhBgvEkCEEClnYKF5eAAV3WPDMAzq6+upqKigsLCQ2bNnRz7xHQmZATl0pcLgeaT9SBwOBw6HI24gKS8vx+/3k5GREbNkaziBJPy6iP5dkhoSIcR4kQAihEgp4VmPYDA4aMAT/v8+n4+ysjK6urpYsWIFubm5B32+ZGzDC9IJfbylUhAbzfMSL5CEl2yNJJBEB5B41yeBRAgxliSACCFSwnB6e4T//fHHH5OVlUVxcTFWq3VU55UZEJFMiX4+woFkypQpGIYRU0MSHUiia0hMJtOIrkMCiRAi2SSACCHG3XB6e+i6TlVVFQDTpk1jzpw5CRnsjGcAMQyDXbt20djYSGZmZmSdf7yGicM9byqQEBQrWc+LoiiDAkn0kq2mpqZIIElPTwdCv0cHW0MigUQIkSgSQIQQ4yoYDBIIBPbb0dztdlNaWoqmaZhMJiZNmpSwgc14BRCfz0dpaSlut5sZM2bgdrupr69n+/btOJ3OSBjJzs7GYrEM+9wy+P+vVBj8juXzoSgKTqcTp9M5KJDs27cPgDfffJPMzMzIkq2MjAwJJEKIMScBRAgxLgzDQNM0NE0D4s96ADQ1NVFWVsaUKVOYP38+b7zxRkIHdeOxC1ZbWxulpaVkZ2ezbt26SPgCCAQCkU+wa2pq2LZtG2lpaZEwkpWVNeS2rDK4+69UCmLj9bxEB5LMzEza29tZs2ZNZMlWY2MjmqbFLNmSQCKEGAsSQIQQYy5caB4e+MfbvUrTNMrLy2lpaWHp0qXk5+dHbpvIwJCsGZB4dF2nurqa2tpaFixYQEFBQWT5WZjFYmHChAlMmDABAL/fT0dHBx0dHVRWVkY6aQ+1Let4D7xlQBlrpLtgJfM6VFWNBJKpU6dGZkjCgaShoWFQIMnMzBzx7nIHCiSdnZ20tbUxY8YMCSRCHKYkgAghxsxwCs0Burq6KCkpwW63U1xcjN1uj3wv0YEhepCUzGVdXq+XkpIS/H4/Rx11VGRNfvh2Q53farWSn58fCWDhouOB27JmZ2fj9/vHPYCIWKnyfMR7fUXPkIQDidvtjszADQwk4SVbow0kgUCAxsZGCgoKZIZEiMOUBBAhxJgYTqG5YRjU1tZSVVXFrFmzmDVrVtxBU6JnQMLnTlYAaW1tpbS0lIkTJ7Jy5cpBS6hGcu7oxnXRn2B3dHTQ1tZGMBjkk08+iQwY09PTD6o/yqEgVQavqXAdw3mNKYqCy+XC5XLtN5AMrCEZ6esrPBsT/j2QJVtCHH4kgAghkk7Xdfx+/35nPXw+H1u3bqWvr49Vq1aRnZ0d91iJ7tsRHUASecxwJ/edO3dSX1/PokWLmDp1asLOET5P9CfYdXV1dHR0kJeXR0dHB7t378YwjMhgMTs7m7S0NBnEjaFUWoI1UkMFkvCSrT179hAMBiM7uIVrSA4USAY+JlJDIsThRwKIECJpogvNw596xhsw7Nu3j9LSUnJycigqKtrvrk+JXoKVrADi8/n44IMP0HWddevWkZaWlrDj7++8JpOJgoKCSH1Jb29vZIakpqYGRVFidthyOp0JH8SlwrKjVLiGVJKIIBQdSMKvr+hAUl9fHxNIhpqBC/8t2N95JJAIcWiTACKESIro7XXDg4l4vT3CMwQLFy5k6tSpBxxAJKMIHRI7YPX7/ezcuZOpU6eyYMGCEe8qdLDiLVdLT08nPT2d6dOno+s6PT09dHR00NraSlVVFWazOWaHLYfDIYO4BEqlGZBEX0e8QNLX1xdZsjVUIAn/TRjJeSSQCHFokQAihEio8NIjn8/Hyy+/zPr162OKyMP6+vooKSkBGNEMQSrPgASDQSoqKnC73RQUFLB48eJRH3Ok9nc/VFUlMzOTzMxMCgsL0XWdrq6uSNO6iooKrFZrzAxJvOdODF+qzMQcaNYhERRFIS0tjbS0tCEDia7r2O12NE2jq6vroGqUJJAI8eknAUQIkTADC83DXxt4m8bGRrZv305BQQHz588f0QAkWUXooz1mOFApikJmZiYZGRkjOn8ijPRYqqpGggYQ2SI1vCVreXk5DocjJpBYrdaEXW8ypcrMA3x6itATbahAUldXR3t7O6Wlpei6HlNDIoFEiMODBBAhREKEe3sEg8HIm/3A2QpN0ygrK6OtrY0jjzwy0utiJFKxCL2xsZGysjKmTZvGvHnz2Lx584iOl8hB0Gjuh8lkIjc3l9zcXCD0fIU/va6rq6OsrAyXyxWzZGtgvY4M6GKl0gzIeD834UCSlZVFIBBg2bJl9PX1RWpI6urqMAwjZslWWlqaBBIhDkESQIQQo7K/3h7R9RqdnZ2UlJTgdDopLi7GZrMd1PmSsQTrYI8ZDAYpLy+nubmZZcuWMXHixKRc43AlevBkNpvJy8sjLy8PCNW2hANJdXU1brd7UFNEESsVBv7h60gV0RtShGdIpk2bFtk0ITr0hndxC+/kluhA4vP5KC8vZ/HixVgsFgkkQowRCSBCiIN2oN4eqqoSDAaprq5m165dzJkzh8LCwlG9qSe6CB0OLjD09PRQUlKCxWKhqKgIh8MxquMlSjLPa7VamThxYiRo+Xy+yA5bFRUV+Hw+HA4HgUCA9vb2QV3aD1epMIhNlSAEQ19L9KYJBwok4Rm40QYSXdfp6OiI/K2SGRIhxoYEECHEQYne5Wp/b8xlZWVomsaaNWsS8gl5Mgb3IzmmYRiR+ogZM2YwZ86cQQOg8RqkjPV5bTYbkyZNYtKkSQB4PB727NkTqfFJRBftg5UqA+5UmXlIlccDGPYuWEMFkvCSrdra2kGBJD09fUT3M/xhhslkilmOKUu2hEguCSBCiBGJ7u0B8TuaA7S0tBAIBMjMzGTNmjWDun8frEQXoYePOZyBYnQNy/LlyyNLkw72eMkwngNeh8NBTk4ObW1trF27NqZL+549e2IKjsNbsh4OA7hUuI+pFEAOdkeugdtKxwskwKAakv3d73AYksaIQowtCSBCiGELF5qHA0C8QUR4K9rGxkasViszZ85MWPgInzMZMyAHCjXd3d1s2bIFh8NxwBqWQ6UGZDQGdmkP74AUDiR1dXUAMV3aXS5XSt2HREiVgX+qXAcMfwbkQOIFkp6ensiSrXDjzYE1JNHnDs/gHug8EkiESCwJIEKIA9pfoXm03t5etmzZgslkoqioiE2bNqVEvcaB7C/UGIbB7t272blzJ7NmzWLWrFkHHFQcrjMg+xOv4DjcFLGtrY3q6mpMJlPMlr+HQlPEVHk+UimAJKsniaIoZGRkkJGREWm8GV1DEh1Iwku2hhNA4p1HAokQoyMBRAixXwcqNA/fZs+ePezYsSOmLiIZsxVjWYQeCATYtm0bnZ2drFy5kpycnFEdL9lSYXAz3GuIHizOmDEDXdfp7u6mo6OD5uZmKisrsVgskYFiOJAMVyoNuFPhOsaiEeFwjdVzo6pq3EDS0dFBe3s7u3btilxPfX19pKh9pNcmgUSIkZMAIoQY0nAKzf1+P2VlZXR2drJixYpIDwkY33qN0R4zvG1wWloaxcXFI2rAJzMgI6eqamSpzMyZMwkGg5Eu7Y2NjVRUVGCz2WJmSA52K+exlCrPR6pcByRuCdZIRQeScOhtbGxk165dkUASPUNysMsCJZAIcWASQIQQg0QXmkfv2T9QuJtxenp63EH6eNVrHMwxw9dpGAa1tbVUVVWNatvgw3UGJFFMJhM5OTmRWSdN0yKBpL6+nu3bt+N0OmMCycCmiKkiFZ6XVJoRMgwjJbZnVlUVh8OB1Wpl2bJl6LoeqSFpa2uLBJLoWTgJJEIkhgQQIUQMXdfRNG2/S650Xae6upra2lrmzZvH9OnT475RJmO5VDJDjd/vZ+vWrfT29rJ69WqysrIO+ngyA5JYZrM5pkt7IBCIWdu/bds20tLSImEkVR6HVBn4p8p1wPjNgMQTXQOiqiqZmZlkZmZGZkii65R27doVmakLh5JEB5K6ujqCwSCFhYUSSMQhTQKIEAIIvQmGd7kKD1bivdl5PB5KSkoIBAIcddRRpKenD3nMZM1WJOOY3d3dbNu2jaysLIqKikb1afrhXAMyViwWCxMmTGDChAlAaClgeIetyspKPB4PNTU19PX1Rbq0j8en7hKEBku1axmqNiY6kAAxgWTfvn1UVVVhMpkSGkii//7KDIk4lEkAEUIMKjQfKnzs3buXbdu2MWnSJBYuXHjAAV2yitADgUDCjhe+79XV1SxYsIBp06aN+k19pAEkkYElFQa843ENVquV/Px88vPzAfjwww/JzMzE5/NRXl6O3+8nMzMzMljMzMwcs6LsVBgkfloG/WNtJLMx+wskra2tgwJJdnY2TqdzxI0RzWZzJHCALNkShyYJIEIc5nRdp7W1ldbWVubMmRP3DUzTNHbs2MHevXtZsmRJpPP1gYzljlUHw+v1UlpaSiAQYM6cOUyfPj0hx03GLM1wzytCwktl8vPzMQwj0hSxs7OTxsZGNE0b1BQxGYPiVAiEkFoBJFWXYI1UdCApLCyM7OTW2dkZE0iia0gOFEiCweCgWjqpIRGHIgkgQhymont7uN1uWltbmTt37qDbdXd3U1JSgtVqpbi4eERboabyEqx9+/ZRWlpKbm4u6enpI7pfBzKeb/qpMuBNJfGaIrrd7siSrd27d2MYRswn1wezHWs8qTLwT5XrgNSbAUnUtUTv5BYdSAbOkIRfY1lZWYMCiTRGFIcLCSBCHIYGLrkymUyDBq6GYVBXV0dlZSUzZ85k1qxZI36jTtYSrNEcU9d1qqqqqKurY+HChUydOpUPP/wwodd5ONeApMI1hA11LYqi4HK5cLlcFBQUYBhGpD9EdMO66B22RrqUZjjXMZZSLYCk0rUkKwxFBxIgJpC0tLRQWVmJ2WyOqSEJBoMjrlWSQCI+jSSACHEYiS40j+7tYTKZYmYVwrtB9fT0sGrVKrKzsw/qfKm2BCtcQK9pWkwBfaIDg+yCNf5GWoOTnp5Oenp6pGHdwLX9ZrM5JpDY7fZhDd5S5flIpUF/qi3BGqtrGRhIgsFgZMlWuPmmYRj4/f5IAHY4HLLtrzgkSQAR4jAR3dsDYrfXjQ4KbW1tlJaWkpWVRXFx8ah3g0qVJVgtLS1s3bqV/Pz8QQX0h0oAkcFDYsRb2x/uQdLU1ERFRQVWq3VQIBlKKjwvqRRADtUlWCMVvRwr3Hxz06ZN2O32SCAJB9/wLIkEEnGokAAixGEgPOsRDAZj3ojCVFUlGAxSUVHB7t27WbBgAQUFBaN+80mFJVi6rlNRUcGePXtYvHgxU6ZMGXSbRAelw30GJBWuIZFUVY0MFIGYLu0NDQ2Ul5fjcDhiAkm4kDhVBv6pch2QejMgqRKGTCYTiqKQn5/PxIkTIzMkHR0dNDc3s3PnTiwWS0wNiQQS8WklAUSIQ1h0oXn0kquB/H4/gUCAffv2sW7dOtLS0hJy/nCwSaSRhAW3282WLVsAKCoqwuVyDXnMRA+aZQZk/CXr8YjXpT3cFLGuro6ysjJcLhfZ2dmR37/xlkqzDqkWhlLlcYHY64meIQFiAsnevXsjM3HRNSSJDiSVlZXYbDYKCgokkIiEkgAixCFqYKH5UG8WjY2NlJWVAXDUUUcltFlbMpZgDXcGpKmpibKyMqZMmcKCBQv2O8hI9ExNMmZ+hutQm334NDCbzeTl5ZGXlweEAn04kASDQbZs2UJ6enpkMJmZmYnZPLZvv6k06E+1MJQq1wL7D0TxAklXVxednZ0xSwOjd3Mbbq1StOhA4vf7sdls0hhRJJwEECEOQcFgcFCh+UCaprF9+3ZaW1uZP38+5eXlCe8UnYyB+IFCTTAYZMeOHTQ1NbF06dJIY7oDHVNmQA4t4xnErFYrEydOZOLEiTQ3N7N48WICgQAdHR1UVFTg8/nIyMiIDBIzMjKS3qU9lQJIqi3BSvZjPxIjuZ6BM3FDBZLoGpKRBpLw9UhjRJFoEkCEOIREF5qHP9mL9wbQ1dVFSUkJDoeD4uJiDMNg+/btCR+kjPUuWL29vZSUlKCqKkVFRTidzlEfM9HXOJREPfYyA5J6bDYbubm5kQae4aaIHR0dkaaI4UCSk5OTlKaIqRRAUulaUnkJ1kgNFUiG2jwhvGRrf4LB4KDrkRoSkQgSQIQ4RERvrwvxl1wZhkFtbS1VVVXMnj2bmTNnoigKPp8v8v1EvkGM5RKshoYGtm/fzvTp05k7d+6I3sRTIYAk6rzjLRWuIZXE+51yOBw4HA6mTJkS06W9o6ODPXv2oOv6oC7to31cZdAfXypdCyT2evYXSBobG9mxYwc2m21QDUm04fQlGWkg2bdvH3a7nYkTJybkfopPJwkgQnzKRff2CA8y4g00vF4vW7duxe12s3r16she9EDkjSPRb8bJWoIVfczopWRHHnkkEyZMOKhjJnoXrPEiMyD/lQoD7gM9H/G6tPf19UUCSV1dHUDMun6XyzXi+5ZKASTVruVQDSADxds8Ibxkq6GhIRJIopdsHcz1HCiQ3HLLLeTm5nLnnXcm/D6KTw8JIEJ8ig0sNB8qfLS2trJ161Zyc3NZvnz5oALY6ACSSMmaAQkfs6enhy1btmC1WikuLt5vL4b9kRmQxEqFEJQK1xA2kudFURTS0tJIS0tj2rRpGIYRaYrY1tZGdXV1TDHycHtDyKA/vlSrRxnLx8ZsNpObm0tubi4QP5BAaHZZ07QD9rsZysBA0tfXx4wZMxJ3R8SnkgQQIT6lont7DLW2NroHxqJFi5g6dWrcYyUrgCSrBkTXderr69mxYweFhYXMnj17VG/aiZ6pGWkA8Xg8mEymSO+I0UilgbcY/fOhKAoZGRlkZGQwY8YMdF2P6Q1RWVkZ6Q0R3awu3nWk0kA7la4llcIQMG7XEy+QvPfee1gslkEzJOHX28EEErfbPez6PHHokgAixKdMeCo7vORqqPARLshWFGW/PTDgv59QjdeWuSMRDAbx+/1UVVWxYsWKyJvlaIzXDIhhGFRVVbFr1y4Mw4gpRD6YnZFSZVAnYiV6Y4esrCyysrIi3bMHFhpHDxKzs7Ox2WwpFUBS6VokgAzNbDZjGAbTp08nPT09MkMSrlUqLy/HbrfHLA+02WwHPK4EEAESQIT4VBlObw/DMCLdmUdSkJ2M2YpEH7Orq4tt27ZhGAZFRUXDerMbjvEIID6fj9LSUjweD6tXr0ZVVbq6umhvb6esrAxN08jMzCQnJ2dEhcgyA/JfqTDITfZge6h1/R0dHdTX17N9+3acTifBYBCbzUYgEMBisSTteoYjlZZgpdK1pFoAgdhtgePNkHR2dtLZ2Rl5rTkcjpjZuHh/o91u934/EBvI4/Fw7bXXsnHjRpqamoa83TPPPMNPf/pTtm3bxoQJE/jSl77EDTfcEHdG8KGHHuKuu+6iqqqKgoICrrrqKq677rqUeuwPdRJAhPgUCBeaezweXn/9ddavXx93uU4gEKCsrIz29naWL18eaYw2HGO9Ze5IGIZBXV0dlZWVTJ06lcbGxoSFD0hOEfr+7nd7ezslJSVkZ2dz5JFHRp5fp9PJ5MmTMQwDt9tNe3t7TCFy9KfaTqdz0MA2FQbcqXANkBpBbDyuYeAgMRAI0NnZyc6dO2lra6OxsZG0tLSYZTRj2RQxXJCcKq+TVFwOlirXE/67NNSgfGADzniBxOl0kpWVhcfjIScnhxkzZowogOzcuZPzzz+f0tLS/fZ0+uMf/8jll1/OF77wBa655hp27drFr3/9az744AOee+65mNf4TTfdxG233cYVV1zB9773PUpKSrjhhhvYunUrDz744AgeITEaEkCESHHRvT3CA+V4A5uOjg5KSkpIT0+nuLh4xAP0VJ0B8fv9bNu2je7ublatWhVZj5xIYxVADMOgpqaG6upq5s+fz7Rp01AUhUAgMOjnXS4XLpeLadOmoes6vb29tLe309raSlVVVWTdf3jJVvj5ToWBt4g1ngNKi8XChAkTqK+vZ/LkyeTm5kZ22KqsrMTr9Q7q0p7Mxnzh12eqfNKcakuwUuVagMhM+3BfDwMDSSAQiMzG/fnPf+bBBx9kypQpdHZ28vHHH3P00UczefLkIY/X2dnJmjVrKCws5MILL+SVV16Je7umpiauu+46vve973H77bdHvn7GGWewbt067r//fq6++moASkpK+NnPfsbvf/97rrrqKgAuvPBCjj32WM4880zOP/98Tj311GHdXzE6qfNKF0IMous6fr8/MkANvxGE3xjgv3UEH3/8MYWFhaxYseKgZgdSMYB0dHTw7rvvAlBUVER2dnZSdpgai07ofr+fzZs3U19fz5o1a5g+ffqwB6aqqpKRkUFhYSHLly/nmGOOYeHChdhsNhoaGnjnnXd4//33qauri2xOIMZf+DWQCp9oh2cdrFYr+fn5LFiwgHXr1rFu3TqmTp2Kz+ejvLycN998k82bN7Nr1y46OjoS/jchlR4TSK1Bf7ymf+NptEvCLBYLeXl5zJ07l1/96ldUVVVx8803o+s6Tz/9NAUFBSxYsICrrrqKJ554gubm5pifz8rK4qGHHuL9999nzpw5Q57nkUcewWKxcNNNN8V8fcWKFVx44YX8/ve/j3ztD3/4A3PnzuXKK6+Mue0ZZ5zB8ccfH3NbkVwyAyJECgoXmmuaNmhaPnpQ7/F4KC0txe/3s3btWjIyMg76nMkoQj/YY0bPFMydO5cZM2ZE7v+noVh+YKDp7Oxky5YtZGRkUFRUNOo1+APX/YeX2TQ3N6PrOm+99VbkU+2cnJykf6qdqsZ7kJtKs1FDLXuy2+1Mnjw5svQv3BSxs7Mz0qV9YFPE0QySw7+74/3chKVSAEmlawFiag0TIS8vjwsuuIDvfe97PPbYY8yePZu33nqLN954g5///Ods2rSJO+64I+ZnzjnnnAMe97XXXuO4446Lu6zrjDPO4KGHHmLv3r1MmjSJ1157jdNOOy3u6++MM87gBz/4QUotETyUSQARIsUcqNDcZDKh6zrNzc1s27aN/Px8Vq5cOep13MmaARnpICxcnO12u1mzZg2ZmZmDjgmJLe5NVhF6dO3KnDlzKCwsTMobW3iZjdPppK2tjaOOOipSP1JeXk4gECAjIyOmoD2ZA51UGninglQYzAzn9yVeU0S32x1ZsrV7924Mw4jZ9SgtLW1E9y/VlmClWhF6Kn1QEL6eRL9+3W53pA7prLPO4qyzzgIO/u9GQ0MDGzZsiPu9wsJCAPbs2cOkSZNoaGgYsgdJYWEhHo+Htra2EdVPioMjAUSIFBLeXnd/xYiKolBVVUV7ezuLFy/e7xrakUiFJVhtbW2UlpaSnZ095ExB+DH5NASQLVu20NnZyapVq8jOzk7Y8ffHMAxsNtugT7XDgSQ8iIwuaD+YztqpLhVCUCpcQ9jB/L5E1yIVFBRgGAa9vb2RQFJTU4OiKAfcHGHgdYSPnQpSsQg9VSRjSZimafj9/rjb8CbzeRhpM1CRfBJAhEgB0YXm++vt0dPTQyAQwO12U1RUlNC91JPZNPBAwnUstbW1McXZQ10nJPbNOtEBxOPx4Ha7cTgcFBcXH7DBYCKDVLyvhT/VDg8iB3bWNpvNMQXtB9tRXsSXCgOaRAR2RVFIT08nPT2d6dOno+t65LUU3hwh+rUU7pwdfd7wgD8VHhNIrUF/Kl0LJGdGpre3F4C0tLSEHXPq1KmRnQIHqq2tjdxmOLd1OByRpa0iuSSACDHOwkXD0QV/8Xp77N69m507d2I2m5k3b17CGzmN1xIsr9dLSUkJfr+fo446ivT09P3ePnoGJFESuV3wnj172LFjB2azmZUrV475QOtA9yNeZ+3wTjWNjY1UVFRgt9sjYSQrKyshHdoPR6n2aX+ir0NVVTIzM8nMzKSwsDDmtRRuimi1WmMCSSqtrw8vk0yVQX+qFaEn43o8Hg+Q2ABywgkn8POf/zxug8ONGzeyePFiJk2aFLntCy+8EPd1uHHjRk444YSUeX0e6lLnlS7EYSZcaO73+wkGgyiKEjd8+P1+PvnkE2pqali5cmXSPp0ejxmQ1tZW3nnnHRwOB+vWrTtg+IDYGZBEXudoA4imaZSWllJZWcm8efMwm83DfiNLVJg6mDdOVVXJzs5m1qxZrFq1imOOOYa5c+diMpmoqanh7bff5sMPP6Sqqoq2traYHdgSdQ3JkAoD3U/7EqyRin4trVy5kmOPPTZmt7b33nuPTz75BMMwaG5uxu/3J/V6DiTV6lEOhxkQt9uN1WodVc1iMBiM2THr4osvJhAI8OMf/zjmdlu2bOGxxx7jmmuuiXzt6quvprKykvvuuy/mts899xyvv/56zG1FcskMiBDjYDgdzeG/NRFZWVkUFRVhtVpRVfWAg8CDkeidoMLHhMGDH13XqaysZPfu3SxatCgyPT4cyZoBGU2g6enpYcuWLdhsNoqLi3G73eM2+BzteQfu5e/3+yP1IxUVFfh8vpiC9oyMjJQaNKWi8Q5CMD61DvG6tDc1NVFdXU1dXR1lZWW4XK6Ypohj2aVdduTav2TMgPT19R2wTuhArrrqKh588EHefPNNiouLmTx5Mr/5zW+4/PLL2bNnD6eccgq1tbX86le/4oQTTuDyyy+P/OyyZcu48cYbueaaa9i6dStFRUWUlpby29/+lssuu4zPfOYzibibYhgkgAgxxsJLrsJ/3OP9IdZ1naqqKurq6gbVRIR3wUq0ZC3BgthP0txuNyUlJei6zrp160Y8FR9+HFJlBqShoYHt27dTWFjI7NmzUVUVj8czLgEkGQMpq9XKpEmTmDRpUsw2rR0dHezZswdd12N2RUqlT/3HWyo9FqkwI2Q2m8nMzMRsNrNmzRr8fj+dnZ10dHRQXV2N2+0e1BQxmV3aR9vnItFSMYAkegYkHEBGY+rUqWRlZcXskHjppZcyceJEfvrTn/LUU08xYcIErrnmGm644YZB9+FHP/oRM2fO5Ne//jUPPvgg06ZN42c/+xnXXnvtqK5LjIwEECHGSHjJVSAQ2G+heXiAHgwG49ZEJCMoJOu4AwNIc3MzW7duZfLkySxYsOCg39wSPVtzMMcLBoOUl5fT3NzMkUceyYQJEyLfS0Zjw5FI1mAz3jat8XZF0nWdhoYGcnJycDgcCb+OT5vxHvhDagQQiJ2JsVqtTJw4kYkTJwKhLbjDr6Xo2bZwIMnIyEjogFgCyP4l43rCdRojfS3ecsst3HLLLYP+f7QzzzyTM888c1jH+8pXvsJXvvKVEV2DSCwJIEKMAV3X0TTtgEuumpqaKCsrY8qUKcyfPz/um20yl2AlowYEQoP1yspKGhsbE7J1cLK2zR2uvr4+tmzZgslkoqioKO4g+1CZATnQ+QbuitTU1ERlZSV79+5l586d2Gy2SEF7dnb2mBW0p8KAO5WK0FPh8Qhfx1CDWpvNFpltA2Jm28JNEcOBJCcnZ9T9bMKPSSo8LpB6fUCSMQMSr1BcHJ4kgAiRRIZhRJZc7e/NTtM0ysvLaWlpYenSpeTn5w95zGTUaoSPm6wZkI8//hhVVRO2dXCir3UkASQcEgsKCpg3b17cAVCynqPhGq/BpqqqpKenYzKZWLlyJZqm0dXVRXt7e8ya/3AYycrKSuoSm/EmS7AGG0ktisPhwOFwMGXKlCGX/w3s0j6S+5hKPUDg8JgB6evri9uxXBx+Dt2//EKMs+jeHsCQ4aOrq4uSkhLsdjvFxcUH3OUqWTMgoy3EjqepqQmAzMxMFi9enLJ9O4ZzPF3X2bFjB42NjQcMiTCywWcy+4CMJ7PZTG5uLrm5uQCRNf/t7e1UVlbi9XpjlthkZmam1AAsEVLpOUmFaznYIBRv+V9fX18kkIR7O0TXIx2owWaqDfiDwWBKBXKZARHJlDqvdCEOIbqu4/f7I5+wxXuTMwyD2tpaqqqqmDVrFrNmzRrWG3Mya0DCYWm0ousjFEVh5syZCX2jT3RYOtDx3G43W7ZsARjWLE4q1ICMl/29hgeu+Y+3xCY8gMzJySEtLW1Ug+bxHnCnyqwDpM61JKrvhqIopKWlkZaWxrRp0+I22DSZTDE9SBwOx6Dd+FIpgKTi9SQ6ELndbpkBEYAEECESKlxo3tnZyfvvv8+GDRvivun7fD62bt1KX18fq1atIjs7e9jnSPVdsHp7e9myZQtms5mioiLeeeedpGzvO1YzIC0tLZSWljJlyhQWLFgwrAHCeAWQVBhghmmaRmtrK62trbS0tNC0dy+1LS109vbiDwYJ9M8OBjQNTdcJBIPUVVfj93hYumgRmXY7eenp5OfnM2XKFAoKCiL1Aak0SNsfWYI1WLKWPcVrsNnd3U1HRwfNzc1UVlZisVhitvxNxQF/Kl1PMBhMeM2WBBARJgFEiASJ7u2xv2VSra2tbN26lZycHIqKika8732qFqEbhkFDQwPl5eXMmDGDOXPmRIrtk1HcnuxdsHRdZ+fOndTX17NkyZIRFc6P90Av2QPfYDDIe++9x6uvvso/XniBPd3d6A4H2GygqtDdjWn6dMjKgrS00H+ZmSgOB2RloZhMKKoKigKqGvr/qoq/uhpOPZV6kwnD68Xw+WDXLti2Ddxu8HpRe3tR/X5Mfj/mQAAbMDUvj9kTJ5LhcLB69WpcLhe6rrNkyZKkPg7DMd6vhbBUCSBjdR2qqpKVlUVWVhYzZ84kGAxGurQ3NjayY8cOLBYLwWCQvXv3kp2djc1mS/p17c/hUoQuAUSABBAhEiK8vW74E6zwtHX0m230gHbhwoVMnTr1oDtXBwKBhF5/+LgHGxQ0TaOsrIy2tjaWL18eaWIXPm4yZkCSWYTu9XrZsmULmqZRVFQ04jfM8PGGO9hKxRqQzs5Otm/fzgeffMJzb7xB1e7d+CwWgmlpBF0ujJwc9NxcTF/6Es7ZszFlZ2OyWkFR8FRUoL/wApbFi7GtXz+s82m7dqEeeSTK7NmY0tKwxnnMw5s66P2PbWDzZjxvv027YbDVMNA9Hh564gno64OuLpQbb8QFbDjhBC48+2zWrFlDVlZWwh6jA0mVGZCRvBaTbbw+5Y/XFHH37t00NDRQX1/P9u3bcTqdMUu2xrIpIqTeDEiyitClBkSABBAhRmVgoXn4E//wp0bh2ZC+vj5KSkoADqr5XrRUmwHp7u5my5Yt2O12ioqKBhXRJ2t732QtwWptbaW0tJT8/HwWLlx4UJ8AjvdAbySPjdvt5vnnn+eNN9/kgx07aGxpwRMIoFut6ICan49l1SpsX/0q9v7QrGsafbt2kT5tGqYBnxoHAwEUkwnzsmV4Xn4Z9/PPY548GdVsDs2OmEyhmY/wY9T/v/5duzDl5sLu3fj9fgIOB+g6RjCIYjajZmVBdjamSZMIdnYS/OQTlLlzcV5xBVgskQG2qqqoioIWDKJ4PPhqavh3aSn/+vWvMff2YvJ4yEpLY8GCBRx7xBEcvXIly5YtO+DmDwdrvF8LINsBx2M2m0lLS8Nut7N69WoCgUCkKWJNTQ3btm0jLS0tZslWsgvEUy2AJGsGJBwCxeFNAogQBym8vW54cB29y1X4TSQYDNLS0sL27duZNm3akNu2jkQyi9BHMnA1DIPdu3ezc+dOZs6cyezZs+MOLJK1BCsZReiVlZXU1tayaNEipk6dOqrjwdgPtoZzrvb2dm756U959oMPcDud+Mxm9EAABVAnTcJy4ok4jzgCxWQi2N6O0daGsW8fgWefxe92o+bkEJg8GevKlQQaGnCXlqLv2gUeD4bZjGE2h4JCfj7qGWdgtLailZZi/fzn419Q+DXX2Ih6+ulgMhFwu6F/BkRVFHSvl0BPD3pbG8E//xkmTUJVFCgrw19WhikvD3XuXEyLFmG229HDgdLhwL5kCc4jjiDQ1YV33z4smkbn9u28U17Om598Avffj2oYZOXkMH3CBP5nwwY+99nPxjSWPFipMtgOS4VrSVQReiJED/gtFgsTJkyIPO9+vz+yQUJ4x7aBXdoTPTgPf2CVKpKxJMzj8cgSLAFIABFixKJ7e4TfwAa+sYf/XVZWRldX16BO2aORCkXogUCAbdu20dnZycqVK/f7iVaylmAl8piBQIBAIMDevXvjdp8fqegAMh6iz6tpGq+++ioPvvwyH9XW4snKIpCWhjprFqrDgW3KFMwrVmCZPTtUiwHowSCa1wsuF8bEiRh+f2g2oqmJvuefR3n/fQIvvgg9PVhPOAHruediyc1FsVhQTCY0XY8pXvXm5aG/+SbOiy8e+qKzs3HNmwdAX20trmnTYr7t37kT35tv4vrGNzAXFICuo2saQY8HrbERbdcutD//GW9vL9jt6NOno5jNKI2NGJ2dKBYLhs1GwGLBmp+PtagIxeHAsFoJtrXRtX07W+rq+OSBB7jpb3/D4vNh93hYO38+373uOlavXj2q52E8pdIMSCr13thfQLRareTn50e22/Z6vZFAUl5ejt/vj/QgycrKSsgW0qk4A5KMTugSQARIABFiRKILzWHojuZdXV1AaGBbXFyc0OLGZM6ADOe4nZ2dlJSU4HK5KC4uPuAuKam+BKutrY3S0lIgtDwuEcssRhpAwmv0E3FeXdfZunUrf3npJd7bvZtmk4nOvDzUqVNRenpQdB3rtGlYvvAFDIsFze0m4HYTqKtDiaoVUGw2VJsNZfdujHffBV2HvDxs69eTXlSEYjajNTfjf/VVgv/4B8oRR2A94YTQfR/wfNuLinC3t+N7442ha0KiXkfKgMfC++abaNXVuK6+GjV8O5MJk8mEyWbDmpUFixahd3Xh+89/CFRUQFMTqq5DXx+WpUtRV6xADwbRfT58nZ3oDgeq2YxiMmGaMgXr6tWYVJVAeTnBbdsw3G78BQW8np7Oqz//OWpzMy6fj+9fdhlXXHbZsAdmqTDYTqUAkkqzQiMZ8NvtdiZPnszkyZMjTRHDS7YaGhrQNG1QU8SRDt5TLYAkYwZEGhGKMAkgQgxTdG+PoYKHYRjs2rWLXbt2oaoqCxYsSPjOKuMVQMJ9SyorK5k7dy6FhYXDLrBORof10R4z+rkqLCykpqYmYWu8x2MG5OOPP+bnjz/O5o4O/DNmoGVmEsjOJvDBB6i6TlDTUHNywGIh8O67eN97L7QbldmMOT0dJfxfdjaKYaBVVBD0elHnzcP+5S9jysqit7qatGnTUPofJ3N+PuYvfhHd78f/4Ye4f/1rzMuXox599KDrc5x2Gn2/+x2mhQsxD2jiqLvd4HBE/h39uPlefplgWxuuL3857utNd7vxPvcc+t69KDk5mI88kvRTT0Xr72FgBAL4t20j+OKLoTCyejX2BQvwNDbimDIFXdPQ+vrwt7djBAKh+79+PYqiEKyvh23bsDqdWC+/HF1VufHtt7n5pJOYoKr84PLLOe+znx0yhMsMyGCpugRrJKKbIoa7tLvd7sgMye7duzEMI6Yp4nB62qTiLljJmAEZTQ2kOHRIABHiAMK9PQKBQOTNM94bidfrpbS0FK/Xy5o1a/jkk0+SMgAZjyJ0v9/P1q1b6enpGfFOQslYgjXaGRC/309paSlut5u1a9diMpmoqalJ4BWGJHsAWlVVxc2//S1vbdqE227HVFiI4XIRbGhAe+UVlLw8LOedh1pQgMnlwpKdjTktLbLUKnyNhtuN3tWF97330F56CWXGDEx2O4quY+zcibemBj0vD6WgAGPGDAa++lWrFfvRR2OsW4f39dfx/PrXcPrpWKO2wTUA64kn0vuLX2A95hgUtxvD7QZdR2trI9jTg/rYY2C3E9A0/B4Pge3bQ4O9888f9DunNTXh37gRQ1WxHHMMlnPOiblf+P2ha7PZsK9cCStXonu9+N5+m8Cf/gRZWfT19ODKz8fq8xH0eDC83tD/+nwYmoZhNqMsWYLf78e7cSNqby+WlSuxn3YaHc3NfP2NN/jOo4+yYMIELjrxRD5/7rmDitlTZdAPqXEtqbQEK1EzDoqi4HK5cLlcFBQUYBgGvb29kUBSU1ODoigxO2w5nc5Bj8PhMAMindBFmAQQIfZD13U0TTvgkquWlha2bt3KhAkTWLFiBWazedyXSiXquO3t7ZSUlJCVlUVxcfFB9S1JpSL0jo4OSkpKyMzMZN26dVgsFtxud8J31YLkBJAdO3bwrZtvpqSxEV9ODqYlSzB997tYJ00iuHMn/qefBpeLtOuvxz5v3gEHe4qiENiyBf/rr6MuWEDGrbeiDhgg6D09dH/wAdaODjz33Qd9fah5eViKizHPmfPfY5lM2E84AXXNGnyPPELfgw9iyc9HcToxrFbU3FxMq1YRrK3FdsYZYLejmEzo//kP6sSJqNOno3s8KLW19D3zDADW7Gzc99yDYrejLlqEAQQ/+ghl4kRs55yDOTc37v0yAL2zE622FqOpCb2tDb23NzTr43SiezwEnn2WLp8P+1FHodpsYLFgsloxMjIwAMPjwejpweR2o6alYZhM+DZtwvPKKyi6jik/H3d2Nlvy8igrL+f2K69kaWYmP73mGubNmyczIHEcCjMgB6IoCunp6aSnpzN9+nR0XY90aW9tbaWqqgqz2RwTSOx2e8oFkETPgIRnimQJlgAJIELEFV1oHlkTH+fNOxgMUlFRQWNjI4sWLWLKlCmR75lMpqTMVIxVEXr0EqV58+Yxffr0gxrAJGsJ1kgHd+ElZFVVVcydO5cZM2ZE7s9I+3YcSKIDiK7r/PzXv+b3//wnnpkzMZ16KqYFC7D4/aBp6D096Pfei5GXh+WLXyRj2bJh3Q+tsRHvww+jzp+P89vfRh0iXAZNJiyzZmGdNClU+B0IEKyvx//++xh/+xuG348yaxZKdjbGpk2hgdTUqSinnor/nXdCu2utXYtBaFcr/+OPo3R0oGZmRq7DNGMGQQCHg6DPB1Yr1rPOCl2AohDYto3A009DRgamYBA1Oxu9qwvV7Qb6f2erq6GmBqOrC6xWTLm5mAoKUOfOxbpuHaasrJjHxTAMul55BX37dswLF2Jbty7u/TcAo7//iN6/NbD20UcEPvooVDfT0oK3pYW9wSCte/dyzKWXUjBhAleddRYLowLaeIneqW+8pVINyFg2RczMzCQzM5PCwkJ0XY80RWxqaqKiogKbzYau6+zbt4+JEycmbVvo4dJ1HcMwpBGhSBoJIEIMMLDQfKjw0dvby5YtWzCZTBQVFQ2aVv40z4D4fD5KS0vxeDysXbuWjIyMUR13vJdgBQIBtm7dSnd3N6tXrx60hCzRg5BEHa+yspIrbryRspYWtCOOwPKDH2Cx2UBRMFmtmPPy8D/6KMH2dtTPfhZTVhamiRPRPR703bsxurow+voIut2o/UuMwv8FqqrQe3uxzp8P+/bh+ctfMFQV3WTCMJnAZEJJS0PJz0czmbA6HARaWkJfN5uxTJ2KvbAQw2xGe+UVfO++i+FyhRpxrl6N8/jjQ8/9scfiffll9Oefx3HJJahOJ7ZLL8X397/jvPpqAAxVxbFkCarVitbQgL+iAtsll+DIySHY1ob3b3/Dkp9P+q23otrt6JqG75NP8D78MEowiGnSJBSXC1NBAUpREWRkhLYW1nV0wFAUgj09GP0zIKrVimK1olqtOFevJrBoEXplJb1//CPOCy5AHbBGXQEUVUUFMJkwzGbMxcVYVq3C98YbGLW1OD7zGcjMxL1nD4HOTmp37+b6P/8Za08PJ69ezR033cSkSZMS8ro4GKky6D8Ul2CNlKqqkZkPCH2Q1d7eztatW9m7dy/V1dU4HI6YGpIDbfaRaOH3AgkgIlkkgAgRJTzrEZ56HqrQvL6+noqKCmbMmMGcOXPivomlWsPA4R533759lJaWkpuby/Lly0ddmJ2M6x3JMbu6utiyZQtpaWkUFRXFfSNPdN+O8DEO9n6//+GHXPTd79JmsaAcfTSmr3wFe3o61vx8TP1LNXwbN9L91FOYCwoIahrKE0+gZGcTUFVM6emoEydCWhqK04mal4dis4HZTLC3l8Cf/4x6/PFY5szB8PsJ+nyhhn+GgUpolkIxDOjpQd+6FerrIS0NXdNA01AcDsjNJQDo27djPeYYMm+8MdQ7xOvF8+GHeO69F0VVsZx4Io5TTiGwZAl9992H9bjjsC1fjn/yZPzl5VgXLgRdR7Va0d1uPE88gf3CC9F9Ptx//jN6MIj9c5/DnJcXqlN5+WWCtbXgcuE46yyUnBwCr7yCOT8f+4YNkcfQ7/djsVj++1z4/QQ7O9H37UP3+dD8fgxNA13H7/Fgttthzhw6f/tbzEceieOoozBlZcX93VYUBZOiYHI4sJ56KlpPD57nnkMBHCefTGDvXkxz5qAEg/g7O9m4Zw/PffnLFKgqP/r61znj9NPHdOCbarMOqVJonSpLnkwmU+RDkRUrVgBEdtiqq6ujrKwMl8sV0xQx2V3ao5cdJ4oswRLRJIAIwX8LzTVN2+8uV36/n7KyMjo7O1mxYgW5Q6w/h+QulUpGsIFQz4hPPvmEhQsXMrW/6/VoJasR4YFmQKKD4uzZs5k5c+aQ9yc6MCTqDXckj134tjt27OCsK6+k2WLBfOaZWFetwjZpEqrXi++DD/D94x+h2oUdO1BXrsRx6aVodjvW9HSc/Ut9wgPvoM+H5nYT7O2F/oG23thI8N//xnH55dhmzUIZxkDQ19GB2efD1t/HxtB19J4ePH/5C8HubsyzZxMsL8f9ySdgsaBOnx7aOevoo9E7O/G//Ta+Z59FnToV51VX4f33v9Hr6rCfeirue+4JBZD+kOt+6CHsX/gCgaoq/G+/jfNzn0O12Qi8+CK+jg7IycG8fDmO005DNZvRdR193z5YsQLva6/hefttLJMno1gsBIFA/0wO/bM6ano6itMJqkrknhsGqmEQaG7GlplJcM0afNXVBD7+OBTidD0UkFQ1NAuiqqEamfR0TAUFmGfOxJyTQ/oFF+DbupXA44/jOPNMAv21Y45Zs1BmzkQ74gj2NDXx5V//GusPfsD/nHYaN117LZMnTx726+RgpVIASaUZkFQLQxD6+66qKnl5eeTl5QGh3+lwIKmursbtdg9qipjoLu3h5ymRz5XX60XXddkFSwASQIQYdm+P9vZ2SktLSU9PH1b/i2TVgCRjRsHj8bB161aAhDTii5asJVj7eww0TWPbtm10dHQcsFFi+BohsUXjI1kmVllZyTnXXENdVxem004jbc0ajPfeQ3/8cXw2W6iz+JIlmM89F99DD+H89rexHXkkvvZ21I4OrPn5ePbtQ3e7Cfp8+AntTGVyuXBMmoRqsaA1NOB5/XUybroJNWrL2wPROjtxFhQA/YMkw8D3wguoubmkDWgsGOzpIVBbi7Z1K57XXw/tRKUomJYuRcnIwPPQQ6jp6RiZmXgfeQRl9mz8paVgMuF78UXUuXMJbNxIMDsbZcYM/Bs3ok6dimntWtTOTvT6erS33kJ7/XWwWMBiQcnKQp0yBceXvgQ+H/5//zsUzHQ9ZgbkQPrq6kIzTBYLLsPAs3EjKmA/6SQMXUfr6ws1PfR6CXq9GH19BDo7UV55BdXnQwkGQzMqaWn0/vGP2FetwrxyJb7mZlxTpqDm5mLJyUFfsABfeTl/ee01/rJxI/Pmz+dnX/86G44/ftjPyUilUgBJpWtJpTAUvpZ4H4BYrVYmTpzIxIkTgdAS2fAOWxUVFfh8PjIyMiKBJCMjY9TBan+rAA6Wu79eS2ZABEgAEYe58Pa6+5v10HWd6upqamtrR1SMnaylUiaTKaEF0+EdvHJzc+nu7k74p1PJWoI11OC+p6eHTz75BIfDQVFR0bD6sCRj16rhBJBt27bxpZtuorKmBmXOHOxz58KePeiGgfmYY0K7WPUPJPzvv4/3z3/G8fWvE7TZ6KmpQevsxOp0EmhtRXW5sE2ejGYYoYF3/zl0XcdfWor77ruxHnss3qeewujuhr4+DF0PbV1rMkH4f8Ovqf7rD3R0QHY2Rv/Xgs3N6H19WAsK6HvggcgMQfg/IxgMHdfpDBWlp6cTbGuDqqpQf5G9ezF27gztgNXcTHD7dhSzGc/776NoGrhcsHcvGmDKzsbYtw/tgw9QZs5EnT8/VChuNkMgAIFAaNCvaRg9PRAMos6aRd9vfoPphBNQMjNR0tNRXS6w2/c7u2XPz8e3bx/OyZNDW/+eeSbujRvxvv8+9qOOwpKejmVAMA/6fAS6uwl6vaHHTVVR/H5sS5bg37YN/e67UXJy6HY6cRUXYy4sxGw2YzniCIJLluD55BN2vvMO5914I/kOB3+48UZOOP74hA+KU2nQfzjsgnUwRnItNpuNSZMmRWqKPB4PHR0ddHZ2UlZWhqZpkUCSk5Nz0E0Rk9GEEMAxgg9AxKFLAog4LBmGgaZp7Nixg7S0NCb3DzoG8ng8lJSUEAgERjwzkMwaEBj9G4Su6+zcuZP6+noWL15MXl4ee/fuTfgbT7KWYMU75p49eygvL6ewsJA5c+YMe9A11gHkpddf5zv338/O7dtRLBasS5ZgXroU6zHHYO6fbYgwDPqef57Apk2Yzj8fX2dnaAmQ203W4sWR3hd6RweBjz7CX1kZKhbXtNAsgc2Gf9s2bGefjTphAmpGxn//O0A483V2YvZ4sPd/8grQ97Of4fj+9wfNouj9XceDXV0EWlpQOjvRu7vROzowOjowOjsxvF7w+dB9PvSWFgy/H5qaQtc6eTI4HKidnaGu6HZ7KBSZzeD3Y1RVEbTb0S2W0NdMptB9N5sj/8ZsRpk8OVQj0tAAra0QLrz3+1H6Z3AI/28wGPpPVVEzM/EbBuqCBVinTYOMDBynn07f/fcTnDcPU5xZNJPNhql/aRqAHgjg7+pCN5kwH3ssgdxcjD17sK5ZQ19JCZb330cJBFCzsjAtWkTaqlWwYgXu//yH1u3bOe9XvyL9+9/n9uuuY/369WRnZ+NwOEYdHlIpgKTarMOnMYAM5HA4cDgckaaI4UDS0dHBnj170HV9UJf2Az0HyWpC6HQ6U+YxF+NLAog47IQLzXVdx+12YzKZ4v4x3rt3L9u2bWPy5MksWLBgxIPyZNaAwOgCiNvtpqSkBF3XKSoqwuVyoWnaqI871PUmegnWwHCnaRrbt29n3759LF++PLJ2erjGIoDous6Df/kLv3ruOWrr6jA0Ddv55+M6/fTQ4NYwIrMPQZ8vNJDt6UHbtAlj61ac3/wm1v7dyHrefx+1shL3v/4V+hmbDTIyUGfMwLRmDbbp0zH139b70kvYZ8zAcfLJI74P/uZmbD4fni1bMPbuJdjcTGD3bnjggVA4iP5PUULdzF0udLsdU3p6qPBdUTB0PbSVrWFgmEyh2RSzOTT4nzAh9LP9/9YtFpRgELq60Gw2TBMnotrtodv29mKEQ4NhYKSno2ZloebloebnY5oyBTUtDTU3l0BpKY6TTx7UNDEe3e8n2NZGsLER35496NXVGP21M0YwSPfvf4990SKUGTOwzp+POsQHEarFgj3qtafl59P37rsE3ngD5YQTCACOCRNQ+/oIVlcT+PBDMAzMy5ZhXbAA3wsv4Csu5ht//Sv2O+7gxiuuYPny5ZGBY05OzkHthpRKASSVZkBS6VoSNeCP7tI+depUDMOgr68vEkjq6uoAYnbYcrlcg14fwWAwKTMg8RowisOTBBBx2Iju7RH+tMncX8gaLTwz0tzczJIlSw5668yxmAE5GOFgNWXKFObPnx95kxntcYeiKErCH4fowX14O2SLxUJRUdFB7Z8/2l2rhmIYBl6vlx/ffTePvPgiXYaBpiioublk3Xwz5v6ZBcMw8HV1oXV2QiCAoqqhLXW7u9ErKrCdfDLBv/6VvtZWNF2HrCwsRx+N9bzzBjUN9AcCqFEFqdo77+D63/8d8hr1tjb8W7Zg7N6N3tYWGtybzWCxoHk8mBcsQJk8GdOCBVhVFdNrr+G84ILQdes6uqahtbcTKCtDr6pCr6vDUBQ0qxUlMxPDbsdQlNBxMzLQOzsxnE4UrzdUEK4oKA5HaHakP6jg9WJYLARNJvRgEKW7O/S4GAZKQQHmI49EmTIltIyspwetqwuqq2HTJgy3G6Ori0BTEzQ0YMrJCf3MvHmYhwimqtWKOnkylsmT6a2txTlt2n+XogHuf/8bJTcXDAPPq69CT09oNzCLBXXKFMxz56JOnTpoAKmazTiLi9EnTCC4eTOmk07C09yMxW6HWbMwL1uGWVHwl5URKC1FtVgIbN+ONTcX9bLL+MkrrzDn1Vf5xfXX09PTw/bt2yO7IeXk5JCVlTWs4uNUCyCpci2Hw2yMoiikpaWRlpbGtGnTMAwj0hSxra2NXbt2xWwLHJ51S8b1SBd0EU0CiDgsDFVoPrA+obu7m5KSEqxWK0VFRaNaq2oymSKzCokUfsMc6aA+GAyyY8cOmpqa4garZA3Ck1mE3tjYSFlZGdOnT2fu3LmjesMcaW+R4fjFfffxh7/9DV9BAeZTTsEoL8eWmUna1VejWCz4ensJ7NuH7vGgulxY8/NRzGb07dvxP/kk/h07sC5aRLCzE9Ppp2POz8eoqyNtmM3t/CUlqIsWRR4vffdutNJS9JoajP5mf2RnY5o7F9NJJ2GbMAFdVUM7aPX1obS1obtcYBgEgaDXS6C0FH93N0ZTEwSDKHZ7qNZixgxMRx+NbfJkAjU1KB9+iNHXh+JwoBYVoe/cidHZibJsGfqOHahLl2Ls2QNuN6YVKzB6ewlu3YoybRq0thJwuVBqa9FrajBNmYJp6lTMxx6L1tlJcPt2jFdewfB4QrUms2ejLlyIYrWG6kw++AAKC2HBAgKdnRj79uF78UXo7UXp327YlJ2NOm0a5rlzMUf9LphsNvxuN9aoQlnbccfhfeIJXBddBCtXRr4e7Okh0NCAf8cOjLfeAp8v1LF94UKsS5aEZoYA2+LFuBsboboae0EBmM3YMjLwdXbidbuhoADzwoWYVRW1rAz/tm34/vQnnJ/5DFVOJ2fffDOnLl7Mr266iUAgQEdHB5WVlXi9XtLT08nJyYnshhTvd0AG/fGl2hKssdiRS1EUMjIyyMjIYMaMGei6Tnd3Nx0dHTQ3N1NZWYnFYsFut6NpGh6PJ2E1G+EteFPl+RfjSwKIOOTpuo7f749baB7eqcowDOrq6qisrGTmzJnMmjVr1G9MySpCVxRlxMu7ent7KSkpQVXVuE0Tw8cd754dI9HR0UFLSwvLli2L7A4zGokMSq//5z+c/81vEpg3D8cPf4ijoAD3LbdgP/10LMcei2fv3tDg2W7HPGFCaJbozTfxfvQRhqKgzJuH3tKC62c/wzJhAoqqogC91dU4p0/f77nDr26toQH3vfdiys6mr6oKrFaUKVNQZs1CXbMG7Hb0/toI3TDQNY1AQ0PoU32rFd3rxZqTg7mpieDHH6Pv24fJ4UA3m7EtXoz1C1/A1L8USdd1Ap98gvb66wSCQYzCQuznn4+iKPieeAK9rAzLSSeh79iBVluL48or8dx/P65vfQvPAw9gXbMG70MPYT3nHIKvvor5nHMI/PGPOE4/HSU7G/8bbxCsr0d/5hlUTcO6dCnW//mfUN+R1lYClZXob78NfX0QDIYaA151Ffb+raSNYJCgz0fQ50P3+0N9QNrbMVpb8b70EkZHB/h8qNnZKAsW4Js8GfOMGaj9A0JTZmaoxmQAU3o6pgULYMGCyNe0jg4CO3fi+fvf0fv6wOXCOOII7Mcfj/tPf8Ixaxbe3l4CViv2nBzIycEwDPzhMDJ1Krb581E1jb6//hWTYWBZupRnVJWXPvc5Lj/lFH7wzW8yf/58vF4v7e3tdHR00NjYiKZpMUtrwmv9UymApNKyp1QLIOPVFDErK4usrCxmzpxJMBikq6uL+vp6+vr6eP/997HZbDEzJMPZ2CMemQER0SSAiENWuLdHIBCIvOkNfBM2mUx4PB42b95MT08Pq1atinSnHa1kbcMLIxvUNzQ0sH37dqZNm8a8efP2+yb3aQggbrc7Ulg52lmqaImYAdm7dy/HnX8+jWlpWH70IzKPOgrv7t14brgBy1e/ip6dTWDvXmz5+Ri9vXiffx69pgYlPR3T6tW4vvMd1PR0fM8/T3DdOsx5eaGArGlovb2hIDLEkptgayv+//yHwPbtoQCRl4duNmP+0pdCg+f+ndNQlEjvC1tWFqrDEbNjlrZ5M9qmTWi1tagTJxKcPRvTySdjLyhAUVW0vXvx3n8/rFmD7+230T7+OFTEvWgR9osvRs3IwNfSgv/vf8ewWLCdfz5qdjaeP/wBdelSXN/4Bn2//CX2iy5C7+lBycsL1asEg9iWLMHb1kbw3XexXHopwc2bMbZswXn55egdHfieew6jrY1gby+e++8HXcd6wgk4iouhuBgA77PPYs7IIPDWWwT7C/bNq1djXrAAc/TgZ0CQ04NB/PX1BHbsIPjvf9OlaaHlYYWFmJYsQQ8G8fX1YT3AGnZzdjbmtWth7drQhx8tLQSrq/H/7W8YPh9d99xD+iWX4Gtrw2SxYOrfKtiWnY0tOzsURrq6CHg8mM84A/3VVwn29mLavRt/Whq/3b6dx887j/933nlc9qUvMWXKlEjxsdvtjgSS2tpaFEWJdNFO5M55oyEzIPGlyrWYTCZycnLo7e1FVVUWLlxIV1cXHR0d1NfXs337dpxOZ0wgGW5TxL6+vqRuwev1evF6vXG/p6oqGf11cT6fD4/HM+g2DofjoMOVGDkJIOKQpOs6Wn8jMBi6t4fX66WlpYUJEyZQXFyc0O6yyfrkf7jH1jSN8vJyWlpaOPLII5kQtVvPaI47Uolc2hSuX0lPT8disSR0O8fRXGcwGOT0L3yB99raMF95JZknnkjA76erogLtttuwfeUr2PsHwL6NG+nbtAll0iSsxxyD9eKLY0KF7nbjf+st0n74w8hsl2EY+FpacBQWooX7TXR3E3z3XbStW0Nb32ZmwsKFcP75YLWG6gx278ZVWLjfhoNafT2Bl15Cb20Flwt13jysZ52F7nbjmjlz8H3du5dgXx+d3/wmjs99DscVV4S2uQX09nbcd99NUFVxnnce5ilT0Fpa6PvFL7B94QtY58zB9+yzmJYtwzJ9Op7nn0edPz/0+E+bhrZrF/bjjsP9l78QLC0l7ZxzCFRU0HfnnTi+/GVcF19MsLsb3/PPo/t8mNetI1Bbi++llzDl5kJ2NnpjI2lf/CIBTQs1ZNy3j0BpKYH33oNAANOsWViLilAHbDetmkzYCwuxFxbiXbkSxWzGoqr4d+0iWFqKf88e+u67D8/s2ZgWL0a12UKzRXY7Zrsd8xADF3NeXmiJV3FxqCD4pZdwP/88qqrSreukf+YzmPPzI7dXFAVbVha2rCwMXcdz6ql4//1vzEccgW3iRPwffURzVxc3vfgif3r+ef56xx1MmzYNRVFwuVy4XC6mTZuGruuRtf7Nzc14PB7efffdmIL28RhspUIICkul2Zhk7Do1GuElYWazmdzc3EjT3UAgEGmKWFNTw7Zt20hLS4vp0j5UXZLb7R7R3+xgMMhdd93Ffffdx549e5gzZw7f/va3+fKXvxz39rfffju33npr3O/NmDGD2tpaAG655RZuv/32Qbf59a9/zTe/+c1hX58YHQkg4pASXWgefqMbqrdHZWUlDQ0NpKWlceSRRyb8TTGZHcsPFBR6enrYsmULVquV4uLiYRdmp+oMiK7rVFRU0NDQwJIlS/D5fLS1tSXoCkMONoDc9fvfc+sTT8B555H+uc9hBIN49uzB3dSE6YEHyLz+epRAAP8f/oDPMFCKinDcdBMWpzMy8xB9Vt/f/471s5+NeT16W1pCn47v3o3nqafQ29owMjJg8WLUs87ClJWFub9Pha7rmM1mFFUN7Sg1IHzouo5WVob2xhsYbneoQPuEE7BHdYoPBgKoe/b892e6uvA+9RT63r2oCxaQdsMNBHfvxv/kk+hz50IggPevf8VQFKznnIMxcSJmqxX/pk34XnsN5ze+gSkrK7RcaudOXP1v8kZ1NdajjgLAvHIl/nfewTxrFo4LLsD3wx8SXLcOy/z5mL7xDdwPP4xl3jxsJ5+M84IL0D0evC+/jF5RgXntWvzvvYdeW4vZ6UTbtSsyw2GeMAHziSfCiSei+3z4d+7E88wz0NmJkpGB9YQTMA/oRm7LycHd2IhtyhTsRxwBRxwBXi/2U08lsHMnwY8+CtW35OZiLF5MwOXCp2mRHcFMDgdmlytmM4Dwa8y5fj3u+nrSLrqIvooK+j74AHNPD0paGtajjooNI6qKc/Jk7JddRs9f/4q3pwfzunU4zWa8b75JeXs7x1x+OTdceCFXXHRRzLlUVSUzM5PMzExcLhc1NTXMmTMnsjVreXk5TqczUj+SlZWV0A9ghpJKg36ZjRnaUIHIYrEwYcKEyAdafr8/ssNWdF1SdJf2cG3LSGdALrnkEv7xj3/wjW98gyOOOIK33nqLr371q9TW1nLzzTfHvf369esHff3yyy8nP+r3qra2luOOO45bbrkl5nZzhllbJxJDAog4ZAwsNB8qfERvQTt79mw6OjqS8iaUrG14YehwYxgGe/bsYceOHRQWFjJ79uwRvamlYgDxeDxs2bIFXddZt24dLpeL3bt3j/tMTXd3N6dceikVBQU4//xnDMBTW4vh9xNUFNQHHsA8aRK+xx5DnTsXy+WXY2RlYTKZQls/D3Hc4M6d2D//eQA0nw/v5s14//lPTMEgyrRpmE88EefcuZjS0kKv2/6lNbphRLa71TQt1CMjPR2tpQU1L4/AO++gvf9+aFnR3LlYP//5yC5cAwV6elAcjtASq7ffhsxMLCeeiGXOnEjfEdOSJaiTJtHzgx9AIIDruuuwLlwY+T0M10C4vvUt1P6BreeBB7BfeeV/tz32ejH1L3m0zJyJ/8knQ8+FyYT5/PPx3H8/zuuvR01Px3XNNXiff56+3/4Wx5VXojoc2M84A7/Viue551DNZhynn4559mx8r72GtnEjxurVWNati/wOqDYb9qVLYenS0P1sbMT/3nt4GxsxTZ6M7cQTUTMzQ6Gtf6vfyG5YgQAmlwvT8uWwfHnoftbVhWag9u1DsVgwH3kkpvnz0fr68Le2omsahqpidrmwuFyYbbbQzEleHlpzM6758+mz20NL8jo68G/Zgq+lJRRGjj4ac/+nzqrJRMYXv0jf3/6GJRhEMwzMa9ag9fbSs20bN/zf//HkCy/w5B/+EFlmEi086M/JySEnJ4fZs2dHPslub2+nuroat9s9qKA9GUXRMuiPL5WuBYZfFG+1WsnPz48M8L1ebySQlJeXs2fPHn73u9+xbt069u3bN+xZt3//+988+uijPPfcc5x66qkAXHjhhSxdupTrrruOc889lyVLlsT8TGFhIYWFhTFfe+GFF6iqquLuu++OfK2mpobi4uK4YUWMHQkg4pAQnvUIf2oz1BtceNekgoIC5s2bR0tLC/v27UvKNY11DYimaWzbto2Ojg5WrFgRmTIf7XFHazSNCMNd2idNmhTTiyVZO2sN95gPPvEE199zD1xyCdbiYjz19SiAfdo0PJs2EbjrLswLFmA9+2ysRx6JrusEg0EsZvN+BxlaSwtBl4ueV14h+OqrKMEgRkEBrssuwzF37lAXHlqqBWAyEfD7Ufu3rw3oOt6f/ARLYSHmpUuxXXUV5jgD1JhraG7G+8c/YtJ1zKtW4bjuukFNBwG8L75I4OOPQ7MZNhuBZ54h8OKLmNevx/fqq1iOPBLX5z7339s/+SSmoiLM0Q39onpaKIqC4nSiaxqq2YwpMxPTWWfhvf9+nP2hxXHaafh37aLn5z8PBRevF9OKFWTdfDNGIID35ZfR3nwT21lnYTrpJPSPP8Z9992Ypk/H9pnPoA7ooWGZMgXLeedh6DqBXbvwPPssdHRgmjcvVIze14ctLY1gby/4/QMedgVrYSHW/gGP1tVFYOtWAn/9K+g65pUrsc6fH6q98Hrxt7VFZkmMxYvxvPEG6Z/7HI4pU3A3NpJWUIClv1eLv7kZ3/vv4+3owHLEEViWLEFVVZxnnYX78cdxXnABismEv6MD7/LlBOfPZ3N5OYs2bOCeH/+YM045JeZa4y17GvhJts/ni9SPlJeXEwgEIs3rwt20ExEcUmkJVioN+lPpWiA0A3IwM2J2u53JkyczefJkDMOgubmZpqYm3nrrLd588000TaO1tZUTTjiBE044gZUrV8ZdsnX33Xdz0kknRcJH2NVXX81dd93FPffcw+9+97v9XothGPzv//4vJ5xwAieddFLk6zU1NVzUP2Po9/sPqreOGD0JIOJTLVxormla3F2uwsKN6lpbW2N2TUqVQvHRHrurq4uSkhIcDgdFRUUHvbY7GVvRHkxYCC+R2717N4sXL2bKlCkx3x/L7urRWlpaOPtb32J7Tw+mG24AqxWjtRVnYSGBbdvoueEGgm439s98BuuFF4ZeX5qGAVj7i42jGYaBv7c3tLXs7t34fvc71Jwc7NOm4fzWtzBNnIi7shLHCJYGaNXV6Bs3YgSD2NasQevqwnHddf89n98fsw11+JoCO3bge/pplJwc1OOPJ33NmvjHr6rC+/jjmNasIe1//zfy89ZvfAOtqYnun/4UNS8PvbQUj6ZhW70a3e9Ha2rCdd55kePobW0wYMMHdeFC/Js2YV+7FhQFy8KFBKur8bz0EmpWFsGSEozOTswFBWitrTjWrcO6enXo+bNacZ5+OsGeHrwbNxJsa8N14YWoxxyDv6wM98MPo9hsOM4+GzUrK+a8iqpinTMH65w56JqGf+tWgi+9hK+tDY45Bm3fPiz9Re5DMWdmYj76aDj6aHS3G9/mzfj//Gew2XCsX49z6tT/Pgc9PXja2ujbvRtUFT0YxL1vH87+PiXW/HysZ5yBHgjg++QT3H/5C6acHGzr12M9/ni8zz6L8+yzseXkYMvJwdvZicdux7dkCV/95S9Z+eCDPP2nP0X+Dgxn0G+z2WIGjm63O/JJ9u7du4H/Nq/Lyck56IZyqTTQTrXlYGOxDe9wBYPBg+qpFE1RFCZNmsQ3v/lNvvnNb3LddddhGAYrV67k9ddf584770TTNM4880wee+yxyM/pus5//vMfbrvttkHHVFWVU089lZdeeumA53/sscfYsmULH3zwQeRrbreblpYW3n33Xe68807q6uqYMWMGt956KxdffPGo7q8YGQkg4lNrqN4eA0UPzgfWQyQ7JCQr3ISXd0VvHzxr1ixmzZo1qk8XU2EGxOv1UlJSQiAQYN26daQNKBaG5HVX398x73roIX7y8MP45s/H9OUvY8rJwT51Kv6338b94IMEZ8zA9JWvYHr0UZwXXohGKPiqqorFbEYhVOuheb0EOjvRe3vRNQ3efx8qKlBnzMA2dy6Oq6/G3P+ptKexEcswurrrvb34nnqKYE1NaAvciy/G0r8kwudwoD39NPb/+R/gv3VS4d+fwAcfEHz9ddRZs3BcfTWmzEz6qqvjnsP7xz9ipKfjvO66QUXcens7nvvvJ/3660M1IH4//u3b8Tz/PL733sMybRruX/wCJTsbJSMjtOVvRgb+Dz8MBTmfD6O3N7TTVXk5/tpaghYLqs2Gt74e29q12E45BdPEiZGtdd1/+xvBpiYcZ50VuQ5TejquL3wBT2Mjnn/8I7Ts6vzzsS1Zgr+hAfe//oWiaTjOPx81zmyQajZjX74c+/Ll9FZWolVU4Hv3XZgzB3Ne3qDwEo/qdOI4+mj0oiL8LS34N23C+8ILqJMmYT/uOGwZGWjZ2bj6G8Npbjd9DQ0E3W5MNhvm9HSsTieqxYJjzRpYswb/7t14XngBvF6CioJvyxZsRx4JgD0rC7PNRm9DA6b16/lo717mrV/PIz//OeuPPXbEsw7RBe0FBQUxzev27dtHdXU1ZrM5Ekays7OHPVhNtRmQVLqWVAlDkJxA5PV6mTt3Ltdccw3XXHMNuq5TUlJCTU1NzO3a2trwer3MmDEj7nEKCwvZE1WjFo/f7+fmm2/mnHPOYU3UhykdHR2kp6fz3HPPcdtttzF58mSeeOIJLrnkEgAJIWNIAoj4VApvr7u/WQ/DMKitraWqqorZs2czM6rINiyZMyDJrgHx+/188skndHd3J2z74GTVgAw3LOzbt4/S0lLy8vKGnJqH5MzUDHVMr9fLud/9Lm+Vl8MJJ2A99VTsBQX4X3yR3j/8AdOqVViuvx6am+Ff/8L6xS9iqCpGMIhJVTGbzfjdbgL79mF4vaGu214v+jPPoHg8mI85BttFF6FYLPT96EeRgb2h6wS7u4ec/dB1PVTX8Z//QHo65uOPx37RRWiaFvO4Wdeto++NN9Dq6zH375akKAqBF15A27wZddkyHN/9LpjNBPsHw0b/8VVFQTcM/P/8J1p1NdbPfx5rnD4kWkMDngcfxPG1r2HKySEQCKC6XNhXr8a3bx/qOefg2LABPRBAb20l2NODUVGBac4cgj09oOtgsaDm56O4XJiPOw59zRos+flYnU7sHR14HngAc1TQUEymUNB47TX6HngAx1e/GjOAM+XlYb/0UgI1NbgfeADzzJlYTz0V61e/SqCxEc+TT6JYLNjjdJOPsFjQKyrIuPZadI8n1AW9uxtzURG2/t27DsScl4f59NNDgW/XLjzPP4/R3U2grQ1H/98vi8uFq6CAQHc3tqws/J2d9LW1gcWCJSMDq9OJdfp0rNOnE+zrw/fhh/S9+Sa614ttzRpUVcXscJA2dSqe1lZss2fTZ7VyzrXXcmpRET/5zndGNdCO17yuq6uL9vZ2Ghoa2LFjB3a7PRJG9rc1a6rMOoSDeCpcCxDZPCJVJGNXrr6+vpg+IKqqsnz5cpYvXz7iYx3o9fyHP/yB3bt38+yzz8Z8ferUqdTV1dHa2sq8efMAOPvssyOB5ctf/nLKhNJDXeq82oUYBsMw0DQt0mF8f9vrbt26FbfbzerVq8ka4lPLZC/BStaxg8Eg1dXVZGdnU1RUlLA1rONVhG4YBtXV1dTU1LBw4UKm9jeQG0qylmANDCBVVVWc9aMfUdfRgfmcc0g/+2wC//kP7nvvxbx+Pa6f/QyAvooKbIEAfrMZZcGCUO+OQABvRwd4PKgWC9b8fLTXXyf43nvoU6Zg+8IXsPQP5sNnNXw+lP5lM759+7DECZV6by++Rx8l2NaGaeVKHN/5Ttwajej75fzGN+i77Tac116L77nnQrtFHXMMrhtvjBSVh3n6+lDtdoKahreuDu2xxzAffzzOz34WpT9YhXuT6JpGoKIC7ZlnsHz5y/g8Hti9O/QBgcmE7vGgvf02lssuw11XF7mfSrgJ4qJF6Iry3z4khoHucOB1uwlqGnpzM4H+QVlwwQK6/vhHzKecAqoa6oliMqEsW4bhdNJ9553YLr0Us8sV2gEsGMQwm7HOmoXl61/H98EHuH/zG+znnIOlsBDL5ZcTqKvD/eijmDIzsZ1zzqAaEf3ll1GWLcOclQVZWVg/9zl0txvvu+/S+9ZboVBz3HGDdrsa6nmwzp6NdfZs9ECA7vvvp++xxzBlZGDfsAGLy4W/rQ0UBUf/DJiuafg6OkJhxGwOzYy4XDiPPx7z7Nl4/v1vgtXVmOfPx7piBWaHA8fEiXhbWkhfsgS3y8VzGzfy5kUXccPFF3Nk/4zJaKmqGgkaEJrpCxe0h7dmjd4JKat/8wVInVmH8O96qgSQYDCYUrUIyQhn4U7oB5Kbm4vdbqeuri7u92tra5nav6Qxnp6eHn76059y0UUXsXDhwkHfj37thl1wwQX84x//oKmpadCSX5EcEkDEp0a40Dw88Bxql6vW1lZKS0uZMGECy5cv3++nSmOxTCqRDMOgpqaGjo4OJkyYwIoVKxL6Zj4eS7B8Ph+lpaV4PB7Wrl0bdxefgcaiCP2v//oX1zzxBD5dx3beedhnz8Z9yy2oq1fjuu02VLMZwzDorazEMW0anp/+FPM11+BracHo68MAbPn5WHJy8D7yCN6WFszHHIPzhz8cNNCNumMYmoZisaB1dOCaNSvyLa2+Hv/jj2OYTFjOPBNH/6d3w2KzoeTk0PXtb+O84gocX/xizOtG1zQ0rxfd78fX2ooC+J94AqOvD/P55xO02+mtrQXDQFFVVJMJ1WxG274d/cMPcXz965jT0kL3S1UJBAJYrVb6fvtb0r76VSxxllIYeXm44nxdXbMGZd8+LDNnojocWMMDloIC+u69F6thYJ44MRQw+oOQMn8+ZGTgu+ce9LPPRs3NRfP7Carqf3eymjoV48wz6XnuOVRFwXLBBVgmTsR5xRVoVVW4H3gAU0EBtjPOQFVVPH/9K+aCAowBu+qoTifODRswTjwR37ZtuB97DMVqxX7KKZiiC+yJ3V455hgWC5b0dFznn49/zx48zz8PgQDmoiK8+/bhmjQpdDuz+b9hJBjE19mJu6MjFEayszFlZOA85xx8W7fi/utfI0HEPnEifU1NuGbNwnbxxfQ88QQ3/O1v/OPVV/nXH/8Yd1njaJjNZvLy8sjrXy7o8/ki9SMVFRX4fL5IQXt4+d94S7UAkkqzMRAKRIlegjXcTuiqqnLcccfx3HPPDerLoes6zz//PKcM2Ggh2p133kl3d3fcniDbtm3jiSee4Mc//nHM18Ovh1SahTrUySMtUt5wC83DvSL27NnDokWL9vsJSVh0LUUy+oAkcprf5/OxdetW+vr6yMvLIzMzMynXPJZLsNrb2ykpKSE7O/uAYTFaMmdAdF3nou99j426Drm5oaU2mzbhra3FcdNNmNLTIz/j3rMHS1oa3vZ2/F4vdHRgzcvDOmUK/rY2tD/+Eb/bjfWcc3AO2DIyHrWwEK26GgoKMNlsKIqC/5NPCGzcCJMmYbv44pg+EUMJv551Xcf/j3+glZWhnnYattNPx3PvvQRMJtQJE0KDc10PzSZYraGu6M3NqK++inXDBmz9PTqijxv+ffG98QbGjh04v/lNTFZr6BhRIS6wcyekpWGJ08xQ1/WYHbCiWRYvxv/kk6izZ2MMeI7tX/winnvuwdR/zmi2rCyC3/oW7gcfxPKZz2CaPh1LnMJ//fLL8ZaV4b/3XoJr1mCaNw/DboezzsJfXY3n9tvRe3uxrF2LbcUK/G1tGP2PUTRFUSJb+gaam/G+8QZGVxf2DRswT5t2wOeI/g8+rAUFWM8/P9Rg8d138VdVwapVuFatirm5ajLh6N/ZTg8G8Xd1oRUU0PPaa7iOPx77smV4S0oiQcS2cCHuvXtxTZ5M2he+gOfppylxuZhz8sk8/KMf8ZkNGw58jQfJZrMxadIkJk2ahGEYeDyeSCAxDINNmzbF1I+4XK4xnxWJ/iArFaRaAElGDYjb7R52+P3617/OWWedxYsvvhgTNu655x5qamq46qqrgNCy3YyMjMjsUXNzM7/61a+4+uqrmR5nuWhVVRU/+clPOOmkkzj22GMjX3/00UdZtGhRZIMakXwSQERKMwyD7u5uDMPAZrMNGT56e3spKSlBURSKioqG3ewoellAov/YRh97tG8sbW1tlJaWRpZc7dy5Myn1JWO1BCs8k1NdXc28efOYPn36iItkkzED0tLSwtFf/Sod556Lac8eAlu2oAO2r3wlst1q+Prdzc34m5sxORwE33wTx5ln4pw3D33fPtx33okWCGA9/3xcw6wVALCsXUugpISgxYJl2zZ6H3gAdfFiHP/v/w0q+h7IMAwCbjf+3l6UQIDAG29gfPQR6jHHYPrSl0IBw2bD9d3v4rv/fizHHIP16KMjP6/rOr4nnkDfuZO0a6/FFGcmKtyZ3f/WWxjV1biuugoMg6CuYwSDkVlJXdfR/v53nP27bw2kV1ejDLHMwZyXF1rKFec5NqWnYznhBHx//zuOCy4Y9LOm9HRcV12F+4EHUNetw3LEEYNuo5rNOJctw754Md5nn8V45hkcF12EmpaGZrfj3bwZY84c9B070CZMQHe56KuvD/UGURQUsxnVZsPscISCl6Jgyc/Hcv75BHt78b36Kt6XX8Z+0kkoQ3wIomsa9C8jjVx7RgbOz3wGm9dLz+uv0/vnP2OaOhXb0UcPmjFTTSbsOTnYjj2W3ocfDvUcMQwsc+diW7YMX0kJ/qefRiksxGM2Y8vLw3Huufj+9S/UU0/lwjvv5PMvv8zvf/7zuNeXSIqi4HQ6cTqdTJkyhZaWFpYuXUpfX1+kB4nJZIoJJCPpln2wwn+TUmXQn4q7YCVjCdZwZkAAzjzzTC666CLOPfdcrr32WpYuXco777zDvffey6233sqSJUvYtWsXCxcuZP369bz44osA3Hrrraiqyg033BD3uGeffTYnnXQSZ599Nt/73veYMmUKf//733nhhRfYuHFjwu6rODAJICJl6bqO3+9n586dOBwO5sbpg2AYBg0NDZSXlzN9+nTmzp07oj+a4T/4yZhuDl/HaAb00bUR8+fPZ1p/EXGydu8aiwDi9/vZunUrvb29rFmzhszMzIM6ZqIDyMdbtnDrc8+h3nILxhNPEKiqwnHlldijZgEMw8C7bx+B1laCHg/OBQtQTCZ8jzyC5cQT6fvZzzDsdqxf+ALWKVNG/AauzpuH77bbMN56C8vpp+P8wQ8iTfyihcNGsK8P3eOJNM1TbTb08nJ44w1sRUXYf/ELlDizSpYbb8Tzz38SuOMOHFddFdrh6oEHMK9fj3XVqrjhI8z/7rsEtm3DdcUV/21K2H9Nhq6jGwba88/D2rXoVitGnN482o4dqHFmRiIcjtAsTpzn2LZyJb0lJWh79mAuKBj8GNpsOK+8kp7778cUDGJbsSLuKVSzGefZZ6M1NeF+5JHQ+UwmHF/+MqaMDHSvF8+zz6I2NmI66ywc/cuidL+fgNtNoL091NdDUULBxGrFZLdjO+008PnwvfoqwRdfxHLiiZgH3Fffli2YhujrYrLbsS5bhvnYYzHq63H/4x+hrZlPPHFwZ3VVxVRQgNVsxpSbi6+9HXdHB6bp03EsWYL/k0/wbdyIXlyMffZs7Kecgu/VV8k4+2wef/tt/rN+Pe9v3JjwJVlDCf/Opqenk5uby/Tp09F1ne7ubtrb22lqaqKiogKbzRZT0J6M2giZAdm/RL8nhrd2Hslr7aGHHmLZsmXcd999/OY3v2Hu3Lk89NBDkR4eLpeLvLw8CqL+DixdupQf/ehHkf42AymKwtNPP80Pf/hD/u///o/Ozk6WL1/OCy+8wIYkzgqKwSSAiJQTXnIVCAQwDAOz2Ry3TiMQCFBWVkZHRwfLly+PrD8eifAf/GTUgYz22F6vl9LSUnw+36DaiGTVriSrBiQ88Ojs7GTLli1kZGRQVFR0UI2uBh4zEW666y5+U1qK7Yc/xPerX6FnZ5N5//2RAZ8eDOJtbibY1YUlKyu0e1J+PiaLhWB1Nf7KStR//xvbZZdh7h+oBgZ8wr0/uq7jf/xxtO3bMSZOxPGFL4SW9xDaDSvgdhN0u2PDht2OOS0Nc14eiqqi7dyJ749/RJkzB+cPfoBpP9uiKmYzzs99Dq2hga4bbwS/n/Sf/QwlPR19P9tb+j76iMAnn+C68sq4S5IUkwnD5yO4fTvp118fuW/hx0LtD8/BujrsRUVDnkftn4EwxSkgBXCcfz6ee+8l7Vvfiv/zZjP2iy8m8PjjKIEA1rVrhzxXcO9e8PlCPUl6eiKBTbXbcZ13Hr66OtxPPomycCHW449HtVqxDRgQG4ZB0OtFc7vxdXeHlo6tXInh9eL56CP8L72E89RTMfcvCQlu3YozzgxOmH3CBDytrbjmzcM2bx6+qircTzwR6ta+fn3MQFWdOhVt927MEyZg7/8b6O/txdvcDNOn45gzB/dLLxEsLSX97LMxz5+P/+OPyTz+eFp37mTu8cfz9O9+x9r9PEaJEm/Qr6oqWVlZkY1CwgXtHR0d1NXVUVZWRlpaWkxBeyLW6e9vOe94SLUAkqwi9OHOgEDoA8Jvf/vbfPvb3477/fz8fBoaGmK+dvXVVx/wuE6nkzvvvJM777xz2NciEk8CiEgpuq6jaVpMbw+TyRTZ9Sqso6ODkpIS0tPTR914L1mzCaM5dnQh/YoVKwa94Ya34U20ZM2ABINBamtrqaysZM6cORQWFqZEvxKv18vp117LRzNmYD7mGHx/+AMEAmRcfz2q2UwwEMDb2IjhdocKlhcuxL1vHwBmRcH3i18QbGvDfu65uPYzoByKruv4N24k8P77mE89FefnP4/24Yf4Hn8cPT09tD1tOGykp2OeMGFwTUN3N+6774a8PBzf+hZBuz20XOhA5/Z68T3yCPazzkKZMAHvffdhTJiA6YQT4t7e/8knBN57D9fVV+/3+L6//AXzqadGBi/h/w3Xj+i6jtbbS9DpjMyOqAO3x16wAO2ZZ1AXLIh7DlN6OqaVK/G9+iq2E0+MexvFbMZ5ySW4H3sMw+PBtn597P0pL8f/4ouos2fjvOIKVKuVwN699D30ELb/z955h8dRnl3/N32btGqWLPfesDG2MW5gjDEYMB1MhxACJKSQL3kDCZAAIYEQCAmEkFASCL0FQu8QEsA0E/feu2R1adv074/ZXVayykqWjHjfPdelyyDtPvPM7OzMc+a+zzlHHoma1Oxogwdjnnkm7NlD7IEHUOfNQx0+vPm2BAHZ70du0TpkmSZWSQl2XR1NH34Ie/ciTpzo7XM7iztRUcBx0qnw2ogRqMOHY6xbR+zxx5GHDEGdNcuz3y0txdiwodn71VAINRTCMU0SNTXIs2Zh7NpF07PP4hs1CjMSQdq9m9Do0RhlZSy46ioumDmTO2+9tc05dQdSDw3a++63FLQbhpHWj6xfvx5d18nPz08TknA43KWFcm+xA06hJ1qeuorUd7UnNCDZtkfn8L8fOQKSQ69A6oKXqnpkOlxJkoSu6+nXpVqSRo4cyeDBg/f7CVZPZ4F0ZuzMBPD2hPQ92YLV3cciNd6WLVu6La+kOyog69at4/gbbqDqmGNQvvgCNxRCHjwYZdIkbFEkvmkTWBZqv34ogwd7wutEAn3XLrTPPiOxZQvaxRcjb9vm9fR3Evp772G89RbCrFmI3/8+djxOdP16hEAAsW9fVEFAyXDBagnXddGffx5rzRq0iy5CSQqfbdPscNvWli3EH3wQ7aKLUJM5I+6UKUTefx/zsceIhsNop5yCnDz/jBUrMP79bwLf/W6rLV0pOI2NOHV1qOPG7fO3lH4EQPb5kBXFyzqxbaykyDtVIZH79ydRX+8RsDbgO/JIonfdhTJjRps5HoIgELzgAmLPPANvvoly1FEYb7yBtXmzRzwuvrjZe5W+fZGuuIL4iy9iLV+O75xzvKfkgO/QQ3EmTCD+2mtYH32E78wz284PSW1fFJGDQXzhMMEhQ7AaG2n4/e+RgkGaVq1CLChAUFXkYBAlECDzSqYWF5OoqyOQbCURBAFtzBjU0aMxVqwg9thjyCNHoh52GG5TU6vbFxWFQN++WJaFpGnEi4rQKyoQ6uuJvfkmeRdcgFpQgHz++Tz2xhv8e/Zsvnj//R5bCHfFeUpVVcrKyihLmi9kCtp37dqFbdsUFBSkW7ZCoVBW94TeYgecQm+qgLiui+u63UpAbNsmkUjkCEgOaeQISA5fOVommre0100t4uPxOMuXL8cwjKztWrNBT2eBZEsU4vE4y5Ytw7KsNhPAU+ipkMPudpdqbGxkyZIlAMyYMSPrtOSOsL/z/Nuzz3Lt228TO+QQpEWLUL/3PWzXRX/4YSgpQdi5E9/Agek2plRlLvrss4iLFyOecQa+b30LURCIL1kC2bgeJRH/+GP0p5/GHTcO+eKLEf1+r5WqvJz4nj34AgHEb3yD+O9/j3T99a0uSqyNG0k88gjSkUcSvPbaTi2k9Jdfxly7luDVVzcTtguiiDhiBKFZs7D27EF/6y30Xbtww2Gc+npCP/pRq3qUZvv28MOoZ5zR7mtSDliiIIAkefoR+FI/Ylne/6uqZ7XbigNVar7aGWeQeOwxApdf3ub2XNdFGjyY2PPPI3zwAf7TTyc4f36bx0yUJIKnn46+Zg2xe+7Bt3ChZ4tsGMg+H8HTT8fYvZvoE0+gHnwwWkbKckcw//MfgslWLP2ttxA1Demoo7CbmjBrarx8kxQh8fvRq6r22X9BENAOPhh1/HgSS5cSe/xxrIaGdrcrCAJqURFKIEBUkhD79cNdvpyGv/+d8MUXI6oq4QUL2P3pp4yYMoUNixf3iCC6O3QXfr8fv99Pv379cF2XaDRKXV1dOoMkM6MkJWhvyzWxtyz4oXeJ0DM7ELoL0WgU4IDpjXLo/cgRkBy+UqSqHnYrQtUUJEkiFouxaNEiysrK2k3I7gp6qpoA2ZObyspKVq5cSd++fRkzZkyHN6LeLkJ3XZedO3eydu1aBg8ezObNm7v9M+tqBeQ7N9/MPwSBRCSCKssEbrsNx7Zp+s53UH/wAwLDhjUT+9q2TWLNGowHHkAaPZq8229vthB3Gxra1CqQfJKoNzVh/ve/mM8+izhyJNpPfoLWrx9i8nNO7Uuq1YtQCOX449EfeAD/t7+dHs5JJIjfcw8EAgR+8hPEDEvgjuBYFonf/x5hxAiCP/5xq4t6bBtBklAGDEC55BKs7duJ/PnPyP36Eb/zTsSSEpQ5c5BbqcxYFRW4ioIycCBmO+2Bzs6dCC0EogJJAgQgSZ7Yv6QEu7oas7Dwy78LQtruF0AZNAijoABj/XrUjFwUp7ER/aOPMDZsQFAUxHHjCF93HYk334Tq6qwWwNrYscgDBxJ/5hnc4mKsWbOQk62ear9+KJddRvydd4j+/e/4zz673TBIAHP7duyGBkLHHAOAfM45GJs3oz/3HMqYMQSTGgxL1zGTSem2ZdG4ezfB0lLkFroTQRTxT56MO3EiDffeS+TJJ/HNndumTbMAyMEgWjCIGAjgHH448bffpvHRRwkccwzqoEGEpk0j6vMxbPJk1n7ySbe7UbWsbu8vBEEgFAoRCoUYOHAgjuPQ1NREbW0tlZWVrF+/HlVVmwnaU+26vZGA9Jb59IRDWDweB8hVQHJII0dAcvhKkG22h23bVFRUEIlEOPjggykvL+/2uXyVFZBUdsmuXbs46KCDst6/3kxALMti9erVVFdXM3nyZMLhMJs3b+7W+aZasDqb33LlrbfyDyD+ySeErrkGZcwY4rt3Y/7zn6gLFhAYP/5LUgAYtbUk7roLqaQE8eKLyZ84cd/tRaMILVpxzHicRG0tbiwGsRjO008jlZUR/u1vm+WIZMI2jGYtONrhhxPbvBn9rbfQjj2WxJtvYn78Mdq55zZbbGcDa8cOEvfd56Wvt9IelUYGqXMaG4n/9a/k/+xniHl5nhh+xw6MTz9Ff/llXF1HKi5GHD8eZeJE9EcfxffNb3Y4F3P9esRW/PkzIQgCytixGKtWoY4b57VotrD7TZER36mnEvntbzEnToRt20AUIT/fE+N/61uIGfow/2mnEXvqKfjkk30yTlqDFAoR/OY3ib//Pom//x31O99BTFbFBEkiMH8+5u7dRB97DHXqVLQ2ksadeJzEyy8TvOCCZr9Xhw1DGTqUxGefEfn731HnzEEdMgQ5SdBc16Vp61aMmhp0x0FQVdS8POSMSqIgSSjhML4TTiDx3nvojoP/2GPbDLv0lZYS3bmTQN++yMccQ/SVV4h+/jnGmjUEjjmG4MSJxDSNkdOns+y99yhOZo90B3oibykToigSDocJh8MMHToU27bTgvYdO3awevVqgsEghYWFyLKca8FqA3bqO9aN84nFYsiy3GW9Zg7/+5AjIDkccLRsuWqLfDQ1NbFs2TJc1yUYDPYI+YCeJyBtjR2NRlm2bBngtSd15slQTxKQ/dFWNDU1sXTpUjRNY9asWWialp5nd7pWZQqbs11EXPOHP/DY5s3okQj5d96JLQhE169HKy/H3bkT9VvfSidXu65L9MUXsT7+mMD3vocdDCKbZqvbEgYOxNmxA6usDL26GjcaRVQU5IIC3I8/xl66lMAll6C2YbuaglFbi9xCH+O/8EKarr8e/a23UGbPJvSLX7ReucicT8tx338f4+OP8f/kJ0gdWR4nPyvHMIj97nf4v/3tdJVFEEXUwYNRk+nlruNg7d6NtW4d0T/8Aau6Gh58EFdRcIuLcYcPRxo6FLGkpFlFyd22DeW449qfB6CMGoX+5pvpPBC3uhq3ogK7ogJn1y7s+nqQZZBl3OJi7D17CH7zm+m2OcMwEFpWDQSBwDnnEHvkEQRNQ500qcN5CIJA4KijsMJhon/7G/7TT0fOuBYp/fohX3YZ8TffJPbYY/jOOuvLxb/r4sRiJB59FN/JJ6fJS8vx/dOm4UycSOLddzE//hj/ggWI+fmeuN3n83Qaqoql6xj19eiWhaCqKPn5SLKM6zhIwSDBk07C2LGD6PPPo4wciW/KlFa35ystJVZVRahvX5T8fLTZs4mtXk3D3/9OcMECAmPGkNA0xs+dy6cvv9xqoFtXcKB1F5IkUVxcnCZRpmmm9SO7d+/GMAwWL16cziDJz8//ytqgehMB6Yl2sGg0SiAQ6FWkL4evFjkCksMBRcpet72qh+u6bN++nfXr1zNkyBDC4TDr1q3rsTn1tAi9NaKwZ88eVq1aRf/+/Rk9enTn8yJ6oQ3vrl27WL16NYMHD2bEiBHpfUp9xt1dAYHsSc2v772XP7/9Nva4cQR++lPPGSgQIDR2LE5lJZSWpp2drOpqorffjjR5Mvm33QaAvnYtoVaqDo5l4YwZg/GPf6D27YtaWorSvz/Wxo1Ef/tb5FmzCP7qV1l9vk4kgi8j7BBAf+45BE2DwkLE4uIOyUdLxB97DEfXCV59dYfvdR0Hktqa2O23o553XtpSuDUIoui1ag0YQOTTT8m/4Qak/Hzspib0nTtxqqqw//Mf3MZGME3PPthx0Nevx62tRU9v2E0TP0EQvAoG4AoC1p49RO+7DyQJIRxGKClB6NsX7ZBDkEpKvEoY3nUldtddWLaNbZpfumq5rpfTkTlvQSBw4YVEH3wQfD7UttrnWkAqKcF/ySXEnngCdeJE1IykckGWCSxYgLF9u+eidcQRqOPGefkqjzxC4PTT01WNtiD6fAQWLMCqrib2xhtI4TDaMcegFhVh1Ncjl5QgaxpyMqnZ1nX0+noStbXYjoMZj6P4fKgDB6Kcey6Jzz8n8tRT+I46ytM1ZWxL1jRkTSPR2Ihy6KEYixeTP2cOxogRRN98k0RpKXlHH41x+ukcdtJJvPXooxzcSqhjZ/FVO08pikJpaSmlpaUUFBSwbds2+vfvT21tLatWrcKyLMLhcLplKy8v74AsmB3H+cqPTSZ6wpErGo3m2q9yaIYcAcnhgMK27fSFtrULu2EYrFy5ksbGRqZMmUJRURF1dXU9RhCgZzUgLYmCbdusWbOGyspKJkyYkHZ26Sx6SoTelWORuU+HHHLIPgFQmenY3TlPyO5J3R8eeojbnnkGd+FC5MmTcerqCA4fnn4qrz/zDMqxx3r//dxzmEuX4v/hD9GSwvLYrl2offqkF3CO42DU12PV1np99eXluEBw+HCcRILo7bfjahr+n/4UMT8/qxu5m8z2SG+jvp7Y73+PNG0aoWuvBcch+pe/wN69aKee2v5gyWMd//3vkcaOJXjCCR1uH8BKJBBlmfg996DMndt6xcZ1cWzb+7EsXNvG2rgRKz8fPRrFbWjwktF9PqQhQyCTUCX3T/jrXxHOPLP5lFMaGFpUcB5+GGf+fKTU5528ZtimibB3L4IkecRKFBGPPhr9mWfwnX02dpKYGK7bzF1LSDpaCaLoWfQ+8ABoGmo7bmPpOQKCz0fwkkuIv/wy9nPP4W8huFcHDUK+/HISr76KsXgxVm0t/jPO6JB8ZEIuKSF03nnoK1cSe/hhfMce2+p3R9I0AqWl6JEIVlkZVmMjRk0NgqIg5+XhP+ww7PHjSbz3Hq5loR1zDFKGpsNXXExk504C5eUYixbhOI4nVD/7bKKff079ww8TOPlklHPPZd43vsFHzzzTahhsZ9DTLVidgeM4yLJMeXk55eXl6aC8lKB927ZtAM0E7T31BL+3pbL3RDBvLBY7IAn3OXx9kCMgORxQtNdXWlNTw/LlyykoKGDmzJnp9NuerFD09PiZRCESibB06VJkWWbmzJn7dTHuLRqQaDTK0qVLkSSp3X3q7uTybCsgdz/4IDf+85+4P/oRYjiMf8AAlBYaDHvHDtTCQqLXXIM4YwZ5t9ySvvk6loXT0IB/1Cj0hgbM2lowTeRwmOCwYemqgplIeIvOjz7Cd9FFqGPH7pNd0x6MxkakpDuM8d576O+/j/+KK75s9RFFgt/7HvGnnyZ+333NhOkt4cRi6LffjnrqqW2mgKfhujiWhZV8mm4++yxScTGUl2Nt344A6URyN/l6QRS9apEkIcgy1osvErj0UuSiIs+iVxAwTRNVUfapPgC4xcUEsnQNMwcNwm+a+4jeXcfBtSzPJStJiOQBA0i89x7mrl2IwSBWshLiZlRYXDzyIcgyoqoinXUW8UcfRTj55LSNcVsQNA1T11H9fgKnnEJi8WIi991H4JvfbKa3EBUFefBg4lu2eMSqi99Tbfx4lOHDib/6qqchOeEEfK04CFmrV6NNmYJcVASAY5roDQ1EamsRfT78xx+PvnMn8X/+E2fKFLTRo9Pv9fXpQ7ymBmncOMxVq9AmTEAQRULTpmGOGEHkxReRDz0U9bTTmH366az76KP9ch/sTda3LcmQIAgEg0GCwSADBgzAcRwikQi1tbVUVVWxceNGFEVJk5GioqJu0zP0NgKSa8HK4UAgR0ByOKBoyw5x48aNbNu2jdGjRzNw4MBWbXh7CgdCA7Jz507WrFnDoEGDGDly5H7faHoDAUm1kQ0YMIBRo0a1H6zWzfPNpq3r5t//nt8tXYrzk58g+/3ktRJqZ23ahFVZSeQvf0H98Y9R+/ZtduONbt/u6UHWr0cKBgkMHNhMzwDgVFejb9yIO2AAoZtv7tJnazc2oobDxG6+GYYNI3TDDfuE/QmiSODcc0m8/z6RG2/Ed9ll6ZyO9P7s2UP87rvxX3op6tChgLdYt3UdS9dxdR1H19Np6mlCoapY772HpCjknXkmQpYCXWvLFuzBg1EzWrXaI4VOIgGdsGIWhg7FWrlyHwKSmnPLIy2fdx76s8/iv/xyDMNIP8TIhJ06HomEJ/w/6SSaHnsM+aSTPN1Ocr8FWUZUFARFQVJVRJ/Pm3+SZPsOPRSzvJzo/fd7VY7ycs9p7KmnIC+P/O98BysSIf7cczBuHForeoyOIPr9BM88k/jq1cQefRRxwQLUDD2GY5pQW5smH+ARIH8yxM+MxYhXVuIoCsopp2B//jmxdevwnXACoiwjaxqGIEBJCfbixTBhQnocpbiY8PnnE3nlFeIVFcjTp3PwEUew9tNPu2yn3ZvajDrSXIiiSH5+Pvn5+QwZMgTbtmloaEjnj6xZs4ZAIJAmIwUFBSgd2FS3N5fUNnsDeqIFKx6P51qwcmiGHAHJ4YCi5aImFouxbNkybNtm+vTp5LXiEJSqIvRU+b4nCYggCOzZswdd11ttT+oqvkoC4jgOa9euZffu3Vm3kXV3C1ZHFZA/Pvwwv/3Pf3B+/GMUVW2VfDj19TRcfTXyaacROOusZmMa9fXoFRXYsRj5o0enhc0tkXjpJczPPyfvN7/BeOqpLt+0zf/+F/vjj/FdcglKMhiwLfjmzMGeOJH4/fcjFRejXXABOA7xzz/HfOklxAsvxADMLVvST99FRUHQNC+tu7h4H3Jjbd5MYv16gj/5SYdZH5lIPP00/ksvzfr19pYtiJ0wkxDLy72FcZaQS0vRCwuxtm2DNrYjiSKS34/q96fzR8zvfIfEww8jXnopsqZ52hLLwjEMnEQCMxLBMU2MeBw7FvNavnw+pMJCAhdfTPyppzwzgvXr0ebNS7d0icEg/gsvxHz3XaLPPYf/tNO6dI74x43D8vkwly7FWro0TSD0lSuR2mmLUgIBlEAAQ9cx6+txR4+GxkaiTz2FNns26qBB+EtLiezahRiL7fN+UVHIO+UU4p98gr5lC0ZpKUecfDKfvvFGl/ajN1VAOiv6liSJoqIiipJkzzTNtMPWpk2biMVi5OXlpQlJOBzOuorQnibyq0BPCOJTFZAcckghR0By+Mqwe/duVq9eTb9+/Rg9enSbF+vU723b7tYsiRR6ajHf2NhIVVVVuuWqu0L44KsTocdiMZYuXQrAzJkzs76h9EQLVltp6Df95S/89vHHkX/8Y2RFIdgK+dA//ZTEM88gDhpEcMECZEXBNE2MmhqcujrkUAgpEMDft2+r5MNpbCR2++2IBx/sicwFAVOSMLZsSVcesoHjOMTuuANX1wnecEOb1qmZsA0DExDPPx/j009J/OhHMGgQQiyG74c/RAgGkX2+7Bc/sRjxBx9EPu88pE60lFhbtyL06YNUUJD9ezZtQmhRtWkPYhdaXPwnn0zsgQdQ2wknTCGlB9H69EFYuBDj0UeRLr3Ua00TRQSfDzkQSGtI2LmTYHm5R1piMexIBL2hASsaxfn8c6RBg3CKi73QQlXFBURBIDB/Pvq6dcQeeojAmWciduRG1gqU/HyEefMQKiuJPv442hFHYK9eTeD00zt8ryhJ+Pr0QRRFjEAAY/Zsz3p35UoCxx2HGgySaKNlUBBFAjNnIm3cSHzRItY1NXHCBRfw2mOPdXqR+nWqgHQERVHo06dP+qGSrutp/ciaNWswTZP8/Pxmgva2ttebHLCg5zQguQpIDpnIEZAcDjgsy2LNmjXs3bs3qyfoPU1AJElC1/WOX5glXNdlx44drFu3jlAoRDgc7lbyAV+NCH3v3r0sX76cfv36MWbMmE7dMHuC5LU25g9uvpkH16xBnjMHccgQ/P367TPP2F/+gpVI4L/lFvTrr0cIBont2oVVX49cUEBozBhwXaJr16K0sljW338f44030L773bQlLYD/298m9pe/oP70p1nN3967l9jtt8Nxx+E/6KBWyYdtGJjRKE40imua4DgIkoQUCOArKSFw+unE6uowVq1CCYeRdR2Kivax4m0LjuMQ/93v8F16KUbS+z9b6E8/je+SS7J+PYC7axdKR7qUlkhaOWd7vomhEOKoUZjLlqFOnZr1ZtTBg3FnzcJ89lkC554LgOO6XgubbWMltSa2bSMKArKqYr/xBkJ9PcHTTkMtLyf69tsYL7+MO28eum3jJF24ZJ8PsX9/1DPPJPrCC6iHHop20EGdOgxqQQGJqioCw4cjDxxI5MknPQe3TkAAtIICtIICrLIyYkuXUv/AA/iPP97LWbEspDausdqIEYjhMNFXX+XjJUtYeOmlPPfgg53afm8ToXfnol/TNPr27Uvfvn1xXZd4PE5tbS11dXVsT7ZyZgrag8Fgs1bS3kRAekIDkiMgObREjoDkcEDR2NjI4sWL8fl8zJo1K6uFeao03ZNC8e4a2zRNVq5cSX19PZMnT6ampgbTNLtl7EykKgrdfUNvrVXKcRzWr1/Pjh07GD9+fJfyWLq7BSs1ZqoC4jgOp/3gB7zbty+SKCKffbZnNZpRoXEaG4n++tcIRx9NYP58BMfBjESIb9yIWlaGmiTCgiAQr6xEaZHJ4SQSxG+/HWHAAII337yPFkQsLkYAjG3bmhGT1qB//DH6K68QuOoqEk1NqIWF2KbZKtkQk2SjtWpA/IEHID+fgttvx6quRn/2WZzqarTzz2+mFWhzHg88gHzUUSgDB2Js2dLh61Ow9uyBggKkFseoIzj19Z7IvRMQBgzA3rwZsYPWtEz4jjmGprvugk4QEABt8mRiVVXo77yDNm+eZ+crSUiS5Llq4T0Iib/zDvbmzShHHok/Q9MVPOYYEl98gf3WW/jPP98jIK4LpokVj2PrOsIxxxD7z3/QV65EO+kktGyriLLsuaWBd24YBr7jjiP25JP4TjhhnwyZlmh5lZB9PvKnT8c+6CCaXnoJq76exjVrKBg/vs1ritKnD/nnnEPjCy/w7uLFnHbRRfzzkUeymr837d7TgtWT1RhBEAgEAgQCAQYMGIDrumlBe01NDZs2bUKW5TQZkSSpVxGQntCA5AhIDi2RIyA5HFAIgkD//v0ZNmxYp25EX1VYYGdQX1/PsmXLCAaDzJo1C1VVqa+vJ5FIdMMsm6MzNrSdHTeTKCQSCZYuXYplWcyYMYNQKy482Y7bnS1Y8CWpcRyHKaefzsa5c1H37EG48EIwDLQMEqB/8QWJxx9HvvJKlPJy9G3bwLKQQyFCyRwIy7I8TYDrYtXVEcpY8Or//S/Gk0+iXXopaistXSn4r7iCyG9/i3zDDek8i5aI/+1v2IkE2lVXYUSjGI2NsGXLl2SjT5+sWrFif/yjV+VZsADw7FvlK64gUVGB8Y9/YNbXo51+OnIbqenG++/jahrazJne8ezE56M/8wzaaadl/foUBFnuXJaJ6yINH469enWH2phMiKqKeNBB6IsXo2XkdWQD/7HHEn3ySVi2DG3ixPTvnZoarFdewQXUQw8lcPTRXqtWMlg11c6lTpqEGQwSe/BB1GRbm+T3I2c4xLnnn0/ss8+IP/ggxgknIPp8iJqGHAyitPNQRpBlL4zwuefwzZuH0q8f9oABxF9+GWXEiDaT2NuDlJdHwfnn0/jGGxj//jeNfj++sjK0UKhVFzPR5yO8cCENTz7J+xs3cvoll/CPv/41O7vpXtaCdaDIkCAI5OXlkZeXx+DBg3EcJy1o37NnDw0NDQiCwNq1a9OC9tYMFA4UeqIFKxqN5mx4c2iGHAHJ4YAiPz+/SxehryIsMFu4rsvWrVvZsGEDI0aMYOjQoekbW0+KxaFnCUhVVRXLly+nrKyMsWPH7td2eqoFyzRNBs+ZQ9NllxEYNQrzjTdw8vKakYfY/fdjNTQgX3cdTkMD5u7d+AYORPL5iLRyLur19chJu0jHcUjccw+OIBD89a9bTbJuNqfiYnxnnEHsvvvwXXFFs7+ZDQ1EfvlLhMmTkQ8/HLu+3gubCwYJDhlCtst/x3GIJ4MSfXPn7vN3uaQE9bvfxamrw3j9dRJPP400bBjaaachJp+2Wzt2YCxaRPAnP0m/L1uC6MRiYNvI/fplOePMyXXyliMIKAMHEn/77U5vSjnySMz77us0AREEgeBZZxF94AGkkhLs2lrMDz9EyM9HmjULbdAg1IyqRWo57bquR4htG2HYMCS/n/jDD+M/99x9dDICEDzsMMyBA0m8+CLa6afjahpWQwNGdbUncm+FkKjhMLFFi5D79EFJHn8pFCJ49tnE//MfYi+8gO/EE/epzmUDORhEmj0b46OPsKZNw8zLQysqQmnlOyJIEv7Zs4m9/jr/WrWKk7/5TV566KEOyUVvqoD0RJtRthBFMV39AKioqGDLli1IksSWLVuIRqOEQqG0fqSgoOCAzrUnWsJisRh92wk2zeH/HnIEJIevBXqagHR1bMMwWLFiBU1NTUydOjV9Q0mhJ8Xi4D2p6qr1Y1vj2rbNhg0b2Lp1K+PGjaN/J0TDbaEnWrBc12XK6acT+eEPyV+wgMj//A/uN76Br39/b3uGQfTGG2HGDDj2WGhsJDh0aHOXp4w5pTIvrMpKgsOG4UQiRG++GeX44wkceWTW81KnTcNavRr9tdcQDj8cvakJe8MGrKefRrviCvwHH4yYXEwk6uqQOuEM4zgO8ZtvRj7qKLQZM9o+NoBcXIx8wQWeq9fy5cT/+lfcSATpiCMw33iD0FVXpd2wHMvKemGYePrpdHBjZ+BYFnTyXBXwnKS6kqUhKgrShAnon32GdthhnXqvvWsXgqrSeM89aDNmEDj/fES/H72hAdswoJXPTBAEb5EoSV5lZOBAWLiQ+FNP4Zx0ElJpKWIyFDFVBVLKyxHPP5/Y00+jzZ6NP+me5boudjyO2YKQiI6DtXIled/6VvNtiyKBOXMwt24l9vTT+I49tlPhhwBuYyP+2bNxCgpwlixBHTzYM1aor0crLkZu8UReHTAAs6QEt7CQD9eu5YRvfINXHnqoXZ1eb9OAdOe1c38gCAKqqqaDHg3DSOtH1q1bh67rhMPhNGnJzzLgtKuwbbvbMk5SiMViXa6g5/C/EzkCksMBRVdvPr2RgNTV1bFs2TLy8/OZNWtWqzeznhSLQ/s5GF1BKjyvoqKiTVvkrqAnWrAuu/FGGi6+mPwFC3Cqq7Hz8lAUBSUvD6e+nsgNN+CceSZiaSn+vn1RWrv56fqXT/sEATuRQBBFzLVr0R96CN+VV6JkoaUAb9FvxeOY9fU4s2ej/+53yPn5KLW1CKtXU/D73yO2mIMdieDL0kXKsSxiv/wlyimnoE2alNV7wPvOaRMnok2ciBOJ0Hj11YjFxcTvuQfx4IPRjjoKRxC8EMGO5uA4OBUV7bahtfneXbsQOmtDnTpnOtmOkjrTtKOOIvbHP2ZFQMz16zE//BA3kUDo3x91/ny0444j8eyzkFyMKYEAierqjicgCIiCgFJcjHzhhSSefhpmz0YYMgTLcXCTQnZBFBFDIYLf+AaxZ5/Fra1FO/RQBEFADgTSGibXdTHr6og99hjutGlEKyuRQyG0UKhZS5syZAjiwoXEX3kFZfDgzmWPmCaiquIrLcU4/HDstWth+XK02bMxqqvRJQl/cXG6uiKIIvLYsdDUBMOH89nGjRxz/vm8/vDDbWr7elMLVm8jQ5nHRVXVtKAdaCZo37lzJ47jUFBQkLb8zRS098R8ugPxeDxnw5tDM+QISA5fC/QmDYjrumzevJnNmzczatQoBg0a1ObFv6cqIND95KampoZly5YBMG3atG7tQe7uFqxZp53G3lNPJXzOOQAkHn8cd+JE/EOHYm7ZQtPttyOcdx6+0aPxtyOaF0pLsXfuREySDLOqCnHRIowdOwjedFO6ZaktOI6DXleH3dgIluWlYBcVofTti3LHHTSdfz7itGkEr7mm1Ru6axhtZow0204iQeymm9DOOw8lqVlpF22QPfNf/0KbNw//KafgxGIY//0v8QcfxN67F8JhlFNOQW5HQG+8+iry4Yd3vP1W0NkMEPiSSAiFhTi1tYgZgXvZQJRlpIkTMT79FHXatObzqanB/OIL7E2bvG0MHoy6YAFyMsQvBWXmTPSXXsJ/6qkIivKlEDzbOQSDBC++mNjjjyMC6ogRXrtW0mHLTLYlaQsXor/1Fs5rr+E/4YTmxyEWw/jHPwgtXIiVJMtYFrE9e0AUkYNB1CQZkYJBggsXkvj4Y2L//Ce+k07KbqLJ/VKCQYy6OvwzZmBs3kzilVcInHACTtKcQdA0/EVFnn3x6NFEn3+evJNPplEQWL51K3POOYe3Hnmk1cT03taC1VvIUEeib7/fT//+/enfv39a0F5XV0ddXR1btmxp1tJVVFS031qLntKA5EToOWQiR0By+Fqgt2hAdF1n+fLlxONxDjvsMMId+Pn3VAUEum9Rn0moRowYwbp167r9xtydLVgnXnQRKyZNIpgRgKevWEHgrLNIfPQR0SeeQPnud8nLaHVqC9LEiVhr16IMGuQFzd1xB/5Zs/Bfc43ngNQKXNdFb2zEqq31hOzhMIFBg5ptyzEM9Jtuwved7+B++CHmokVorS3cszinHcPwyMfFF6MMH97h69uCtWsX5sqVad2HGAjgO/xwOPxw4rW12Bs3YnzyCfoLL0A8jlBYiDh+POqkSV9qR5YtI3jVVV3avrNzJ1ILEtARUp+AOHQoxurV3nw7Ce3IIz3B/oABmF98gbNzp9cmVVCANGYM/pkzEdtZsGlTphDduhVj6VLULoi8wWsHC5x/PrEnngDbRh09GkkQ0kYFruPguC7asceif/YZTY8/jm/hQs8SNxYj+vjj+E86Cbm4GNE0SdTUEOjTBwoKcB0Ho7ExTUakQAAtLw//rFkY27cTe/pplBNO6Dh7JOP7qRQUkGhowD9iBFJxMdFXX8U3cybB8nLMaJTo7t3IwSBaQQHS4MHomzaRN20aDcDG7ds56oILePPBBylpQeZ6c9Xhq0Rn5pIpaB80aBCO49DY2EhdXR0VFRWsX78eTdPSZKSwsLDTD5NyNrw5HAjkCEgOBxRf5xas6upqli9fTlFREZMmTcoqk6SnROjdNbZhGCxfvpxoNMphhx1GKBRi3bp1PSIY744WrG9ceSX/Limh4Kqr0vbG8eXLoV8/4i+8gL1mDaHf/hZfYWGrDj4toU6fTuyBB7AOPpjITTchnXgigfnzW32tEY1iVlfj6jpSMLgP6UjBqasjetNNKJdeijxyJNLcucTuvBOqq9FOPTX9OkvX0xqMVCI3otjMLtWxLGI33YR60UX7RT4cxyHx5z/j//GPW3ehsm3U4cNRk61drutiV1Rgrl1L/LHHIBLBqqrCtSz0999HHjECceDATi3gnKoqtNLSLs1fHjwY47XXIAsC4tTXY6xfj7lhA2ZdHQgCVixG9Nln8R13HNoxx2TlMpaJwCmneKL0QYParC51hGYkxHWbtbEJooiEdy1SZs0i0acP8UceQV2wAP2FF9BOPBGhoMBrYWpRhRFEMZ3t4ToORlOTR0YEwTM5OOUUYi++iHD44W3aQ9tNTc3+Xw2FiNTX47oucmEhwVNPJf722zh796JNnIgSDKI3NBDZvRvf2LEYb7+NNnw4+VOm0Kiq7Ni8mQWXXsrHzz/f7Bz5ui76exr7MxdRFCkoKKCgoIChQ4di2zb19fXU1taybds2Vq1aRTAYbCZo7+je1VM2vLkWrBwykSMgOXwt8FUSEMdx2LhxI9u2bWPMmDEMGDAgayLVm1rHWiKlYQmHw8ycORNFUZrlanQnuqMCcvX11/O8rhO+9dZmSeixv/wF13GQQiEKfve7NoPUWoNYUIC1ahXxO+9E/Na38I0e3ezvlq6jV1fjRqOImoavb99208KtzZuJ/+lP+K++GqFPH29hIcsEfvxjEn//O7EHHiBw2WXea6NRpEDA045YVvr4CKnUbSD+q1+hnXUWSlKc2lUk7rkH5dRT20wtdy2rmT5FEATk8nLk8nI46igAIjffjHL66bjV1RiLF+O+9hoYBpimR5z69PGqJsXF2IWF3nsz058tq8OWtrYglZXhNDR4GpS9e3EqKrArK6G2FqehAXTdc9hSFG+bgwYhTZ+Or39/RE3zqkj33IPWxeMoyDL+c88l/tBDuMcf36UxwGsJC5x33pckpI12Ot+oUZBIELv/foLnnotSXIzjulimiQs4to1lWUiS1OxaJIgiWjiMFg575gONjRixGBx5JLGPPsKtqUFrJQhSX7IkTT5TUEIh9KYmfPn5Hnk6/njiH3xA/OOP8c+YgRYOowSDxKuqsJLnrqgo+IcOxVAUNq9axeVXXcVf77gjPWZvqoD0Jj1Kd5IhSZIoLi6mOJm3YxhGmpBs2LCBRCJBfn5+umUrHA7vs+3uroC4rpsToeewD3IEJIcDjswAuWxxIBbyrd0cE4kEy5YtwzCMLomye2MFJGUbvHHjRkaOHMngwYPT+51a2Pe2CshLr77KXzZsIJyRN+A6DvXr12OvXo3/Bz8gdNppnV7cJJ54AruhgeBNN5Gor0eUZRzLQq+txW5o8HIdyspaTURvCePTT9FfeonAjTci5eU1O19FUSRwySXEX3qJ6K234v/JT7AjEbSiIi9DQhBQVBWS4ZKWZZG4+WakE05AGD063TvflcWb8dln4PO1uvBMwTVNpHYcgey9exEKC1GHDsUeOBDn4INxLQvXtnEtCycWw9y7FxobobISZ+1ajEgENx4HywLbxt65E+Omm7wKQupcaPmvd7DS1SvbttE1zTMI2L0b8+67EfLzobAQoagI8aCDEMNhhGDQq0aJYvpf23FAknAdx8sFGTECY+3aLgnoAaSCAtQFC4i+9BLud77TuTyTDKRJyJNPguOgtpKInnjnHezKSvK/8x3iL72EtGABcnJB6bouls+HEY8ja1r6vEgFtmZ+l1NkxDQMrOOPJ/7++8Q3byawYAFqsu3MdV2cXbtQWrTHqeEw0d27IanlEASBwOzZxL/4gtg77xCYNw9RlgmWl9Po89G4aROhwYPRCguxYjGEgw7ixX/9i/kvvMDCZOWvty36ewsZ6klLYFVVKS0tpTRZfYzH42n9yO7du7Esq5mgPRQK9UgFJKcByaElcgQkh68FJElKOzT1xNiw79O5vXv3smLFCkpLS5kyZUpWLVetjd0btCspmKbJihUraGxsZOrUqRS08kS8pzI7ujpmVVUVl/75z+Q//HC65clKJIisXYt9662oRx7ZJfIR+8MfoKiI/NtvJ/bwwwinnUZ861YkPAtb34gRWY+pv/AC5vr1BK+/vt32Hv/JJ6MPHEj05z/HPuII5DlzkETxy8VHcgFp3XEH2vz5qFOmpMMW0yQkaeWazQLBaWxEf/VVgj/7Wet/tyysRAIzHidRW5smFLiu1wqWJAvGo48izplDfOdOr21MkhAkCUGWkXw+xLw8xAEDEJJE0zTNffrOo3/8I8HvfCer45lCbNs2AknyF33gAfwXXvglmU1mbriW5f1r27iGgeM4uI7jVQsEwWttA9wxY4g+9RRmMmBPkGUEVfXsepM/HZEKddQo4kOGkHj/ffytZLC0htbOIFGWCZx7LrGnnsIFtCQJcWIxYk8+iTxmDMGFCwEInH02sWeewT9vHnJ5eZpY6A0NqHl5af1I5kOUFBlJnyOCgC8cxn/aacSXLCH29NMkjj4aNT8foa6uVXG/IAiIkoRlGM0seP1TppBYs4boyy/jX7AAURRRhwzBiUaJVVSgFhbiLy0lJggoBx/MlTfeyMypU+nfv3+vW/T3JjJ0oObi9/vx+/3069cP13WJRqNpQrJ169b0A6ja2tr0a7vjM4vH4zkCkkMz5AhIDl8LSJKU7vnvibHhy75Xx3FYv349O3bs4KCDDqJfVwLXkuhNFZCGhgaWLl1KKBRi5syZbQoTexMBcRyHw7/xDdwrr0RKlu/12lriO3bg/ulPaEcfjSLLnbpBOo5D/PrrEWfNQjvmGOJ79mCsXYvftlEHD0bNwpUqE7E//xl8PgL/8z9ZLSLUQw5BGDGCpttvx1y1CuUHP/AySFLj3XEH0syZaMkn0plPRh3H8fQZyRaczIVma8cg9oc/oFx4IWY8jlNfj5NIeGLj5AJeEEUEVUVwHBS/H1FVvYV5xliO4+BIEqFOZmlkwkkk0la2XYVQXo6zdSvisGHe/CTJOzatnMdtkqCRI9FcF6lfPxzDwNZ1nHgcs7ERPfWgQBC8z0MQEBQFUVEQMkiKMns2xnPPoezZ47WZdRGiLBM891yiTz2F4Dggy+j/+Q/+E09sluEhhULe6555Bu3ww1EHDULSNNzk9TBTP+ImK2gpwpo6R1zXxcUjQ/5Jk5BKStDfew93zhziH36IMn06ditVMK2w0AvmbCEm940dix4IEHvhBQInnojYpw/u0qUEDzrIa8kSRWRNgxEjsKNRjj3vPFb861+9qgWrNxEQ27a79IBrfyEIAqFQiFAoxMCBA3Ech6amJpYsWUJ9fT07d+5EVdVmgvau5oPkROg5tESOgORwwNHVFqxEItEj88kM9TNNk2XLluE4DjNnztzvC2aqStETN95sF/Wu67Jjxw7WrVvH8OHDmyW178+4nUFX27rOvuoq9o4ZQ96cOV4f8fbtWLEYPPQQwvHHoxYUQCyW9XhOIkH02muRFy7EKS8ntnEjat++aOecA++/D5dckv1YjkP8llsQDzkE/4IFWb3HTfbxo6po55+PEokQueEGtIULUQ85xHNrmjChdccsvjxXMxeblmmiJxK4hoGr67imieC62G+/jTt4sLdIj8e9XInCwlbzPlzDQG7jXDfeeQe5E+5VrZ1Zzvbtnc8AaQFx8GCsDRuQk2F9XYF27LHojz9O8LLLkDStXT2P67o4hoGVSODGYpiWhW7b2IaBc8QRND75JNpFFyH7/Sg+X4eOa61BkCQCp55Kwx13IBYXk3fRRa2mmIt+P8FzziH2zDNgWajDhn3ZypapAclox0rtg+s4OHyZ8SOKInL//ginnELipZcQEwl8xcXoVVW4goCSn+8lvQsCkqbhmGar1y9t8GBEn4/Yiy8SOP54zKYmr02rtBQzGkVvaMCxbQLTplH9r39xzmWX8aurr/7K0sdbore1g/WGuYiimHZ2HDduHD6fj4aGBmpra9mxYwerV68mGAym9SOFhYVZESfDMLAsq8c0IKZpEo1G9/m9pmn7bUmcQ8/hqz/jc8ghC/S0BkQQBCoqKli0aBHhcJjp06d3y9OangoMTI3d0TGxLItly5axadMmpkyZwrDU0+N20Fs0IH954gneXL0a/1VXYZsmkbVrcUQR4YEHEI49Fv+8eTiVlZBlNoRTVUXTj36Ec/LJOMXFaKWlhMaMwQGUQw7B3bIFt5WbWKtjOQ6xG25AnjOnffKRsc+O43hVPEFAcBxERUE7+GBCv/oV5n//S/1ll0HfvviOPrrN4axEgkRNDdEdO4ht3Up861as3bsRolEkQUAtKEDr1w/Z54PKSoJnn43Wvz++0lKUvLw2wwbb+2yszz7bJ0Ojs7B27EAsK+v0+zJnJQ8YgLNr137NQy4shFAIp66uw9cKyQW4Fg7j69MHf3k5wQEDCPTti69PH4Inn4z7xhu4sRiJigqiu3YR3b2bWGUliYYGLF1v97g6jkP8lVeIPfUUwfPPR/L7sdrZP1HTCJxzDsZ//4u+Zg2CJGF30JaaaqMSBMEL6VSU9PfbDQRwCwpwkvqaQFkZgZIS7GiUyO7dxOvqcB3Hc7yKRFodXykrwzd/PtHXX8cxjC9/HwwSLCtDEEWilZUE5s3j31u38vTzz/eqCkhvmktvICBAuoImJSuMRUVFjBgxgqlTp3LEEUcwdOhQXNdl06ZNfPDBByxevJhNmzZRW1vb5v0oRQ6yuafats0dd9zB6NGjCQaDTJw4kUceeaTd9zz44IPNSFHq55prrtnntQ899BATJ04kGAwyevRo/vCHP/RYl0IO7SNXAcnha4Ge1ICkLpobNmxgwoQJ6fTZ7kBmdaW7n/x1VKlIldL9fj8zZ87MunTeUy1YnWmhW7Z8Odf97W9oV16JI8sk1q5F6t8f+9e/Rjn3XOxwGDkUQq+pQWpHXJ1CdMkSEnfdhfa97+GfOBEpozXHrq3FX16OcPbZ6P/4B1pGvkhrcByH6HXXoZ52GtrUqVntT6plSpZlJFEk0dSUzp4QNQ25pARn0iScjRuJ/elP+L75TRxZxopGsaNRT8idtGAVg0H85eVtPnG3bBv93nvxX345giB423bdL5O3k/9moq1lmLV1q2e3245APRu4e/YgZXms2oJUUOCJ2vcT6rHHknjpJQLf+EaX3p+ywdXGjsVaswaxqgpfhpuVY1mY0Shmfb1ntSyKCJLkCeE1DcXnw/jsM8zly1FnzMCftH2Wzz6b6GOPIc6fj9wGWRMVheBZZxF9/nkoKcEcP75d84CWEAQhfR3SN25Ecl3P3evVV7FiMdTRo1ELCxEEATMS8ex8FQVH1/G1YcAhFxQQOOkkGh5/HKu6Ot2uJUgSef3707RrF9GqKoInnMA9zzzDnFmzGLYfVazuQm9a9Pe2uQCtzkdRlGaC9kQikdaPrF69GsuyCIfD6ZatvLw8BEFIE5BsbHgvvvhinnvuOX7wgx9w8MEH88EHH3DJJZewdetWrr/++lbfs3XrVkaPHs29997b7PcDBgxo9v+/+MUv+M1vfsPll1/O1VdfzbJly7j22mtZsWIFDz74YMcHJ4duRY6A5PC1QE8F+kWjUZYuXQrQ7eQDvuzf76kKSFvj7ty5kzVr1jBkyBBGdEJM3dG4XUVnqiqNjY2cduutOBMmIIwfj7l9O8qwYVg//znaxRdjFhTgKyvzno7X1CAWFrY6juu66LW1JN56C/eDDyi48859bGhdvPYjUVFQp0zB+Oc/MVatatWZCJK5HD//OepZZ6G1sC1tCymLXUVRvqyIxWKoyVYH/aOPMDZvRrroIojHsTZsoOFXv0LMz0f9xjfaJRutwXzlFcRJk1AzzuVMbYBp2wh42oFU9a+tJ/XG88+jJtPm9wduTQ1SCx1BZyEIQqt6j85C6dcPw3VxYrEu2QILspzO4fCffDLR++5DHjoUMakdEmUZLfnZWqaZrkDYuk58+XJiH3yAMGoU8vz52IqCHomgBgKIqkrwnHOIPvYYwTPPRGwlSRy8hX3wzDOJPP88xuLF+JI2ye2ixefrJBKYH31E4OyzvZasU04h+vrr2JaFMH68Vx3w+dACARzDINrURFNlJYHi4lZtrqVAALWszLPonTULOaMqGSovp2HbNuKAcNhhfPMnP2HNhx92Ohyvu9HbFv29aS5AVg/MfD4f5eXllJeXp612U4Rk+/bt3Hjjjfj9fsaNG4eqqh3u40svvcRjjz3Ga6+9xvFJu+vzzz+fCRMm8MMf/pDTTz+d8ePH7/O+LVu2cNBBBzFnzpw2x162bBm33HIL99xzD99JmmGcf/75zJ49m5NOOomFCxemt5nDgUHvOONz+D+FrpS9e6IFa/fu3SxatIji4mJ8Ph/Kfj7lbQ2pnuyeaB9rjZTZts2KFStYv349kyZNYuTIkZ0+3j1VAcm2BeuU666jRpLgzDNxDQNtxAisX/wC9eKLEceNQzBN5GT1wGls3Cfh2XUc4hUVRNauxXz3XaR16wjfdVerGRhWLNbs6b567bXoDz6I1UqLjmMYRK+5BvW887ImH05y0d+MfJgmRlMTenU1Te+/T+TZZ5FOPRUJ8JWVkX/UURT+7nf4zzgD+5FH0P/6V0/Enc326uowly5FO+64Zr9P6QJkWUZVVeSk0NxJ6p4c28a2bZzMljHDwHWcZoLorsKJx5vljHQZPh9ON1RC5SOPRH/rrS69N/P7JMoyvtNOI/7UU22+3nEcjE8/JfHII0jV1YS//W0KjjuOUP/++AoLcXWd+J49RHfvJtHUhHziiUSeeabdz1wQBEKnn45TW4uefIDSHlp+8+Jvvolvzpz0OSlIEsETTsBuaMBesqRZu5aoqmhFRbiOQ2zvXqLV1a1eHwQgOH8+8Q8+wKqv//L3ooi/sNBzJvP7qZdlzvve9zqcc0+jt2lAeos2JnWv6uyxEQSBYDDIgAEDmDBhAkcccQQ33XQTkydP5j//+Q+GYTBo0CAuuugiHn74YXbu3LnPGH/+85855phj9iECV1xxBUOHDt2nwpHCli1b0lU1I6MVMBN/+ctfGDlyJN/+9reb/f7EE0/kqKOO4p577unU/uaw/+gd374ccugA3dmCZVkWK1asYM2aNUycOJExY8b0OrvcbNCSKEQiET7++GNisRgzZ86kpItPnL/KCsjv/vY3Vo0ejdOvH2JpKb6BAzFvuAH1oovQpkzB2L0b38CB3piAmJ+Pk1zsuK5LfO9eImvXIgoC6u7dCOvWEfzFL9psITJqa1GS+QoAoqriv/pq4r//PU7G+eAkEkSvuQbtm99EnTChw/1IORAJgoAiyxhNTUR37CCyYQPxbdvAstAkCfe11yi86SaCQ4eiFRc3EyCrBx1E6Be/QJozh9iddxL7/e+xtm1rd7vxP/0J7ZJLOrSTFZLWv3LGQtMFbMtKC0YTr72GuJ/aj/T2OulU1uY45eXYW7bs9zjqqFHYFRVdPs8z90Tp1w9x5Ej0Dz9s9honEiHx0kvEH3oIx3EIXHABgWOOQcxohRQVBV9REYF+/QiWl+MrLETQNIQjjqDh/vuJ7NqF3tSUthJuNgdBQJ49G3PnTozVq7Oeu752LaKq7uPgJYgigaOPxrYs4h9+mG7XkmUZf34+IhAoLUVUVZp27yZSU+NV91Kk1bYR/X4vsPDf/8ZubEyPrYbDXuZJMIg7cCAfbNjAb+++O+s59wRyGpDWkZrL/h4bQRA4/PDD+dWvfsUdd9xB//79eeSRRxg4cCB/+ctfGDJkCGPGjGHDhg3p7f773//mhBNO2GcsURQ5/vjjeeedd1rd1tatW9mwYUNaOF9WVsbtt9/e7KHXe++9x3HHHdfqfp144om89957+5VVlUPnkWvByuFrge4iCE1NTSxduhRVVZk1axa+ZNtET5EE2P/E8vbGTc159+7drFq1ikGDBjFy5Mj9upntb2hgV8fcsWMHd69dSyweRzrtNPwDBqD/7ndIxxyDduihOJaFq+tIGTa5wpgxmOvX4waDJHbsQMnLIzR2LMZ772F+/DGBa69tt33JjUZRWrTdyf37ox59NPG//pXgt7+NE4sR/fnP0b7zHdSOkrRdF9txMGIx7EgEu6kJA5D8fnzFxUjJyk3TqlXE77jDs+7toA1IHT8edfx4rN27MV57jcTWrcjjx6MuWJBu+wFIvPUW4kEHISf7s7OFa9uIkoSczPdw8apI1vLlaFdeiWkYzbQjXVqYdJPFqDh4MPamTfudDC+IItLBB2P+979ohx7a6fe3PJd9c+YQffBBpLFjIRJB/9e/QJYRp07FN2RI1t/HFCHxFRVh5OWhv/EG9kknEWts9MwLJMlrdwoG0y102oknEn/xRVCUDs9Pq64O89NPCZx9dqt/F0SRwJFHEv/kE+Lvvos/aYggCIL3+QP+vDz8eXkkGhqIVVYihUJIPh+2ZXlW5j4f/vnzib3xBsF58xBDIQRBQA2HMWIx/OPHE9uyhT+/8w6HH3oos2bMyOrYdCdSLYm9ZdHfE8F/XUVPzCWVgn700Udz9NFHc/PNN1NfX8+///1vBiYfKNXU1JBIJBg8eHCrYwwZMqTVqollWbiuy+uvv86vfvUrxo0bx5tvvslPf/pTYrEYN9xwAwC7du1qd+x4PE5NTU2XH9zl0HnkCEgOBxxdbcHaH4Lgui47d+5k7dq1DBkyhOHDhze7yH5dKyCWZbFq1SoqKiqYOHFiWhy4v+Me6BwQx3FYeMst1F9yCdx9N3kzZ6I//DD0758W6Sb27GmmawAQp05Ff+opnLIygiNGIEoS+rvvYn7yCYFrrmmXfDipPIwUMs5Lbd487JUrib/xBtabb6L94AeoQ4e2PZZtYzQ0YNTXe5a2ioJcUODlirTodbdtG/Ouuwj98Iedam+S+/VDvvRSXNvG+PxzYn/6E4JloZ58MtKAAZiLFhH6+c+bVW6ygeM4za1cAbuqCqm8HC0Y/DLoznFwbbv1oLuOxu9qe0mLhb5cXo7RotLQVWgzZhC7774uEZCWcBsaEEIhGv/4R3yHHYbv5JOR8vL2K7tIHTgQ98gjsd95h2BSh5Nq30sRElPXcSMRAqecQuwf//BIyJAhrY5n1dWReOklgqec0uHn5p8+ncSSJURff51gsh1GDoXQIxH8yZZHXziMlp+PXl+PsXs3JB8yWJaFq6ooRx9N5O23CR5zDFIohBoKeZki4TDq8OE0WRYX33ADix5/nD7d0ObXGbQntP4q0NsqIN3dDhaLxfYRoBcUFHDKKad0apzW1g6yLLN161Y2btzIwQcfDHgVDU3TuO222/jRj35Efht6qmzGz6Hn0DvO+Bxy6AD704KVsqLdsGFDWhfR8mLf0za/PTG2bdtUVFTQ2NjIzJkzu4V8wFfTgnX9XXexetIk3PXr8R15JOZbb2E3NKSdilzXxWlsTAu3XUCvqsLUdcRIpDn5+OyzDskHgNHUhNRO9UG77DLi99+PeOih+5AP13UxolGiu3YR2biR2KZNWLEYWt++5I8aRXDYMC+jpLVwwFtuQT7uONThw9udX1sQJAlt+nRC11yD73vfw1y1ivrvfQ9BlrHWrWt1m+3Ctvdp2TKefx4l9fQ72a6lKAqqoqQzSNLtWqaZTuH23tB8+25NDUILnU72O9t8LKmwECdLq+SOIPp8CKWlWBUVnX+z62LX1hL75z+J3nsv8TffRDnkEPwnn4woy0htOEZ1FtqoUYgHHUT85Ze9OScrJMFky5a/sBA7EiFeVQWzZxP/8EPMVqx87YYGEi++6JGPLO3FfZMmIY0YQey11wBQQqF9dCmCIOBLhdNJEnpNDYLrosgySl4e6tFHE3nzTfSmJizLQikoIFFfT2DSJOSqKuoGD2b+RRcdcBvUHAFpGz3h2BiNRju04E1pMbe10Wa6detW+vfv3+rfAoFAmnykcPbZZxOLxVi5ciUA/fv3b3dsv99PUZaW7jl0D3rHGZ9DDh0gtejp7I2qoaGBRYsWYZoms2bNarO82lMkAXqmAlJRUcHOnTtRFIVp06Z1a9jSgRShu67Lhx99xN3LlyPPmoX8xRcIAwZ47VM//nH6dYmqKuSkiNyIRIisXYvgOARGj0ZMzlV/+22PfPzsZ1m5RtkNDSgtHLRSM0y5XYV+/3vc+noSTz3luWo1NBDZsoXohg1Y1dWo4TCBoUNRBw/GV1aG6ve3+xQt/re/4Q4bhpKFdXA2kIqKkIcPx3fccWgXXYS5ciWx228ndttt6G+/nZV43XEcaLH4cerqUJOtEc2QIWZXVDUtrk8lj5tJ/Qh82aZk79jR9RDCFueMIAgI3eiepM2bh/Hmm1m/3qqoIP7UUxhPPEHi3XeRJ04k8K1vETzzTNQRI/AdeijW3r3YWeSMZAvfpEm4eXnon3yyz9+UvDwkTSNYXk6gtBRl/nyaXnuNpjVr0KNRcF2s+nqMl14i0Anykd72QQchDh9O7K230ud1a3oUN3m++IuKMGpriVVXIwC+wkKCxx6L8c47ntucquKaJoZlIRQXowWDbM3P5/wrrujSsekqUudmb1n09zYRek+0YHVkwSuKIkceeSSvJQlvJhzH4fXXX2fevHn7/G3btm38+Mc/3ueelfqMU0GJc+fO5Y033mj1PvTKK68wd+7cXAXkAKN3fPtyyKEDpC7O2ZIE13XZtm0bn332Gf379+fQQw9tNwfj66IBcRyHNWvWsHLlSvr27UteXl633ywOVAtWqjJ1/m23IX772wSGDsVpaMB86SUCP/85YsbNwKquRikuJrJ5M2ZFBcERI75sxxJFEi+9hPnFF17lI8vj4ep62k0rE47jELvmGrRLLkEdPhz10ktJ1NRQf+ONOI2NBAYMIDRyJIFBgxB8PkzLQpJlz1mqne3p//43djyOMnduM+3G/sBxHPR//hPfwoUogwYROPtsAj/9Kb7vfx9X04jffz/RX/+a+KOPYlVWtn4cHKdZBURfvBipDRvilkgF3bV01wIvndg0TawdO6Ab+6pdWe6281Pu0yedeN4anLo6Eu+8Q/S++4jeey/GRx8hTZ+Oes45+E8+GXXw4GbHThBFfKec4mkyuhH+o4/G3L0bs4UAX5QkSD3Nl2UC5eUUXHwx7uefY1dW0rRhA41PPIF49NFdshwG8E2YgNivH/H33kMOBFoNJbQ2bkQdM8abQ1kZWl4escpKjGgUuaAA31FHob/zDq7r4u/TBysSQR4xAmvLFvyjRvHG+vU8+vjjNDY2HhAhcOr86S0Lzt5UAekJMhSNRrPKAPne977H22+/zZstHgrce++9bNmyJW2fW11dnXa7qqur4w9/+AOPP/54s/c89thjFBYWpisjV1xxBRs2bOD+++9v9rrXXnuNf/3rX3z/+9/v8v7l0DXkNCA5HHB0VQMCHgHpyC7XNE1WrFhBQ0MDU6ZMyaqs+nXQgMTjcZYuXYrjOMyYMYOamhqqqqq6YYbNcSAISDQaZcmSJdz20EM0nnYaoUmTiD/9NHZ9PXn33ttsga43NnoZChs3og0ahJJ8iuvYdlowrX/yCXm33NKMtLQHF6DF5516Z+yGG5BOOw2ruBhjwwZEWSZ02WWY776L88gj8LOf4ZIUP6YsdtvabnIxZe3ahfHmmwRvuIH4nj2obWSXdBb6gw+inngiYouqgBgKoRx1FBx1FK5tY65bh/HGG+hVVbiJBFJpKdIhhyAfcoi3gM0ke++8g7+FVWW2EEQRiS+/p67rYlRXI4wdi2GazcMQu7j4E4uLcaqrEbup5VCeNQv9rbfwn3giVkUF1hdfYO3YgSBJEA4jjR6Nf9q0dHAk4Dlo2XYz17L0eIWFSGPHkvjkE6QpU7pljoIgEDjtNKKPPopUWIiYaSndYsEu+v0EFy4k+sQTuK5L/plnktB1ohUVCJKEHAqhBgKdOv6+yZOJf/IJ9rJluKNGQUZPvR2NIjhOs2MhaxrBvn2JV1djxeP4i4txpkzBeO89gvPnIzgOclERVjSKFgziTJ3KT373O8r69MHn86WD7AoLC7NauHYWKQes3kBAUpX93kJAeqICEo/Hs0pBP+mkk7jwwgs5/fTTufLKK5kwYQIfffQR9913H7/85S8ZP348mzdvZuzYscyZM4c333yTQw45hEsvvZTLL7+cNWvWMG7cON566y0effRR7r///rTRzMSJE7nuuuv4/ve/z4oVK5g5cybLly/nj3/8I5deeinHtbAuz6HnkSMgOXwtkBK9dkQS6urqWLZsGXl5ecyaNSvrsKuebMHqjgV9VVUVy5cvp6ysjLFjxyJJEnV1dQc84LCryAy7q6ysZMWKFVRVV/NePE7huefiui6JJ54g7557kDMW55auE924kUBZGb4WAnQBMJcswRVFpPZIQCuwYrF9Fu2u4xC98UbE8eMR+vRB8fubid7lE09ELy4m+otfoPz850iynLawbQ+OYRC/4w78SUcu1zT32XZX4FRVYVdW4m8l0TtzSSpIEuq4cajjxqX309yxA3v1asz778eqqQHTxB0/HnnCBNC0bsnsSIUdUl+PVlaGIMs4rutt33W9v6cE7aLYbvUoE+LAgdibNnXa7SsTjuPg7NnjOaht305i2TKcPXsQSkqQRo8mcNRR7X9GHXxHfEccQfSvf0UYO7bb9CCiohA480xiTz1F4KKLmpMf121OIpcuRQiFIBpF9PlQ/X5URcGxbfSGBmINDZAkI1ogkJVuyD99OrEPPsBauhSOPTb9e33VKpRWKmaCIBDo0wczGiW6Zw++sjKEAQNIfPIJ6iGHYEQiaRIQKC6m8ZBD+PXdd/PK449TW1tLZWUl69evR9M0ioqK0oSkO/KaetOCvzfqUb4KDUgKDz30EBMnTuT+++/nrrvuYuTIkTz00ENceOGFAASDQUpKSpqlnN97770MHTqUBx54gIqKCsaMGcNTTz3F2S3c3m666SaGDh3KH/7wBx588EEGDhzILbfcwpVXXtl9O5tD1sgRkBy+NpBluU2S4LouW7ZsYePGjYwcOZIhQ4Z06umWJEn75VjT0dhdJTeO47Bhwwa2b9/OQQcdRL9+/dJ/6ynS1JnU8myRmuu6devYsWMH48aNY9K55xL6+98RBIHYb36DWFaGkmGTqNfXo+/YgaIo+5APAGvLFownniDv1luJ33KLl5g+aFBW8zEbGpDDYVzAaGjArK3F/OtfEUaNInz22W2eO8q0aVh+P/p11xG86iqEFlkKrSF2yy1oF1+c1rAIrtstT17j99yD79JLO/0+QRRRBw+GwYPh+ONJ1NRALIZQVUXs0UdBkojeeScYBkIggNi3L+LQocgjR7aZzp2JlMWpm6ysuKYJquo5aCVJqIRHhBzHwXIc3OQxEcCzm02OZds2ZiLxZWq7JCH264f1n/9Alvat1t69WGvX4mzfjltb61kCaxpCURHioEEo8+dDcbFnvzxqVNbH0G3nu5dqxYq9+CLKBRdkNWY2kPLzUU84gfjTTxM8//z0tlLVGEfXiT/7LNKwYYTOPBNzzx5iL72EfNJJgNem5U/m3ji2jV5fT6S+HtHnw1dQ0KF2KnDEEdS/+CLxzz/HP3WqN86uXaiHHNLme5RgENnnI1ZVBQMG4K5Zg7N1K05BASTb6URRJG/0aFZu386Lr73Gheecw5AhQ7Btm/r6empra9m6dSsrV64kLy8vTUbC4XCXFsu9yYK3txGQntKA5GVJxCVJ4n/+53/4n//5n1b/XlZWxq4WRguSJHHttddy7bXXdjj+N7/5Tb75zW9mNZccehY5ApLDAUdXF19tLeQNw2D58uVEo1EOO+wwClpJvM5m7ESWadOdRVcrColEgmXLlmGaJjNmzCDU4ql0T1QqUuN2V+hjCqZpkkgkqKqqYvr06Vx1883EzziDgv790V9/HaFPH+R4HPCe3sd37MCNx1H69GlVqOZUV5O48058N92E6POhXXEFib/9DeVnP8tqPlZjI66iYFRWIgUCiO++izp2LPKZZ7b5NNhKpoX7Dz4Y5/rrid99N/KIEfjPPbfN7RhPPIE0cWK6+uDt4P73uOuLFiEMG4ZcVrbfY7mOgxwMovTti/nPfxL8yU+8aoVtY9fVYezcibljB/HPPoOmJkgkcJKkQgiFIC/PawkqLEQoKoIksbMkCUEQMKNRErt3f7nB1PHNIBpuskLmum66eiOIIrZhYNXXe9Uzx8FNWgGbmzdjb90KNTW41dU4tbVQVwdNTR4xkGVcSUJSVSgoQBg8GGnaNJSyMmSfz1toZ1oPH3EEiUceyZqAIEmtirEzISef+BvLl+NrZ4HeWagDBuAcfDDxV17Bf+KJiIqCZRiwcyf6e+/hmzcvnW2j9uuHO2kSxttv4zvxxGbjiJKUJiNmNEq8shIkCa2gALkdvZx/7lwS77yDuHIlQp8+WWlLBEki2Lcv0Zoa7OHDcZYuRZRlLE3DqatDLC720t2POIL/ue02Tl2wgLy8PCRJori4mOLkPHVdp66ujtraWtasWYNpmoTD4XSFJJTMHOkIvS2EEHoXAekJG96+rTxEyuH/NnIEJIevDVp74l9TU8Py5cspKChg5syZXS7P9zYb3pqaGpYtW0ZJSQlTpkxJO3lk4kAlrO8v6urqWLVqFYIgMH36dKqqqnhi82byrrsOa9s2jH//m+DttxP7xS9wbJvoxo2o4TDawIFE1q7FN2JEs/GcRILoDTfgu/ba9BN5ubwcGhqwamqQM5LNW0JvbMSsqMCORAiMGoXs96M/9xyWaRK45JK0sDETab2H66b1HmJJCcEbb0R/9VUi11yD74c/RG5xgzWXLMGurCTU8gn4fhIQx3EwXnqJ4PXXd+n9rm1j6Tq2ruMmEugNDViiiL5tG6YsE9u1K93SI0gSYlkZUr9+CLNmISoKoqIgSBJuNIrd2Ijb2Ijb0IBbX4+7Zg1uYyN28ji6to1bV4f77LNf7nuKZCTHRxQRFMX717a9djDDwBEE3MZGzLw8z30r9VpRhKYmhPffRwyHEYqKEMaPRyosRCooQPD5cCwLM5FASlYqXNvGdRzsaDRNaARB8Co0eEntpuMQr65GDoWQVbXdNHlRkjwS1gG0uXPRH3oIddy4bmm7S8E3aRKxvXtJLF6MOHo0ibffRrJtgmedtc921DFjMKqrSXz8Mb6ZM1sdTwkGUYJBHNMkUVdHwnFQQiG0UGgfQq6GQpjTpmF+8QXWihXkHXNM1vNW8/IQXJf4+PGYn36KW1qKuXNn+jur+P0Y06cz9eijWfvZZ/u8X9M0+vbtS9++fXFdl1gsRm1tLXV1dWzduhVRFNP6kaKionT/f0v0thasbDN1DgR6KgekO50ac/jfgRwByeFrg8wWLNd12bRpE1u2bGH06NEMHDhwv55o9RYb3sz9Gjt2LP37929zv3qyAtId46acyDZs2MCgQYPYsWMHsiwz+/LLka67DkEUid12G/5bb/VyFVyX6Jo1+IYMQQmFsA0jrRNIwXEcYj/9KdqPfoRUXt5snr7LLyfx+OOEWvTzuoBeW4u5dy+S309g6FDimzZ55OP99zE3b25m+ZsJx3WxTBNBFD29R+ZxEgRPuHzYYcT/9CeU0aPxJXuOnepq9KefRmulJWB/XX4Sf/0r6qmnIrZDth3TRI/HcZIkw7VtT2yeanVSVURN89rQXBc1FMJ45hmCCxagZtnGRjiM1Ea+h2EYX+qv7r6b4GWXNfu767qQJAVYFm7yR5AkBJ8PQVURBIHotm0E+/dPC3WdZLuWff/9+M87Ly1qbwlRlhE1DSWLRb/rut72p0/HfP99OOIIjCS5EAQBN3n+CbKMkCRgbrIa0xEESUI94QQS//xnm+njXYX/2GNpeuQRnI8/Rhg3jmAb5AJAmzYN8913MdauRR0zps3XiYpCoLTUM3aoryeyezei348vHE63Z6Va5bRZs2h8+GHsSAQpy6A3AElVCQ0YQAyIv/02ejiMf+LE9N+DgwdTtWED1990Eze1Q7IFQSAYDBIMBhk4cCCO49DY2EhtbS179uxh3bp1+P3+ZoL21IOc3kZAestcoOcqIC0r+DnkkCMgOXxtkKpSJBIJli9fTiKRYNq0aVmnnHY0dk/a8GbT0qTrOsuXLycej2e1Xz1JQPZ3kWxZVtqJbOrUqUiSxPbt2/nTo49SMW0aBZMmEbv+erQrrkAuLCS2dCmOKJI3dmx6oaPv3YvSQmgcu+46lAsvRB05ch/CKI8cCTt2YDc2IuXne8L2qiqsmhqU/HxCo0YhCAJGNIqoaVibNmG89RbBG29ETD4Jz4TtOFiWhSRJyO3ckOXSUoK//CX6K68QueYatCuvJHHHHfj/3//DabEA3t/WD6e6Gqe6Gv+kSVjxOJau4+o6jq6D4yC4LrZte25HPh+S349cWtouWTHq6z0dwbZtKN28SHbq66EV8akgCJCyLc6CJAiCgCRJXh4QYPh82KaJI4q4fGlSkfq3MxAEAUFRCEyeTHTRIvytiNtdPDMBW9dxEgnsRAIjFvNyVpLvlzTNO+ay3KxqoA4cSCwQwNqzx6vUdQMcy0J/5RXvu6qqiK1ltrRAYP58os89hxAOo3QwD0EU8SXdA41IxGvPkmW0cNhrzxJFYu+8Q/7ChcT/9S/kuXMRs+jxT7fXCQLBgQMRjz2WyAsvYBpGM7KYP3cu9z77LFf/+MdZL1xFUaSgoCDdgmtZFnV1ddTV1bFp0ybi8XhaPyIl2wN7A3obAXEcJ2vzlmyRTQ5IDv/3kCMgORxw7I8GpKGhgbVr11JSUsLkyZNbbU3q6tg9WQFprbUnE7W1tSxbtozCwkImTZqU1X71VNVmf4lNJBJhyZIl+Hw+Zs6ciaqqRKNRGhoauP7FF/HfdRfGM88gjB2LcvDBRDdvxtm8Gd/48c1EsE5jI2rGQin2298iHXUUWlL8CuzTzqScey7xhx5CXLgQp6EBuaiI0JgxzSoXdjKgLfbHPxK86aZWrVQt28axbRRZzmpxIAoC/pNOwpo2jYYrrkAZPtzTQ7SAY5pe21En4DoOViKBFY2S+O1vkc84g9jWrV4rlKahBINIJSXpSkAqlTzr74bj4FRWIvTt2+2LMnv3bsR2WuK6AgE8YXxFBfKQIenqiOs4mLb9pfsW7OMO1e64oog4aBDW9u3ILapAAt6Teym5MHNME6GmhkBGjogVi6FHo161SRBAFL3MEr8f3/z5xB9/nNB+il8dx8H86CPM9etRjzgC/7BhmJWVRJ59Fr71rQ73L3DKKUSfeQbphBOyIgzgtVypoRCOYZCoryfhOFjr1yPm5yMXF+OfP5/oa68RbMUOuiP4Bwwg5vPR+O67hOfNQ04SZVEUkadM4YJvf5sXWuQ7ZAtZlunTpw99kiGYiUQirR+prq7Gtm2WLVuWro4Eg8GvhJT0NgLSUyL0XAUkh5bIEZAcvhJk2rJmA8dxiMVi1NTUcNBBB7XbmtQVfFUakJR716ZNmxg1ahSDBg3Ker96YwvW7t27WbVqFYMHD2bkyJHpfRFFkV//4x/Yl16Kr7aWxOrVaL/4BZG1a9H69sWybchIyzZjsWZP7eMPPwwDBuCfPz/9u5ZHyTZNrL59MXftQl26lNDxx7c6R6upCffOO/H/+MfNLFJT41mmiQtZWey2hL16Nb5jj0U+5BDiv/417oABKJdckiY5tmkitEMMXPAqG9EoTizmZZW4rpcgXVmJOmQIwW7Klkhv03UxX30VZe7cbh/X3rMHoZsJCIDYrx/m1q3ISbc7SZJAksB1cZKEBMAwzXRlpK12rUyoRxyB8Y9/IF90UbuvEzKqhIIgIGkaUgvhtus4JBobsaNRbMvC6t+fhtdfRzn0UK/9zedD7sSC3VizBuPDD5EPOYTghRem90UpK0MYNYr4++/jnzOn3TFEVcV/0knEXnyRwBlndIowiKpKoLQUs6EBe9MmrBkz0CMRtLw8tCOPJPbmmwQWLOjU4tXRddSSEiwgsnIloXHj0gJ43/DhfPLcc2zZsoWhQ4dmPWZb8Pl8lJeXU15ezp49e9ixYweFhYXU1NSwadMmZFlOk5GioqJ2g2u7Ez2x4N8f9JQGJFcByaElcgQkh16PeDzOsmXLMAyDgQMHNvP/7i58FRoQwzBYsWIFkUiEww47jHAb/fSdHXd/0RUC4jgOa9euZffu3UycOJHSFm0s69evZ0PfvoQmTyb285/j/81vSGzcSGDkSCRN8xbmGYt9Y+9efMnqh/7559h79hC65pp9tusCViKBvns3rmGg9euH//bbif3wh1gTJyJn2BanYN55J8HzzkNp0bbipAixIKB0kGre6jGor8d49VWCv/oVoiwjT5pEfNEiojfeiDx2LNq553pPzpMEJDX3FNlwLQscB1FVkUIhfP36NauWRO+9F9//+3+dnFUWcF2cqirUIUO6f+iKCqRJk7p9XKm8HGv58n3/IAjpkEMnGRKZqpBYyeDKTDLSkmDKxcUkXBfHslqtjKUhih2aCQiiiBwIeOnwooj/hBOIPPAAit+PY5qYdXXoluW1cMkyUiDgBQS2WIxae/aQeP11xAEDCFxwQavtdMpBB+F8/DHGtm2exXI7kMNh1HnziL/8MsEzzmj3tS3hOg76u+8SWrCARCyGaxhEKirQCgpQxo8n8f77BDpBZJ14HCkYhGHD4L//JRYO4+/XD8Xn81rjxo7l3O9+l09ef71T8+xwP5KGEoMGDWLQoEE4jkNDQwO1tbXs3LmTNWvWEAwG04SkoKCg26rtLfG/vQKSMgvIVUByaIkcAcmhV6OyspKVK1dSVlZGMBjssZtAT2tAWpKb+vp6li5dSl5eXpfdu1JajbSjTzehswQkkUiwdOlSbNtm5syZrT7puuGhhxCPPx773ntRL7qIxK5dBEaMSD81Vg49FONf/4IjjwTAjceR/H6cqir0xx8ndNtt+4xpmybx7duRAd+AAUgZLiuBX/6SyI03Err11mZPeeMPPogwejTaoYc2H8u2vSoMIEtSp8kHQPSWW/D/4AfphasoCCiHHYYyaxbGhx8S+fnPsfr1QzjqKOxoFNdxEBUFKRhEKy9vtzVLX7TIC7XrBr1TSzjbtiF2sGjtKty6uuap3d0EqU8f9Lq6Dl+XCrpLLagyxeyObTf7u5h0xZIPPRTjww/xtVNNEASh025mgiShzZ+P+fbbBE49tdnfHMvCaGwk1tjovVaWPVexTz5BCAbxn3Za+4GGrot/wQKijz2GXFaG2Ib7Uwpqv344o0cT/89/8M+enfU+6MuXo/Tp45kPxONo4TAaEK+txS0owM3PR//iC7Qsq3R2NIrg93sOXIceivPFF+g+H25hIarfj2/MGDauWMHb773HMd1YoWu56E+5ZxUWFjJ8+HBM00y3a23YsIFEIkE4HE5XR/Ly8rptkd7bCEhPVUCyDSLM4f8Oes9Zn0MOGXAchzVr1rBixQrGjRvH+PHjURSlR6sUB6IC4rouW7du5fPPP2fw4MFMnjy5y9bBqZtWT4QGZjtmTU0NixYtIhgMMn369FbJh+M4/Gf7du84iCJmOIx/+HCkjEWSOGIEzo4dAJ77VfIJdvSmmwj87GeIGe0QruMQ27WLxJYtaH37Ehw5shn5ABCLivBdcAGxP/4x/Tv9X//Cqq1FzbANdQHTsrBte78SlmMPPYQ8e3aziouLl7ge37ULq7wc4bLLoE8fhL/9DXHxYgIDBxIYMACtsLDdADjHcTBffhnfKad0eX7twXrrLbQk8etuOJEI0n4SkNZaNcVkVaGzSLVryYqCqiieGBmPgBqmiWmayBMmYG3YsF9zbgvq0KGepqemptnvRVnGV1SEv6wMeedO7BdfxFq2DHfqVJg6FT0eR49E2nTeStkZ+xYsIPbii/v+vZX3+CZN8sT0mzdnNXervh5r9Wq0ww7z5qwomLruaUtKSvAXFsKQIcQqK0ls3LjvAKmWtcxfxWIIwSBafj6uJHlhlzt2YNTVYcRiiJKEMmoU3//5z7v1OtdREKGiKJSWljJmzBhmzJjB9OnTKSsrIxqNsmzZMj788EOWL1/Ozp07icVi+2Xa0RML/v1BT2lAci1YObRErgKSw1eC9jQgqYs8wIwZM9JPTiRJQtf1HplPT2tAHMfBNE1WrlxJfX09hx56KIWFhfs9LnS/bWI2BCRTuzJ27Nh22+Kee+EFjClTEJ98EveKKwgMGYLckjCIIiSDII3aWuTCQuK/+hXqRRc1cw7SGxowdu1C7dMH36hR6apFa1APOwx78WLir72GMno0xptvolx1FW4kkt4H07IQAEVVvwzFo/UFW1uw1q7F2bWL0IUXYpsmRn09dlMTWBZO0tZUTt58oz4f2imnYH3yCdHbbkOUJLSFC5GHDWtzfPOFF5DnzOnWHIlmiMW6zZ2pJYRUbkdPYH+PR7JdC1H0ktmT1URHEHDCYRI1NcjhcNpZq8tVxhbv8yWTzEPf+Eb6d048TuLdd3GqqpDGjSN4wQXNWsBs08RsaiLW0PBly1YwiOr3e8dYkrAtC6WsDHvcOOL//jf+TFLZxtwD8+cTffppr2rSzhNqq6GB+CuvEMzQVcl+P5auQ/K7LMoyob59MebOJfLSS9iiSGDIkHY/fzcaRcrP9wiU66KOGEHso49QHQezsRHXcfAddBA169fzu3vu4eof/KDNsTqDzrrR+f1++vfvT/+kJXRTUxO1tbVUVVWxYcMGVFVNZ48UFhZ2ykXqf3sFJKXfzFVAcmiJHAHJoVdhz549rFq1iv79+zN69OhmF+aeJgmp9ozuvhmkXLA+/vhj/H4/s2bN6habw6+qAmKaJitWrKCpqSkr7cqP7r4bafJk7HnzCI0YgdLWjci2cUwTu7ERYfFihGHD0k9bbcMgvn07oigSGj3as41N5lq0B/93v0vjlVdivPACodtvx0gkEP1+TxNgWYiiiNQFvUd6yqZJ5K67kL/3PSIbNyIIAnI4jG/IEBAEDMNIOyel9lGUZXxHHonvyCOxKivRX36Z+MMPI48fj3rSSc3aZxzDwPzvf7scOtgRrC1bEHpAU5VGTz7Z1bR2tRqd/Uwz27F8s2Zhffghwkknee1arpt210q3a2WB1s5OqaAAcfhw9OXLkUpK0N97DyQJZepU1OOOa3UcSVGQMlzVbMPwCEl9PQgCVtKSWNE0fFOmEHnhhaz0IKIs4z/hBGIvv0zgrLNavfbZkUiafIgZffyyz4fR1LTP69VQiILTT6fp+edpEkXUoiJ8eXlfHouMY+dGIoj9+wNeGKIeiRCYOZPoG28QmDsXvaEBAgHkQYO475ln+O43v9ktWoL9uc4LgkB+fj75+fkMGTIE27apr6+nrq6Obdu2sWrVKkKhUJqQhMPhdhf0vU2E3t0PtOLxOEBOA5LDPsgRkBx6BWzbZs2aNVRWVjJhwgTKysr2eU1Pt0lB9z+Ncl2Xmpoa4vE4I0eOZNiwYd2m10g9mT2QBKSxsZGlS5cSDAaZMWNGh0SqtraWOklCsG20o45CaaePPeVsZK9eDWvWELjhBlzHIb5nD05jI/7Bg5u3WmVrrwq4ooi9cydOKIRUUIBpWcjJXImWr+0IZiKBWV+PE41i3n038umn4x86tDnRoPXFp+s4zdqt5LIy5EsvxbFt9M8+I3bXXQi2jXrqqSjjxqE/+CDKqaf2mD2o8eqrSC30MN2KHlxYCaWlOLt29Yh+RRk2DOP115FEMb0Pjut6aeqWhQU4tu0tHlPVkSw/IycSQTAMoi+9hDZxItrxxyN31oBCVZEy3MXitbWYkQjRRAJBllHmzkV/7jnksjKEDr6jcmEhyrRpJN56i0ALAmRHIp5j1jHHNCMfkLQ6buMBgOjzEZg3D+Ojj2DWLCIVFSjh8D4OcG4kkh5XCYUwKisRw2H8M2cSf/99QsceS6yqCnHECBoXLeKH113H3+66K+vj1Ba68zovSRLFxcUUJz8PwzDS+pE1a9ZgmibhcDhNSEKh0D7hqr2NgHTnfGKxGECuApLDPsgRkBy+EmRegCORCEuXLkWWZWbOnIm/RXtOCgeCgNi23W1Cd8uyWL16NVVVVSiKwvDhw7tl3Ez0hBVvW2Pu2rWL1atXM2zYsKyJ1Onf+haOIJD3ox8hFBS0294kTZxIYtEi7HfeIe/Pf8Zsakq3WwXaSW9uD/E//xl5/ny0efOIXX015syZyMcdh6IonXqKbUajmNXVuIbhLfAKC3FXrEA86CACHVifZgNRkvDNmAHTp2PX1qK/+irxxx7D2rWL8IkndmosgdbJT2twamsRWyH73QHHcaCHTCMAxPJyL7OjBwiIIIqI/fo1Cw8UBQEywxCTVVMzeU1qz13LaWpC/+AD7J07EcJh5IMPJtC3L+zc2Wny0Rpkn88TohcUYBsGRmMj7tSpND79NP6zzmpXYwSgjRpFbNcu9OXL0Q4+GPAE4iny0VbiPa7b5ndaKS3FHjYMNm4kOGUK8ZoaLNv22r1EEccwQNfTi10h2RLnWBZyURFS//4k1qzBP3Ys0YoKBJ+PDzZvpr6+Ph022FV0pAHZH6iqSllZGWVlZbiuSzwep7a2ltraWrZu3dpM8F5UVNTrCEh3t2BFo1GvqtiBMUIO//eQIyA5fKVILWoHDRrEyJEj270Q9yQBSbVfdNf4qTA+VVWZOHFiWtPS3egJAtKyqpJZnZo0aRIlJSVZjaPrOp9t3Ij/llvwDRyI3kEYozx1KsYttxD84x+J7dnTrN2qLbS30Da++AK7oYHQCSd4wXy33op+5ZU4fj9ihhC9LViGgV5djRuNIqoqvr59065dTn09kbfeIvTrX3c4TiaELMSqUnExgYsuInr77chHHUXi1VehogLB70eeMwd54sRuWbBYe/Yg9O273+O0icbGVlPQuwtinz5Ya9b02Pjq4Yejv/Ya8jnn7PM3AY+QyLLsLcIz8kecZBiimyQdemUlYkEB8qRJ+ObNS7udua5LdPFiHMPYb32PIElpgbqkqvhLSvCXlBDduxf9889h+HBMTUMJhVDaWAj658wh+uyzSP36IQYCxF58Ef/RR7dNPvBauGzDaDPPRDv4YKJvvolUWYm/b18SkQjRpG2vs20bUovARykQwIjF8OXn45swgeibb6IOHUqgpIQG0yQ2ZAjX3Hwzf7n99i4eKQ+d1YB0FYIgEAgECAQCDBgwAMdx0vqRiooK1q9fjyRJaJrG3r17KSws3C8zjP1FT7Qhp/QfvSV5PofegxwByeErgWVZrFixgqqqKg455JB0Wm176GkC0l1ZIClSNXjwYEaMGEEsFutxgXt3j5kyCIjFYixduhRBENqtTrWGEy+6CHfCBEILFgAdtzcZjz8OeXnYrkugX799nK06AycSIfH3vxO67TbPAMCykGUZ7X/+B+e554g1NBA488x93uc6DomqKpzGRgRBQC0tRWklSyR2++34r7iix55cOvX1YBgEjj4ajj4aAKuiAvOTTzDfegvXspAmTUKbO7dDy9W2YLzyCsrhh2N247wzYe/ejdhKGnxn0N6iRS4txayt3a/x24NcVkYi2T7SLpIPLyTAqqnB+vhj7IoKKChAPPhg5GOPRUqJ8TP2RxAE1KOOQn/rLfydrHK1hChJXmhlCwRmzyby+OOoBx+MHAhgNDRg1NUhKMo+ZEQQBPwnnkj0mWdwgeBRRyF3YJQhqipWOwREEAQCc+cSffFFAscfj6Rp+IJB4jU16KtWkX/CCc1erwaDxKqqID8fQRTxTZtG/KOPCB59NEpZGUZNDe81NhKJRPZLU5DKiDnQEEWRcDhMOBxm6NCh6Sp5IpFgy5YtrFy5kvz8/HR1JJw0QThQSN1LursC4vf7cwQkh32QIyA5fCVYv349iUSCWbNmZV2a7UkCkhp/fxbzmZWCTFKVGre78zqgZwIUU6SmqqqK5cuX07dvX8aOHdupG+G6dev4cN06Ai2D81y31V55Y8UKYhs2IM2YgbxjB9K4cR1uo70jGbv+evw//jGOomAn9R5ismc9ePXVxP/yF6J//Sv+b30LQRDQGxqwamuxdR2tuBj/8OFtflb6228jjhixT5BhVsjSrjNx//0oZ53V7Hdy377Ip54Kp56KE49jfPEF8fvvx62vRxw0CPXII5E7kRjt7N6NMnw45rZtndmD7MffuxdhPwlIe0dL9Pmgh7J7UpBGjkRfswZt7NhW/27t2oW5ZAnOnj2gKAjFxcjjx+NfsAAhaUKgyHK6QtKsXUsUUYYOxfzoI5xYDHE/bEoFSWrVVVCQJLTjjkN/7TW0c8/Fn6xeptq00mQkLw9F07Dr63EtC1FVkbNIsJc0DTMabfc1oqrimzOH+Ntvox17LIIgoAUCWEBs7178xcVpAiOIImRcK+WiIoziYozNm1H69yexejWNgwdz/W238fubbur8gUqit7Q9ybKMpmkEg0GGDx+Oruuebq6ujlWrVmFZVrN2rZ6uJNgZ52d3IWfBm0NbyBGQHL4SjB49utML8gNBQLo6fjQaZenSpUiStE+lIDMErbtvHj0RoJiySF66dCnjxo2jf9KlJls4jsMxl1+OOHJk2uEmOXCrr9cbG4n86ldov/kNgiRh3XEHzrHHZq3RaIn4ffchzp0L/fvjJPM9REHw8kWSn4X/iiuIPvYY9b/8JfI556Dk5REYNMjrUZflNj8nJxZDf/NNQr/6VYfzaG2EbPICnNpaXMtq18FI9PvxHX44HH64p0NYtw7j00/Rn38eNxrFzctDmTQJderUVu1VnZoahJKSHl3MuFVViF3U7mSNHn6KrU6fTuLxx9HGjvXaq7Zvx1y6FLuyElPXYehQL+X+mGPaTk5PBR0m/9dNumo5to3juohz53ouVAsXpsMQO4t2K0XFxRjDh6N//jna1KnAl21a4JGRREMDkSVLECsrCZ19Nvonn2CsW4c6enS725U0zXOq6gBKnz5YQ4eiL16MMmMG+po1+A45BLmkhHh1NVYwiC8Zsin5fBixGFryvPVPmkTk9dfxH3EEsm3jqCovffwxtyQSXdYV9KQGpLOwbTtt5qFpGuXl5ZSXl3stetFoWtC+ZcsWJElKk5GioiK0jHyk7poLdC8BiUajBAKBXAUkh32QIyA5fCWQZRnLsjr1nt5KQCoqKli5ciUDBgxg1KhR+1y8MwXu3X3T6+4WLMMwWLFiBQBTp07tktjz1/feS7Wm4TvsMMQOWuvie/eSuOkmgj/5CbaqohUUYAwfjrF4Mb7kYqlT81+yBKumBu3iiwEvUCx147N0HSSJ2J49OJEI4uGH4y8pwXzoIeTvfe/LNpZ2SEL8ttvwfetbbS82W0NG1SebW3DigQdQFy7MenhBEFDHjEFNLvYty8KqrIT164k/8oinxbAsxEGDkKdORRo1Cv3111Fmzcp6Tl2BW1fXrn4AMghZ8t99/t9xPKtdRWl9nj0ocrdrajDXr8fYvh33vvsQNA2hvBx54kR8AwYQ27PHE5J3EkIyd4Rk9oVTXk7U78dMVoxSQvbUv90BdepUjOeeQxk9GjG50E/Px7ZxP/iAQGkpwoIFJGprYexYEu++izxwYLuVmc4kwvsmTqTpjTcwKipwdu9GHT8egGBZGYn6eqJ79+IvKUHNyyNeV5cmIIIk4TvsMIzPPgMgUFJCXXU1v77jDn593XVdORwHTAOSDdqqxgiCQCgUIhQKMXDgQBzHoaGhgbq6Onbt2sXatWvx+/1pMlJQULDfBiopAXp3Hpt4PJ5zwMqhVeQISA5fG6QIQk9UEqDz7UyO47B27Vp2797dpnVwalxgv9O22xq7uwhIQ0MDS5YsIS9plduVm8aOHTu489lnkb/xDYStW5HaICCu4xDbuhXnv/9FGT4c37RpRNavRwoE8F1+OdEbbuiYgCTPgZQLjxOJEH/wQbRf/xpRFJvdjI1IhPj27QimiX/gQNTUwnHwYLRp04j95jeYkycjnXRSm5szPv4YyspQR4zozCHJCo7relkONTXYloVv4MA229U6giiKyKWlyP37w1FHeeMbBubmzZgrVmC89prndrR5M/ann2L4fKjTpyP269fqQsixbRzL8n5sG2wb17K8n+T3RcggDi7eue5s2+ZZzup6+4vUFDlL7WvGPpuJBMLevV++P/N4CAKm49C0caO3SE45UIkirijiuC62qqZ/J0pS+idzHCcSwVy7FnvrVq9tTBBAVRHCYa+1bdYspLw8fD1hV5x0fvIfdxz6P/5B4Nxz0xUSMylmzyQj7V332jM4EEUR3wknEHvxRULnnpv+vbFzJ/q//oV/zhzk5PVLDYWwdJ34lCk0PP88wTPOQN0PPVYmtCOPJP7ii0gtri2+ggIsXfcE6oWF0OLhlFJaipmXh7VtG6KiEBg6lL+//DI3/vSnXVp095YWLMh+LpnuWcOGDcM0Terr66mtrWXDhg0kEgny8/PThCQvL6/T+9gTD8mi0WiOgOTQKnIEJIevBF0hEFKyz7mnCEhn2plS4myAmTNnttvj2lN5Hamx93dc13XZsWMH69atY8SIEQwaNIi33367S+MuvOkmjGHD8M2di/OHPyC24phlGQbxjRtR8vOx33+f4J13en+wbc+NzOdDDAYxNm1CzdK62AUiv/gF8ve/jxoKpYX0RmMjZkUFoqKg5OejBgIoLZ4AiwUFhH77WxLPP0/ihhsQfvhD1BbJ4I5hkHj22axarzqLlEheEkX0Bx9EXbgQ27axXPfLp+EdLD47gqiqaGPGwJgxOLEY7p/+hHT++Vg7d2KvW0fktddwa2tB18E0PaemPn0QBg1CGjrUy5yQJARZRpRlxGAQUZYR2qhMGIaBkZdHqJ2E92zgbt9OoLy8zX2PjxqFlEigDh/uXRsyyJJlGGBZuI6DVV+Ps3cv9t69UFUFtbWevkRVEfLyEAcNQhw/HrW8HCUYbFZ5cGIx4n//O7QgIN15BZLDYYzSUszt21EHD96nXct2HNzk9yPznMhER3UIuaAA+aCD0BctQp0xg8Qnn+Du3EnwtNP2ceGSiFtOkQABAABJREFUNY28kSOJ1dWhf/YZxqhRyMEgWl7evp9FlhUQF7xKlt8PicS+89M0QmVlxKurMQ1jH3G779BDSWzejFlbi1pURHTYMH541VXc84c/ZLX9THwdCUhLKIpCnz590lrDeDyebtfauXMnjuOk27UKCwuzaoPqbgteyGlAcmgbOQKSw9cGPdnKlBo/mwrI3r17Wb58Of369WP06NFZXbB7wq0qNe7+tKXZts2qVauorq5m8uTJFBcXp9tgOjvfPz32GGuqqhC/8x18/fsTw1twpCAARkMD5q5dBEaMIH7jjfh++ENERcHS9WaLPv93vkPsz39G/cUvOtyu67rEn3wSYdo0AiNHApCoqcGsqkL2+wmMGIEoikR37GjX7tR3+ukIM2ag33479hFHoJ14Yvo8i99xB74LLuiSXWp72SdWMsxOkWXc2lpPNDxkSHq/0k/DTbNZEnfKNrq9bVq6jq3rOLqOk0h4gm3XxXzvPY9Y6LonpA8GCQ4c2DwcLRLB2rPHC29csgSnocFrT0vO13UcxGAQIT8fIRz2Wof69EEqLYVk257QzQuZlnAsC/LzMZYvx43Hcfbuxa2rw21s9ETfguCFQ0oSBIPIRUUogwYhTpzoZVGkLJUtC1vXsQ0DOxbDbGyE5EMON6nJMA2DaE0NsqZ5qeQ9oD3xHX00scceQ73wwvTvUu1aUqpdK2X1mwxDbIuMtAVt8mQiTz6J/tRTaIMHo51ySruv90+dSvSf/8SnadiuS6yiAkFV8YXD6TZEQZKwLQupo0qE62KsX49SXIwrCBgbN+5TTRQEgUCfPlBXR2TvXsL9+qWvC6Iso4weTWLJEpSjj8Y/ahTPPvccd3dhAf+/gYC0hN/vx+/3069fP1zXJRKJUFtbS1VVFRs3bkRRlDQZKSoqajVEtifurSkb3hxyaIkcAcnha4NMAtITFoodERDHcdiwYQPbt29n/PjxlLd4Sr4/Y3cV+yNCbymcTwk6U5bEnRm3urqaW996C3HiRMQhQ7ybWMaCxAUSe/YgxOOEDjoI/aWXEMeMQR01CgCzqQkpozIhlpZCIoG5fTtKi6yAljB278ZasoTQLbeQ2LsXq7YWJT+f0KhRzRbVrml2mAotlpQQ+N3vMJ98kugvf4n/+9/H2bUL1+9HnTAh6+PRFlLkzsXTarhJO1BREIjedx/aeeelXysIAoIk7fs0PNmGiOvimiaOYeAmf3Ac3OSPpGmem5Hfj1xQkE6hju7Ygf/730/39lsNDfuQGTEUQh05EpKEbp/9sG2cSAS7oQE3+WNt3Ii5eDFuU5O3mN++He65J7XjzX9Sv8v4W+rYCILgpY8LAkZjI+Tne/+fsrFN/ZusiFqbNyMNHYo4fDhSQQFiOIygKFiWldV1QkxWdZQ2FkkuEJ84EWfNGtwxYzCbmtAtCyMex92zx2uN0jRknw852fLVFYiBAOKwYRjr16e/F82QrH5kmlpkElTHtrEsq+0wRMMg8frrXiUrGkXLoqVMEAT88+cTf/llAqeeipafj5lIEK+uBkFATRIRyzA6JCBOPI69ciX+U05BcF0ir7yCPGhQq6TeX1iIFYsR3buXYGlp+pjKgKnradcwd9gwrrv+en7TyTye3iRC74mqgyAI5OXlkZeXx+DBg7Ftm4aGBmpra9mxYwerV68mFAqlyUhBQUH6XtLdc0mJ0HPIoSVyBCSHrw1SC+POitezRXvVhEQiwdKlS7EsixkzZnTag76nKiBdbe2qrKxkxYoV9O/fn9GjR+9zM+7sfM//9a9pkmWkM85ATeVmJBckjuMQ27gR0efDN2IEbkMD5vvvE8xonXAaG/G3IHSBa68les01SLffnn5anYnU/PTbb0e6+GJiGzagFhV54YWtVQc6sejwnX8+8u7dxG+9FXP7dsIPPJDV+zqCgLf4MU0TQRBQVNXTr1RX4yqKp9toBY5lYUaj2NGoRzRSrYiyDKqK6PejFBV92aboOMitLL7dpK5kfyxfwXvqLYXDbYrMDcPA/POfCX77250a13WcZgt4Yft2/H37trmodyyL2N134z/ssObjZNkWlA0EwDd1KvFHHsGXFO4DCDt3EujbF9e2MWMxrKYmDNP0yJEgIMgyjiQhhUJZV0x8hx9O7JFHWicgLefVgqCaSdLRsl3LdhysTz7B2boVddYsAoMGEf/0UxLLluGbOLHD7UjBIMohh6B/+CH+2bNRfD4Unw/HtknU1WHG44g+H1oH51Tigw9Qpk9Pfwd9s2YR//e/CbYSCioAkiyjhcNEKysJlJYiShJOPO5lg3z2GcE5cwiOH8/DL7/caQLydRChdyckSUprQ8D7ftbV1VFXV8e6devQdZ1wOIyqqt1uGZ9rwcqhLeQISA5fCbp6cesJ29mOxq6urmbZsmWUlpYybty4Lj0h6om8Duj88cis4kyYMIG+bbj4dIaA7Nq1i2W6jjxlCm4yUyC5MVzHIbpuHb5+/SB5E4r95jf4/t//a2az67aSBi3m56N+4xvE7rqL0NVXf/lawLYsLNMkdt99CMOH4xswAK2DzIlsUsgzIffrhzR6NIwcSezmm1EmT0Y9/fROLRZanuWpp9WiKCLJcvrv8QcfRD3tNO81tv0l2UgKuIUkadCKitJp7JlIJRinfsA7Ri3bc6xVqxBaiuh7YCHmOA5uF74nna0eiLLcbU5R7W4nGITkd63l5y9IEmpeHqTOe7zPwzYMEo2N6DU1Xkp5snojahqSpqFo2j5zF30+xCFD0DdsQGuj+tQmBAFJkr5s13Ic9A0bMD76CGncONQzzvAIquPgmzqVyJNPoo4dm1VboTZmDNHNmzH37EFJPigQJYlASYknHt+7l0gy4by1pHV982YEWUbJ0IQpJSWYpaWttmJBst1QlvEVFnqVkD59wDBQS0sxAwGsqirkPn1I9OnDCy++yKkdtJNloje1YPVUS3F7UFWVsrIyysrKvBbWpH5k165dxGIxPvjgg2Z2v50JoG2JWCxGSStawBxy6B3fwBxyyBI9acXbcmzXddmwYQNLlixh9OjRTJgwocvl6Z4iTp0hCrqus3jxYvbu3cuMGTPaJB/QucrKrX//O7FIBOWss5r3/ScSRDZswFdejpJ8Um58/DHCwIEoSZ1DGm2QA+2ww5BCIeJvvJF8mYseixHbtg3jv/+FzZvJv+KKDslHe9tohgxbUaemBnvnTvIuv5zgrbfiFhcTvfZaEq+80vE4rcC27XSLg5wkH45tE6+sxKipwQCiW7YQ374dNxZDDYcJDBpEcMgQAoMH4+vTp1Xy4U1bSI+byjFJuVEZhoFlWd5/v/026rRpXZp/p1BXh7gfSdUpZFXJOECJ1uKYMRhJi+qOIAgCsqZ5n2FZGcHycoJ9+xIoKUESRexIhFhFBdE9e4hWVBCrqcFMJMB18c2ejfnJJ52fYMaxsmpriT35JO6OHQTPOgvfxIlp8mFalteeNns28Tff7FC8noL/6KPRFy3a57ogKQqyphHs0wezqYloVRV2RpXaMQzML75AmzFjH7LrnzIFfeNGHMPYZ3uSpmHE48iaRqC4mOjevbjJcX2TJqEvW+aNMWECP+qkOURvIiBf9VwEQSAQCNC/f3/Ky8spKirikEMOIS8vj8rKSj755BMWLVrE2rVr2bt3L6Zpdmr8WCy2X6n1OfzvRa4CksPXCpIk9WgLVmpsXddZtmwZuq4zffr0tDXt/ozdE8Qp23Hr6upYunQphYWFTJ48uUPrys4Qm9dWrUI+9FAsw0ApLQW8KoWRSOAXRZSkKNlxHIzHHycv5XqVhGNZ7VbE/D/4AU0//CH66NHoogixGP5Bg9DvvhvfT36SfTWtkxWQ2O9/j+/SSwFP7OufNw9n7lz0116j6Wc/Qz32WLS5c9sfJDk307K84+k46DU1OPE4QvL4Ws88g3byyfgHDuzWakTqM05VR1zXxa6txS0p8bQCSXvXnoBTVQWFhT0y9j7owSyQTKiTJ5N49FHIom0JaPV8E0Sx9WpJIoHZ1IRRWwuCgF1SQnztWvyjR3fqnHB0nfirr3pE5rjjkMPhtGZIkqR09ojruoj9+mH6/cS2bEEdODCtL2nr+yRqGsrkyegffYT/iCOa7ROuiyCKBEpKsE2TRE0NgqLgLygg/sEHqIcd5l1TWhwTQZLwzZxJ4j//ITBvXrO/KcEgibo6yMtDUhSCJSXURyJYpons8yH07Yu+ZQvakCE0BAKsWLGCCVnqtHqbBqS3zMVOBrHm5+eTn5/PkCFDsG07bfe7ZcsWVq5cSV5eXlrQXlBQ0O78e0MLlq7rxOPxfX7v9/u7Pcwxh+zRO876HP7PYX9asHq6AlJTU8OiRYvQNI0ZM2bsN/lIjf1VVEBc12Xr1q0sXryYYcOGMXHixKx887MlIJ/+f/bOO06uutz/71Onbm9pm2x6J4QkhIQSiiBNQOwioF696rVcEbtIEwXLFbuCKD8RUS5YQEQRkBpaIL0nu5tsyfY+5cypvz/OzGR2d3Z3ZneWJN75vF77CszM+Z7vOXPmnOfzfZ7n83n1Vdo7O/Feey32wABqUREOEKmrQ168GLq6kp81fv5zlHe/G3FIiUaihnzU+XzucwzccAOyKFK4aBHWn/+MtGEDcpzwZIJs+gL0LVsQpk5FmTFj8DxEEd+llxL41rew+voY+PKXib300ojjWLpOuLWV6KFDGIcPY5smitdLoLqaQE0NvpkzEfv78a9ZMymlUHA0OyL29SFVViazL5Zlocebl5ON7TmC3d6OOA4Ty3EhEMAOhSZ9N1IwmCzDygSZnk1BEJB9Pnzl5QSmTsVfVYX3rLOIPfecmyFpaSHa0+MaaY7wHdn9/Rj//CeRP/4RddUqApddhjySCWS8SV2SJALnnYfz2mtubxKuMIJuGG7GLE5aU+FZuBArLj4wEiRFIVBZieL10v/GG5ihEMoo2ValogLKy9Hr6ga9LsYzNsn/VxRUn891Ttd1vMuWYRw4gOM4KIsW8dEvfWnEfQzF8dYDkuvG7/EiHRmSJImysjLmz5/P2rVrOf3006muriYWi7F7926ef/55tm7dSkNDAwMDA8OumWxUsCzL4n/+539YuHAhgUCAFStWcN999426TWNjI+9+97spKiqipKSE9773vRw5cmTQZ26++eakh0rq389//vOM5pXH5CCfAcnjhMJk9oCIokh/fz9tbW0sXLiQ6iHSpBMde7IyICOdD9M02blzJz09PaxevZqSLFakEz4aY+Gm++9HPvNMhOJihI4OACKHDyP7fKhnn42xeTOcdhpWayt2Swvez3xm2BgJRZu0x6DrRA4dcl2BP/tZzAcewLz6aoxduwjcdhtmNuUAGQbYtm0T+81vCNxyy4ifERUF/zvfif22t6E9/DChRx9Fecc7UFevJjYwgNXbix2L4eD6L/jmzkUAQgcPHu2RAfSHH0Y577zMj2EC0J94AvnUU93gMy7v6jgOevy7TpRWiBlK/Y6Kri6EhQtzN/lRIFZWYjY1JZ3gJ3VfCxdi7NqFJweKaCNBEAQ8ZWVYCxYgx2Ios2ZhRCLovb3ELMvtI/F6Ufx+nOZm9BdfBL8fccUKgkuWZLUv0etFXrkS89VX3Qb7uIiBHRcyMBzHlX9OZEdEEe+55xL9+98JXnHF0TmnGdtua0NubkZct45waytSMIgyQi+Bb/VqVxVrxozBPSnxeSR6ZQQgUFlJuL0dT2kp8oIF6Dt34lu8mIM7d9LY2Eh1dfWYx308ZR2Op7lYljUmGfJ4PEyZMoUpU6bgOA6RSITu7u5khkQURTo7O2lqauLiiy/OioB88IMf5I9//COf/vSnOemkk3jhhRf48Ic/zKFDh7jxxhuHfb6vr48zzzwTRVH47ne/C8Dtt9/O2WefzdatW5OZl0OHDrFhwwZuvvnmQdvPmwRT2TwyR56A5HHMIAhC1quuk1WCpes6zc3NRKNR1q5dS9FIq4fjxGQRp5HGDYVCbNmyBY/Hw/r167NOM2eSATFNk9f37sX3ta+hd3Uhl5URaWpCEkU8U6diV1QQ+/OfAYh+5zuo11+fdhw7EjnqTB6H4zhEWlowe3rwzJyJJxhEmDeP6OuvM/C5z1Hwgx8cLR/KwDE8m6tM/8MfkM8/PyOlKNHjQXnHO4itX0/k0UcJ33sv0pw5eD/4Qaiqcle3U5rNh8LYsoXAkIfiZMHcvx//pZcOei1BMoaWayUyIonAMyHtmimc3l7EHGQO45Mc/e2qKlfy900gIOrKlWh/+AOe5cuzuqbGA++GDUQfeAC1pgY1EECNB3GWZRF54QW03bsRKiuRTjsNpbgYe2BgXPvxLF1K+I9/xA6FEINBN2OWkDsm5ZqwbRzTRPD5EGbORNuxA2+CiA25j+uNjRibN+O/+OLkYka0u5tIKISvpGRYo7ogSXjXrUN76SX8Z5+dfF1UVYxYDNXnw7asZKlXgoSo06e7hqVLliDMm8fnb72VBzNQrDtegv5EaeTxMBdw55ONs7wgCAQCAQKBANXV1di2TX9/P4899hgPPPAAX//615Ekid///vcUFxdz9tlnj/hsffTRR7n//vt5/PHHueiiiwC46qqrWL58Of/93//NlVdeybJlywZts23bNgRB4JlnnmFGPFt97rnnMn/+fB566CGuvfZaAOrr6zn99NM5O+XayuPY4/i46vPII0NMRglWT08PL730EpIkUVhYmHPyAW9uBqSlpYWXX36ZqqoqVq9ePa4a10wIyL2//z3WypXI06Zh9fRg6TqCaeKNr0CKsgyRCLGnnkJcsgR5ypS0WQjHMFzDuDj0gQEG9uwBILBwoUs+4u8JU6YgqCrG66/HX8hshT6pQjQG7FAIc9s2PGmkQZOfsW203l7Chw8TOngQo7UVtbSU4s98huKf/xzl3HPR7roL45vfxNyyZcRxYv/6F3KKLOlkwrZthLgvyGhIlGspioKqqklZX9M0BzWzj7Vw4PT3Iw5xnJ8sSOXlrrv5m7GvwsLkNTzZBTyi348wdSpGQwMQd2T/29+I/u53KMEgRR/6EMWXX06wuhpBFDHj5X6R7u6sMoOCKOI97zyiTz6Z/v3ENSHLKKqKJIqop5xCbP9+tFAI0zTdjEn8vOhHjmC89lqSfCTG8BQX4yspwejvH9aoDqBUVuIoCmZK2abs82HFYu64hw4hVVUl5xyorCTW04OyZAnali14yst5LX7fGA1OogfmOAj6E/fY42EuMHFFLlEUKS4u5gMf+AAvv/wytbW1lJaWoigKX/rSlygrK2P9+vXceOON7Bgi6PCzn/2M888/P0k+EvjEJz7B7Nmz+cUvfjFsf2eddRZ1dXVJ8gFuVqOyspLDhw8nX6uvr2fOnDmAu9iYx/GB4+OqzyOPDJFLAuI4DvX19WzatImamhpqampyWgefijejB8S2bfbs2cOuXbs46aSTWLBgwbgfJpkQkO89/DDeT37SlY0NhSAaxTdE3crRNGJ//rObERgJCdlYwyBUW4ve1oZn9my8VVXIkpQM9GxNw3j+eQp/8xucXbuIPPhg5geUoa597Ac/QL322mHN2WYsRqSlhVBtLZG6OtA0fNOmEZw7F/+sWajxYNsyTZQVKyj8+tfxfuELmAcOEP7a14j86lfD+hSMp57C8yaVX5lbtyJmK+uKex3I8cBTUZRk1tIwDAzDwIwrew2FE4sh5KjxdKxvTSorc53ah204ST0106djNjVNythD4T3nHKL//Cfh3/+e6GOPIS1aRPB978O7YsVRJ3JRxFNQgOr1EqiqQvF60bu73d6jnh6sDMiIXFqKMGUK+sGDo35OwL0mFFXFf845WM8/P+iaiDY1ob34Ip4LL0z7exMkCX9FBd6iIqIdHcSGZG28p51GbNOmo/PyeLDj87fq6weV2QmiiK+4GNPjwe7vRw4GCcX7V0bDIMPLY4zjjYDkuh+lNO5N9IUvfIG9e/dSV1fHRz/6UQ4ePMirr746aL/PPfccF1988bAxRFHkoosu4qmnnkq7j6Hf44EDB+jo6GBJvBwxEonQ3t7OSy+9RE1NDR6Ph5qaGn7zm9/k7DjzGB/yJVh5HDOMtwQrFwTEMAx27NhBf38/p556KsXFxbS3t09qf8lkZkASRomWZbFu3bqMa27HGnckNDQ00DVlCv7ZswkdOYIky/jnzh32Oau1FfXDH0ZUlGQJRSocANsm2tKC1duLPH06oseDHHcHT0XkO9/B8+EPIwoC/i99iejPfoZ2770E/uM/xjyeTDIg5v794PejxAN127KIdXVh9fe7Xg/l5SM209rxLEFqyZVcVIT3fe9zv/udO4n89KfojY3ErrnGNQNcvDitweJkwHj+eTyXXTahMRIr4QkklbWGOHAnegXerABP9HgmjWykg7xqFcbTT8Npp03aPszWVvQXX8Tp78cyTTwrVmTsC6L4fMleCyMSIdbTg+M4bl/WKKaI3vXriTz4IPKcORkFxMqUKegFBVhHjiB5PDg9PZgvv4zvwgtxIGm2mVRbS/ntS4pCoKrKzSR2dOAvK3N7k/x+xJkzk27wQnw7W9dxDCNJuhKQvV5MTcOorsbYtQuroIBNmzaxbt26Eed9PAX9x9NcYHI8SVJVsGbOnMmHPvQhPvShDw36TFdXF5qmMWvWrLRj1NTU0JQB6dd1nQ996EPMmjWLS+Plpj09PRQUFPD4449z++23M3XqVB588EE+GF8US5Rp5fHmI09A8jihkAsC0tfXx9atWwkGg6xfvx41XpbyZnqM5AqiKKJpGi+99BLl5eUsXbo0JytYYxGQW3/2M5zzzsM2TfSmJorTSJPavb2IpaXYO3bAhRcCw3sxYv396AMD+IuKUOfOHbFnwqytBUlCTWn+9f3Xf2H9v/9H9Cc/wf+Zz4wqKZuJs6921114v/hF9L4+tL4+sCyU0lK88QbykWDZNqZpIssyUpqHtygIyCtW4FmxgoGtWzF37UL7059cFZ/du1GybBweF/r6kBMO9TlCIlBJdV9PGC0Sv94n3MwOmZGLIYHpZPZnKFOmoPf15bx8wGxpQd+4Eae/H6GyEnndOtQpU/D09hJ75JHsjQkBxe9HVFUcXD+OWHe3W37k9eIJBgcF9KKqIi1fjrF5M57VqzMa33fmmUT++EfsFSswXnuNgksvTZb5JUqdbNvGtCwcXBKbel34Skowo1FCbW14470h3pNOIvTXvyLPm+deY45D7ODB4d5BcXiLizE0Db2+Hmn2bH5y110nFAEZTfr4zUYmTejZIlc+IGOdI8dx+PCHP8xrr73GP//5T7zxPqPp06dz+PBhOjo6WLBgAQCXX345uq5z4403cs011xw35///GvIEJI8TCpIkZW2ElIDjODQ2NrJv3z7mzp3L7NmzB914JitLkRh7vPMeCY7j0NnZSTgcZunSpcyYMSOnql2jEZB/bN2KdOWVRA8dQpblYSuTANE778R7/fXoP/uZ2yA7pCRH6+wk1tyMp6ICoaTELfcZ4eGn/ehHeNOooHiuugrzsceI3H47/i99CXGE7cfKgIT/+U/M6mrsjg6kQAD/zJljBigJoz/bslDSZGzSQQwG8Zx9Nk5zM+rll2O8+KLbqC8IyKedhnLmmWnPZTYY5r4eicBoAUAOrhlBEBAkKRmUa/HvYVgz+2QFW2+SFwjEj7W0FCscnvBYCdJh9/cjppCOVMjFxcQ8Huxw2HVkzxIO7jWh+v2ofr9bLhWJoHV1DSMj3pNOIvz736OcfHJG16Goqghz5xL7298ofP/7B/UYJYhn4ndkmmZS1cqwLFddK+4MH6ysdOV1o1F8xcVuj8krr+Bbvx5BEDAbGwls2DDiPIKVlfSVl6NGo7x44MDo5yOeiTmeCMjxglyXYCV6x8YiIGVlZXi93kF9G6k4dOgQ06dPH3WMz33uczzwwAP85je/GdZsnpDdTcV73vMe/vjHP9LS0sK0HC/O5JEZ8gQkjxMKsiyPiySkStKuWrWK0jTO2ZMp8ZvrDEiihKy3txefz5eR9GQ2GI2A/OvZZxnw+90yD9NM685ttbbiOA7qggU473wn0YcewnvttTjEFa4OH0awbeSpU3E0DUWWR3wQa48+injaacgjyAirl1+OWVxM+OabCdxwQ/qyJsdJqvok52gYxDo7sUMhjD/8geC3v40Qf1BmQj5Mw8CBZG9EOqR7Nfab36BecQXKjBko730vAGZ/P/qrrxL9wQ9wIhHkhQtRL7ooJ43c+gsvII1hnpdJhigrxH0mEmWWyZXw+DlLVdbKyX5l+U0N5qS4dC3xxtZsMFKmYzQoZ5yB9uyz+C+5ZHwTTjnHgiAkVbUcx8EIh5NkRPL7UU47jdizz+IbYgyYDtrWrdDQgFxVhZPB/S3hP0KK1G+CpColJZjhMANtbfinTUPbvRs7FMIxTZy4ceZo4/qXLCH85JNYjB7YJzxAjodV7+ONgOS6BCsU73sby4hQFEU2bNjA448/zmc/+9lB79m2zd///nfe+ta3jrj9rbfeyg9+8AN+/vOfc/XVVw96b+fOnTz44IN84xvfGPR6gohmo/qVR25x/Fz5efyfw3geAOPJUgwMDPDSSy9hGAbr169PSz5gckuwsnEWHwsDAwO8/PLL2LbN0qVLJ+VBKgjCiPP95iOPIFZXY8RiSOXlSGnkVqN33on3Yx8DwHPGGdhbt2KbJrZhENq3DzkQQKmuxo7FUAKBkYMFTUN/6im873znqPP1nHMO6hVXEP7619PKkTrxoCMhBxqqrUVraED2+ZB278Z7ySUoGaqfJcuMBGFU8pHcd+q2pukaNg6pdZYLC/Gdfz6BL3wB/1e/CvPnE/3tbwndeivRn/8cs74+o7kBwzIa1htvoJ588uifz6UJoW0PykgkVsGHNrPbtp1sZrcSTvHjnIdQWord1parQxgT6vz52EPMzkaC2dZG9IknCP/qV4Tvuw9982bkdesIXHst/osuGpN8AKgzZmBHo9ijNViP4z4gCAJqMIi/shJ/ZSWC42D4/Wjd3ZijyPrahkH48cehv5/A5ZejnHoq+iiGnOnmKooikiyjKAqKorhKW8EgakEBodZWnJNOIrxxI1ZjI8LMmWMOqQYCSNOmoUUiPDmCohccXyaEk9FzMRHkOgMSiUQAMirB+uQnP8mTTz7JE088Mej1X/ziF9TX1/Pxj38cgM7OzkFKVj/84Q+56aab+J//+Z/kZ1Jx8OBBbrvtNp5//vlBr99///0sWbKEyizMbPPILfLUL48TCtmShKamJvbs2UNNTQ3z5s0b9cGTyIDkfDWY3JV3NTc3s3v3bmbPns3cuXPp7e19Ux3We3t7OVhcjHnoEIF58zB6evBOnTroM2ZtLRQXI6dIIyrr16P97W/Y8+bhnzsXJ94IK1oW8igu6Nqdd+L94AdHLK1KDbo8a9YgFRcT/upXUa+5Bs+aNUfnpGnEenqwolHkwkICNTUI8WOMPfMMgTvuODrmKEFwst9Dksb1oLb++U+8Y2jRi4qCd9UqWLXKXaE+dAj9xReJPfgg6DrCtGnIa9YgL1+eWfBiWYhjlWDlkIA4XV2jlnwlm9lTVsJt28a2LMy4PGpq6U4mECoqsFpakIdci5MFUZLA78c2zWGlSuaRIxjbtmEdOYItisiVlUgLFuA5++wJldcpa9agv/QS3rPOmuj000IQBDyFhXgKC4mefTYDjz6KesEFqIWFKClZRaOzE+3JJ/GsXYsaz7zKpaXEVBUz7gc0nn0PIqpeL9GuLnSvF6e+HvWMM1yhg0RD+wj35+DKlej79/OtH/1oxBXz4ynrcDzNBXJPiCKRCKqqZpRleNvb3sbVV1/NlVdeyWc+8xmWL1/Oxo0bueuuu7jllltYtmwZdXV1LF68mLPPPpsnnniCP//5z1x33XVs2LCBOXPm8Je//CU5Xnl5OWeccQaXX345559/Ppdffjlf/OIXmTZtGg899BD/+Mc/eOyxx3J2rHlkjzwByeOEQqYlWJZlsXv3bjo6Oli5ciXl5eVjbpO48VqWlfO07ETLuxISu62trZx88slUVFQAb77D+rd//WvCb30r3HUXakkJemvrsBIs7ac/xfvVrw6e/znnYHz+8wR/+UtsQUCK93vEDGNEJSizvh7bMEZfvYdBwbM8fz6BH/8Y7dvfJvTii8hXX43Z04NtmqhFRQSGlKrFfvc7lBS/AkjfwJzo97Asa9RysbFg79iBOpok8RAIgoA6ezbq7NnuPCwL49AhrB07MJ56CqJRBFVFWLwYz/r1iEOCP7O1FWGMFb5EZigTyu04Do5luZmc+L+OZYFluaUyto21fz8WEGluHr6voeMlXnOc5HlPlGw5joMZjWI3Ng4u1YoHoEJCbUsUsfx+jL17ERYtcg0TBQEbcEYxgZwoxAULMLZtQ5oyBX3bNpyWFlAUhIoK5PnzUc8+GwuSIhcThbpoEeGXXpqUBZKh8M2YgV1VhWIYGP39xCwLpaAAp74ea/duApdeipi6cCAIKGvWoL34IsHxlomlQBRFAhUVMHMmkYMHIZ61sOIkdSSDTFFR8CxYwLYtW0YM7o8XDxA4/gjIZGRA/H5/xtfrvffey4oVK7j77rv54Q9/yPz587n33nuTZVWBQIDy8vKk78e2bdtwHIfnnnuO5557btBYGzZs4Nlnn0UQBP7yl79w00038eMf/5je3l5WrlzJP/7xD96SQZlhHpOHPAHJ45hhPA/RTDIgoVCIrVu3oigK69evT6phZDI2MCkZhYmUd0WjUbZu3YrjOKxfvx5fXGIzMe5kZUDS6ek/cvgw5lvfilxVhe04w1bOjR07EGbORI4TJMdxiNTXI8oyyvLl6Nu341+9+qhB2SiBr/ajH+H92teynrsgikif+AT6U09hfP7z+K+/HqGmBivF4AxcVSBz2zYC73nPqOOl9nuoGZRcjQRjxw6EefNGzuZkAEGSUOfOhRTJY6u3F2PPHqJ/+hN0d+NEozhTp+KcdhrWjh1Ip5wy4niOZWGZJrH+fpeIxAmFk3CdhqPkIOGfIIoIkoQQz2JIioLo9boNyZKEfvAgRnU1/mnTJhwohw4fxjdlyqDMpCiK7rxsO0mA7KIirM5O7EjEJS9xw0Qzdf9DCYyiIMqyq/6kKEhjLDrYuo51+DDmwYPYzc1YXV2Ee3rwrlqFvHAhylve4p6TxLmNzy9XEEQRaelS9B078Jx0Us7GHQnes84i+uijBN/xDmzDYODvf8exbTznnIMwhFQJoojo88GUKeiHDqGOoFiVDWxdx969G/8ppxCtq8NTWJhsoh+qrpUqcKDGXdp/8otf8Jn/+q/h4x5HJVjHGwHJdQYkHA6P2f+RCkmSuP7667n++uvTvl9VVUVzysLGzTffzM033zzmuH6/n+9+97t897vfzXgueUw+8gQkjxMKY634HzlyhF27djFz5kzmz5+f1c00NQOSa4y3B6Sjo4Pt27czZcoUFi9ePOx4ctlbMta4zzz3HM3V1XirqjBUFaO/H2mIKk/snnvw3XYbAKauE62txVNVhVBQgPDRjxK7/XbEU089usEIpT+xTZsQFixAHqFfJx0cINbdjdHejuz3U/j2t8MllxD91rewKiqQhpRkaHffjfrOdw5SrxIY0rOR4u+hjGc1PWXs2IMPIk/QiyMdpOJipHXrIC49ahsGsdparH37iD79NOrBg8T+9Ce37K28HGbMQKypcQNGQcCKRpFEEdHrRfb7ERUFQVHGnTmwu7shR6oyiXKtpNRvPPC0EkpGioLk8SBVV+NYFt54ptOONzcrI3heOLaNpetYsRhWKOQGspblZk5sG9rbsQ4dQmhrA01D8HoR/X6k6dMR58xBXb8eQiF45BH855+fk2PNBJ5Vq4jed9+bQkCkYBBxxgyimzdjHjiA75RTUGtq0EMhIm1tCIqCp6jI9RURBLBtvKtXE3n0UZRZs4YH+VlmbrTXX8dz0knI06ejP/wwxsAADuCJr6gn7oVOSgmfHc+aCarKnffey3/9538Oy2YfT0F/rjMOE0GC5Oc6AxIIBI4bwpfH8YU8AcnjhMJIJViWZbF3715aW1tZsWLFuBrLEsHOZBGQbMZ1HIfa2lrq6+tZsmTJiBKEoigmA7Nc3uTTEZAv33cf4n/9F0owiOHzYfb24kkp+Ym99BLi0qVIhYXo/f3EGhvxzZmDLUluiUZxMUZFBbF//QvPuecmDjTt/o3f/hb/N7+Z0VwdxyHa0YHZ1YVSUEBw4cKjwbPXS+DWWwn/7W/od9yB8uUvo9bUYIdCWM3N+OON8ulg2zaGaSJJ0ojywJnC7usDny8nqlbpYOo6lqa5q8aahuXxIJ18MsKLLyK+732IioJoGDg9PXDkCPaLL0IkAroOfX3Y5eUIc+cizZ8Ps2ZNrGyptxdx4cJcHVoSQ2Vdk2QkrqJkxU0RM5FDdgAGBhBaW6G1FTo6oLcX4hkRoaICefZshFNPxfF4kiVmtuNgCwJGfz9GNIpQUIDW0IBnxoxBpUCTBVFVEWbMwGhsRBlSTpjrEC+RvYm89BIlV1+NGF/JVoNB1GAQK+ErAgiy7MowqyrSwoUTztIY7e3Q348a7+MSZsxA7utzM1qOgydl4WNQTxHub8Ezbx7dBw7w/R/8gPPOOYfS0lJKS0spLCw87gjI8TQXyK08caoJYR55DEWegORxQiEdQYhEImzduhVBEIaVKGWLyeqpyKZUStd1tm/fTiQSYe3atRSOErQmHha5XklLEJvUOe3TdQJLlwJu6ZSjacgpDxf9wQcJ3HEHen8/enMzvoULsWw72bBt2zbKf/83xnXXIS1e7ErwpjknsaefRly1akzPA9u2ibW1Yff1oZaVDSYeQ6Cedx5OdTX63XdjrliBU1+P5/3vH/7BeIBj5qDfIxXab36DesklTNQJxtR1zHDY9aCwbffPcRBk2XWQ93oRi4qwHQfhyBGERYvwpyoIzZwJQyR5I62tCP39CD096Dt24PzznxCLuWObplviEgggFBVBcTFiRQVSRQViZWXa5nZnYGD0pvccITU7AqArCo7joIdCWC0t2O3t6L290NuLEw67BD0RqMoyQmEhQmkpwtSpKMuXI5WVDSqhGg2WriN2dcFJJ6G/+ipWItMiCEe/C1XFmYSVX88ZZ6A99NAwAjIasp1FbP9+jNdeQ12+HP+6dRgNDXgWLRr0GUlV8VdW4lgW4Y4OTF1HVlW8S5cS/vOfUZYsGVfTvWNZaK+8QuC885KvKfPmob/yCsELLiDa2UnMtvGkUd8DQNPwzpyJ2dzMIy++yAfe/366u7tpbGwE3HIc0zSJRqMTelbkAseTClbi+ZTL50i2JVh5/N9CnoDkccwwkR6QxIp/a2srO3fuZPr06SxcuHDCN/PJ7KnIhNj09fWxZcsWCgsLWbdu3YglJKnjQu4dbIdmQB565BGs9euR4g8TJxRyA9Q4zP37EWbNwrJt9KYmPPPnu4RjSAAvCgL+m28mdNttBL/3vbT71v/yFwKj1OraloXW2oo1MIBUUoJ3wYIxMxSCICAGg/jvuIPI736H9tprKBddNPyDKQ3QmZoLjgXbtt1sy+LF6IcOZbydZRgYkQh2OIxjGG4jriwjBQL4pkwZMbhL9B4Yzz+PNFYDPyAoClJFBeqcObBq1fD5GwZ2fz92Xx/2wAB2by/W9u04vb0QjYJpgmUlCUusrg45FMLyepN9IkJK4I8sI8gyjiy7rykKoqKAorjvaxq2poGmYTQ3E/X7cTQNDCPpCSEIguvrklBEEkWMpiaE++8HjweKixFKShAWLkQoKEAqKnKzQGOoKGUKx7IQJAnvwoVEnn2WQFxK13EcbMPAjESIhcPudyjLEDfckzweFI9nQtkSKRgEnw87EklmJSA37u9GRwexZ55BKinB/+53u/cB0yTy0EPDCEgCgiShFhQgxWIYAwPouD4psZdewjdUsSuD865t24Y6e/YgU0NRUXBmzSK2bx/+RYuIdHaiOQ7edIszmoYUCCBUVlLb1kZHRwcrVqzAcRwGBgZoaGggHA7zyiuv4PP5ktmR4uLiN90T4njKgFiWlXN/lH8HAtLV1YVhGEyZMgXHcThy5Ai6rlNdXZ33EJkg8mcvjxMKiSDbNE0OHjxIc3Mzy5YtY0oGWvqZjn8sMiCO49DU1MTevXvTurSPhNQMSC4xlIB888EHUW+//egHYrFB5VPaPfcgf+pTaIcP45k3DxjZoE+srMRz+eVEfv5zhCH189pf/oJ89tmDgo8EbNsmeuQITiiEOmUK/mnTMDP9rlKkZp3GRoI33oj5xBPEHnoIzzXXoM6eje04WPGMgqKqOStpMZ59FjlFEjgdbNNEj0SwwmGcePZBkCQknw9veXna8zEW7NpaPFdcMebnBFFMm4lKQFQUV10rQ3lV51vfQv7gB5EFwSUmcYJim+bRrIplIQxR0MIwcAwDwetFKC521b0qK5GnTUNQVVd1SVXdcp90v41f/xpfImhO7QEZYnpnOk5SPWm8zuyObUNcgQufLxlICoKApKpIqooab5JWFMV1/45EsEIhjJ6eQY3wkseD6vNlnH0BUNaudQP8HKn42NEo0WefRQiH8V944SBiI8oy0pw5xPbtwzNCaZ3jOAiShK+4GMsw0GwbvacHNRI5umiRwTzMvj7s5mZ8F1446HVBkpBmz8Z8/nnsBQvwl5cT7eoi2teHb4h/j6Pr4PXimTcP7bXX+PK3v83fH3gAQRAoLCykrKwMXdc56aST6Onpobu7mwMHDqBpGkVFRUlCUlBQMOm9C8cbARnv72EkRKNRAmNkso9n9Pf3c8MNNzB9+nRuuOEGHnvsMa6//noOHjzIJz7xCX7wgx+MuUiYx8jIE5A8TigkCMimTZtwHId169bl9AY3mT0gI5GEVMngU045hbIsdPQTD4zJJCC2bXNEUQjGiQW4WQgpHtDb3d04ioI+MIA6dy6iJCGla9hO9ew47zzMF17A3LED5s9P7sd4+mkC3//+sPnEenvRW1rwTJmCOkI/zGhISM3akQh2fz+e5cth+XLsvj6iP/kJMUC66iqUePN0LsMO6+mnCXzxi4mJuNkJTcMKh7E1DcG2XWM2nw+1qAg5B2UhDriZhUxW6OINxLmCIMtuw/YEGtkTMBsaUDL09hCKi7G7uhDjCmxH3xDcrIcoIhGX+bXtpKGkAIPISCYBmBNfLQYQ583D3LsXdcmSkecmiqjB4CB/FMdxsGIxzGiUaLzBWpAkJL8f1e8fNUuizJqF/swzY84zviM3WzTCcWibNmHV1uI966wRfVQ8q1a5WZCRentSFiMkRSFQWYl46qn0P/kkvrPPTp+pGDqEbaNt3Ij/jDOGvScqCpauI82di75vH97Fi/GVlRHt7iba24uvuPjoh+NBvbe0FE1R2NvVRWNjI9XxkrVE0C/LMhUVFUlJ82g0Snd3N93d3TQ0NAAkyUhpaWnGaorZ4HhrQs/1XBJN6CcaEhUFDzzwAE8++STf//73sSyLn//851x00UVceOGFfPWrX+V///d/ueqqq471dE9Y5AlIHscM41lp6YpLqQYCAZYtW5bzG+Zk9oAkmmZTV7wikQhbtmxBkqSsJINTMRlKWKljPvTnP2OtXTtIPtaprMTp7AQg8sMfYp5xBr7Zs1FUNePvRP3yl4ldey3mhg3IZWXo99+PfMklg/Zj6jpaQwOiohBctGjcAa0Qz4Bod92F+q53HT3OoiI8X/4yxpEjmL/8JVZREcpVV6HkyB3XHhjACQQwLAuzsRF9YCDZO6MUFCBXViaPKVXqdqKwGhsRMs0KCsKoGZCscYxWdIWyMtcNfSgBGfo5QXAbpuP/nyAjqaWd6TwmUpHIgAAoS5ei/+UvoxKQkeYhe72DjDhtw0AfGCDS3380Q+LzuRmSlLkIoog0fz6xvXvxLFo0qF8rU8Rqa9Fffhl10SJ8Y0hRi7KMNHv2yFmQNPv3zZqFtWMHjmEQamtzSekovUHatm0oFRVp+4ckRcHUNHwLFxJ+/HHseLmtr7QUraeHSE8P/pKSQXMRRNFV8erq4ku33cYDd90FjJx18Pl8TJ8+nenTp2PbNgMDA3R3d9PS0sK+ffsmpVzreMyA5BInKgFJ/J5ef/11Vq9ezWWXXcZf//pXAoEA73//+1m7di133HEHdXV1x3imJzbyBCSPEwK2bXPw4EEOHz6MIAjMnTt3UlaOJrMHBAY/cNrb29m+ffuE+1cmm4DccM89eH/608EfmDMHobUVIxJBO3yY4Be+gOr3j9kzkRqmCID6mc8QveMO/N/6FsYbbySzH47jEG1pwR4YwDdr1jCzw6whCNixGLS04F+2LDkX0zRxHAfPjBn4br2VWF0d2p13YtXU4L3qqlEDptFgGQZ6by/Ru+5CWLoUu78fb0UFgiyj+P0ok1wXbb3wAkoG/R8QL8HKoRM6x2hFVygrw8qixya5XTwzMlTqd5DHRML4MH59J3pAAOSSEmK6npNjEBUFb4r0tKXrLiHp63MJiaoi+/2oXi+eNWuIPvCAS0Bse2SylPrfto1eX4/xxhuIhYUE3vnOjBvFPaecQuSPf0xLQBzHSdvf4Vm9GmPbNgIbNhDu7CQSjeItLkYeal66axf09uJJk/0A13neMU33u5o3D33vXrxxwuctKUHr6yPS3Y2/tHRQNk8qK8NubuaNhgZ6e3spLi7OyIhQFEWKioooKipi9uzZGIZBb28v3d3d7N+/n1gslizXKisrIxgMjmtBzbbt46aPYDIyIOFw+IQkIMnspigSjUYBeOKJJyguLubkk0+mt7eXSCRCSYL05jEuHB/UO488RoGmaWzatIn29vZkY/ZkZClgcntAgOQq6/79+9m2bRtLly5N6++RDSYja5Mo67Jtmw6/H29K+RWAsHAhTm0t/bffjnrVVXiCwawbth3bRpwyBWXDBvo/+EGUd70LURDQBwYI7duHpKoEFywYm3xkEDwLkoT18MMocR8OJ15+AwxqNpdravB/85uoGzYQ/eY3idx3H3b8ATT6FBxiAwOEGxsJ1daiNTW5pWg9PQTPPx/ftGlIHo/bfG1MVAtrDAgCVm0typDvbMSPi2LOMi+J/R8LiEVFOH19Exojkf2QZRlFVZN9TLZtYxgGhmFgxV3gB2V6iouxw+FBY+XijEqqiq+sjMDUqQSmTEH1+7FCIcItLUR7ejAUhVhHh9tLM8o9xDZNom+8Qfj3v8c+dAj/pZfif8tbslKpElXVzYLs3z/8zRFkwJUpU7B1HUfX8RQX4yspQe/rI9zZmZT51fbvxzpyBN8I5AMYRK68CxZgHjky6H1vURECEO3pcfuO4pA9HpzCQvpUlT898oh7LsZhRKgoChUVFSxcuJD169ezdu1aKisr6e/vZ/Pmzbz44ovs2rWLlpYWYrFYxuMeTypYk5UBOZGb0C+77DIaGhq48sorefLJJ9mwYQMej4fbb78dwzBYvXr1sZ7iCY3jg3rnkccI6OrqYtu2bZSXl7Nq1SpkWZ40kgCTV4KVeOBpmsb27dvRNI1169YRzIFc6WRmQO5/4AHsU08dVvokeL1oBw8iSxLB88/P6IE+9BOJVVv14ouJ3HUXVmMjobo6BCC4YEHGQUImgZ5j29j19ahf/KJrVmYYLkGQpEHzSjh/K0uWoHz728RefZXIrbcizJyJ54orBtXIm7qO0deHNTAAtu02jFdUJAmTuXcv4tDjkGU3EzPJEOJ+Fpl9OHclWLZt4xyjDIhUUoI5QQIyFIM8JuLN7AnTO2w7aVIpLl2K/vrreDdsyOn+hyK1ZMtxHLR164g98wz6unVu3bqqoqYYv1mhENorr0BbG+qSJXje9a4JBZmeU04h8vDDeBYsGP7mCL9XddUqYq++irxuHaIk4a+owIzFiHZ1YXd0IDY2EsiimV4QRcQpU9Cbmwf1g/lKSujbuhU5pYdO9noxpk6FujqefOklPnzttTkpe/L7/fj9fmbMmIFt2/T399Pd3U1zczN79uwhEAgMKtcaKbNwvJVgTUYPyIlIQBLn4dJLL6W5uZl77rmH6667jg984APs2LGDp59+muuuu47TTjvtGM/0xEaegORxzDBagJlqxLdo0SJmzJiR/PxkEpDJGjuxsvrGG29QWlrKypUrc5Z6n4yysQQBufHuu/Hef/+g9wzDINbfj9jZiefaa8ctVZuoo4/ddx/SRz6CvnEj8sAAwf/4j1wcwiDoDzyAdM45OPHSGlmWkTIoWfGsXYtn7VrM+npi995LaGAAYc0axKVLEVUVubgY7+zZaXtTYg89hHLNNYNeEyUpufI7WTBbWiCLHhZRFJPO4hNGd/eb4gGSDmIg4Mr1ThbizeyiKCIJAnI8O+I4DmJNDbHnnkM+/fSjUr+TDEEQ8M2di/X888iFhchxieJIWxtWTw/Orl3IloW8ejWes87KSaArqipiPAsyiISMcv2o06YRev11xFgM4uU4sseDFYuh7duHs2YNtmmOmY1JPaPepUuJPvPMMEEKqacHs6Ym2csjeTyueppt09DeDuQ+6BdFkeLiYoqLi5kzZw6GYSTVtfbt20csFqO4uDhJSFLLtY4nApJvQndx5MgRLMuiurqaUCjExz72MT4WN6w1DIPFixfzyiuvHDff24mMPAHJ47hDLBZj+/btRKPRtEZ8k01Ach3MO45DQ0MDtm0zbdo0Fi5cOOmu5bkaM1pZibemBjjaMxFtbkYNBDBjMeQ0vhFjwcENJhzbxtA0zH/9C98dd+C77DIid99N+K678P3nf2YUxAmMnQGxbRtj0yb4yEewbHt0f48hrzuAHgphiCK8970oqgovvIDz//4fzJ6NdNllacmHbVnYhoFnSEO0KMvu6vkkwnzuOcQsXKjHkuHNBlZ3N8Ikub2PBUEQXB+RNwGO4yQzaAByMIjh8SAIQlLqN9kvMkp/Ri4gLVmCsXMn8pIlCC0tONu2IakqwqpVOIqCCYjRKB6/Pyflcd5Vq4j86U+DCIgTlzYeCeqqVcReew31nHMA0FtaMLdsoeCSS3Asi0hHB0pRkTvHDCB6vRAIYIVCyT4tW9cRLAt/aSnR7m78ZWXJ36ZQWEhHb+/RuU7i96EoCpWVlVRWVrq9bCnqWocOHUIUxSQZMU3zuAlk803oLm644Qbq6ur4+9//zp133smuXbsoLS3F7/cTCATw+Xz4/X4sy+Kaa67JSrUyj8HIE5A8jikSK4gJdHd3s23bNkpKSkbMEpxIGRDTNNm1axfd3d0oikJVVVXOteUni4B0dXVhlpXhAbdsyTSxYzGs7m5Uw4Bly4g9+CBKQmJ2LKQctwPoXV0Yjz+O77LL8MVLm/z/+Z9oDzxA5Ac/wP/Zz+ZkJTn26KNw1lkIguDW9GewjanrxLq6cMJhRI8H39SpSAm99/e/H97/fswDB4j98pdoto18/vmoa9cmH+Cxxx9HXr9+2LiCJE06AbEPHEA599yMPy/Ey4tysu+ODjhGBAR48whImpVrsaICp7cXpazMldi1LJf8xjNeYpZSv5lCmT2b8M9/jr1/P56ZM/G/7W2DsgkxTcOKRAgPDIAkoQSDqF7vuMmIqKqIU6diNDejJDIQjjMqyVKnTyf62mvYuo7d34/+2muu34gogigSqKpC6+4mEo3iKynJiLCpy5cTe+MN/Gee6R7n4cPI06ej+HyY0SixcBhPIACOgzxrFj3PPUdbW9ubKn0rCMKwcq2+vj66u7tpampiYGAATdMIh8NjlmtNNiYrA5KLMuM3E9XV1RiGgSiKaJpGW1sb7e3tRCIRNE1D0zQsy6K5uZlLLrkkT0AmgDwByeO4gOM41NfXU1tby4IFC5g5c+aID+nJ7gHRc6RoEwqF2Lp1K6qqsn79el599dVj6rKe7ZjPv/EGVmlpMoiSJIlYYyOeykqMH/8Y38c+hv7jHw9zZB4LtmkSqa11pVC3bsX7s58Net/7/vej/eUvRG6/Hf+XvzyhVTnbcYg9/bSrstXcPCr5sG0brbsbo6cHWZJQKypQRpGylefPR77xRuxYjNjDDxN+9FHEBQvwXHYZ1ksv4f/qVxn6bYuKklPPjZEgZKEalssMiN3Xh5Ci4vSmI8UUbFKLoNIE3NKiRZjbtyOfc06y5NJxnKQRYbZSv6PB7u0ltnEjVns7QkkJYkUFvgsuQE1z7kVJQi0uRoi7msf6+wn19SHKMkowiOLxZE1GPKtXo/3tb0kC4tj2IPnsdJBXriTyzDMI0ehR8hGHIAj4ysowIhHC7e14S0uRx+hhUkpKiNl2snzLbmrCs24dAN7SUsJtbcgeD4IkIRQUYCsKL774IkuWLDlm5nGiKFJSUkJJSQlz587ltddeo6SkBNM02bt3L4ZhDCrXCqT080w28k3oLm655Zbkf3/zm988hjP598fxkfvL4/80dF1n8+bNNDQ0cOqppzJr1qxRb7onQgaktbWVl19+mYqKClavXo3H45m0BvfJyoBsPHwYYcoUDNNEkWWMzk6UggLXpbu/H3XBAuQrr0T7058yHteKRgnv3Yt3+nSEujq3lyJNMOC94gqUtWuJ3HIL9miqUaNcJ5ZtE33pJZQVK1BHMPdzgFgoROjwYSJ1dQi2jXfmTAKzZ6NkuHInejz4rrqKgm9/G3XdOiLf/a4r53vffVhD1HrEIRm/dPOZCOxwGCfLFcecBjg9PYjHsuRCVbFztICQLZTZszGbmtK+J4gikiShKAqqoiQlf03LQtd1N7sYJycjwe7rI/L3vxO+916izzyDtHgxgQ98gMCllyKvXYu5ZcuYcxRlGV9pKcGqKjyFhZihEKG2NiJdXZhZiCNIgQAEg9j9/UD6jFA6GEeO4BtFfUvx+/GXlxPr6UEbGBj0XrozoyxahL5jhyvskBJAC4C/rIxoVxeiLGPpOnJFBX979tnjqu/CcRxKS0tZvHgx69evZ82aNZSVldHT08Prr7/Oxo0b2b17N62trTlbGBsJuc6AOI5zQmZAgOTz9MMf/jAbN25Mvp74fdq2zU9+8hPCQ5Tv8sgO+QxIHscUfX19bN68mYKCAk4//fSMVqaO5x4Q27bZv38/TU1NnHTSSVRVVeVs7JEwGeOapklLfz9Mm+au4JomVkcHwWXL6L3/ftS4+of3nHMY+NSnsK+6asxyqVhXF8aRIxQsWoQoy0T+9CeUT31qxM97zj8fwe8nfNNNBG66CTHDVX0HXKlU28b+05/wf+1r7uuCkOw/MXWdWGcnTiSC5PXinzbNXUWNl5qNF8qSJRhz5uB597tBltH//nec5makwkKUCy5AXb48bcDvAKZhYDsOAnGH+0QzcxYEQX/1VaRFi8Y9/4nCCYUQA4FhmZ83C0JREXZ3N2KOjCSzgaiqCJmsrKc0swNJ35GEulaiREsURRgYIPbKK9jNzVBSgnLSSShvecuwa0isqMAejYCkuYYkRcEXLx8xdR29rw/NtlEKCjLqF1FXryb68ssE3vrWUUuwHNsm+sYbrtTuWWdh7NmDtHLliOOKkkSgshKtt5dwR4fbyzGCVLQ6YwbhHTtw6uuRZs0aPI4sowYC6NGom+2ZPZs3tm8/rghIatZBEAQCgQCBQIDq6upB5VqNjY3s3r2bYDCYzI4UFRXllDBYlpXzzNCJmAGBo75ddXV1fPSjH+X222/nkksuQRAE9u3bx+c//3meeuoprr322mM80xMbeQKSxzGD4zjs27ePWbNmUVNTk/FK7PGaAdE0jW3btmEYBuvWrRvWfDcZmYrJGLevr49nnnmGqCCgTp+OKAiE6uvxzpkDgPPPf+L54Q+Tn5dPPhn92WfxxhtMh8IBIg0NCIaBd/58BEnC3L8fqqsRRshMJKCefjoEAoS+9jX8N9yAXFycZgdHA5NEIO8AUrwcSIr3JAiiSLS9HXtgwJX/rahASZHVzRXs+nq8117rqiXNn+++2NZG7MUX0R95BKO7G+mii1DPPPMo6TEMBFFEkeWjAalpug3E8TKdRP/AaLC2bsVz5ZXZE4BcZUHCYcRg8NgRkJISV9p1sgnICOdLKC/H7OpKSsFmclYHSf0C5sCAW17V1ASFhcgnnYRnwwZXMnqE/YqCANOmYba0DJKKzhSyqiJXVODYNrG+PkL9/Uh+P96CghGJhVJZScwwRs042bEYkaefRqmsRH7LW5Blmcijj2Y0J29xMYamEW5rwzOC4ZsgikgzZxLbuZPCiy8e9r4aCGBGo5ixGL6qKro3b570JvRsMBoZGlqupet6Ul1r9+7dmKaZ03KtvArWcDz55JN8/vOf53Of+xwNDQ2Ypskdd9zB6tWrOXjwIAUFBcd6iic08gQkj2MGQRA49dRTs3ZhPh59QLq7u9m6dSvl5eWsXr067Y18suadSwLS1NTEnj172F1bi11VhRhvDpUUBdnvx9Y0HK8XKYUIeD74QcJf+lJaAmKbJuHaWtTiYjzV1cR0HQfQfvlLPP/1Xxn1Hqgnn4xYWEj0hhtc08N4nfewfQ0J5KO//CXqlVe6JmwtLcT6+vAWFxOYM2fS+gPM5maYNm1YUCFPn478nvcAMLBzJ05DA5E778QJhWDxYjwXXYRcVJRcSR66Ou7YNoZlIUDy/bTZkb4+dzU8S7PDXJ0PW9MQ/H7IkdRwtvMSSkuxGhom/cE20rykJUswt2xBzsLXwjZNzAMHMHfvxunvh4IC5OXL8Z97LsT7cxJ9WMnvP+HMHh/DEQQ8q1YR+8c/kN/2tvEflyjiLSlxjTrDYSLt7QiKgreoKG3ZlLJyJbHXX4e5c4e9Z7S3oz33HL7165ErK9F13b1uq6uJHT6MZ0jGIh0Urxe5spJIVxdGLOYuNgy55qXKSpx403A6+MrL6W1sdOfk9dLd3X3cNA5nk41RVZWqqiqqqqpwHIdwOJxU16qrq0OW5SQZKS0tRc3UByiOXPeAJOZ4IhMQRVH44Q9/iCzL/Pd//zcAP/3pT/nEJz5xjGf274E8AcnjmGI8Ab8kSZNWD5ttOZPjOBw6dIiDBw+ycOFCqqurR16lnMQekImOa9s2e/bsobW1lZUrV/L9J55ADAYRy8rQmpsJLlsGQOy3v0U6++zB+5dlhIIC9AMHUBMr/oARiaDV1+ObNQs5/hASALu9HYJBpMpKjJaWjOYnz5lD4Cc/Qfve9wht3Ij/059G9HiSMrxW3BROjkuj2raN2dWF4/Gg19aiVlUhejyI8RKnETFGj8ZY0B9+GDU1+EwznhgI4Dv/fKzzzsOIRLB370a/7z70ri6EqirkU09FXrkymfFIZ4RnpcmOOI4DXu+4VkGdcWxjWxa2abp/lgWWhRmNEm1vxzJNV7oYBpfOZHludU3DSVwjiaBbkiBeokb8/xMlawSDE3ZDzwQjHYVSU0P06adH3da2bcx9+44SDq8XceZM1DPOQCotHfb9pSOklmXhmObRMj3HQS4uRouTldRAcjxXsyAIqMEgajCIqWlEOztBFFELC1HiRogA6uzZhDdtgtmzB20f3bEDu7aWwMUXDzPE9C5bRvQf/8iIgCSOP1BRQV9TE+HubgKlpUkS4tg2+htvoFRVYWuaK887dHvc+3osFMJWFF557TUWLlyY5RmZHIw36yAIAsFgkGAwyMyZM7EsK1mu1dDQwO7duykoKBhUrjUWuch1BkTTNBzHOSF7QBLYu3cv99xzD48++ijvf//7aWxs5Gc/+xnLli3jjDPOeNMEAv5dkScgeZxwOF5KsEzTZMeOHfT19bFmzRqK05UHpeB4LcHSNI2tW7di2zbr1q3D7/fTGA8Uta4uvCmKZNb27YhxU6ZU+P/rv4j87GeoN93kbtfZidneTmDhwsHqOIJA7O67Ud/3PjeIyGLeoiji/+IX0V9/ndDnP4/3k59EXrAAHAfLNJP+HqauE/rFL2DZMnwlJSjV1e6c+vqSTbOTBbulBTleqjYSHFHEiJeJqYEA4tq1sHatu8pdV4e1axfGc89BJIIgywhLl+JZvx6xrCxt70AiO2Lt348zffq4FK0c28aIRrFNEyce3DqWhWNZLmmIE7ckmYpnagRRBElynddlGcnrxVtSghGvJxcSWZpxSs8KDQ344yVFjm3jWJbbrJ341zRxdB3TtsG2sQwDs6kJu7kZBwaVrSVIliDLiIqCoChI8b9cBRKiosCQgHtEwnH66UhlZVntO0FIJUnCiZ8T23GwbBtd1xHmziW2ezfepUuPjjtBieWE+7ptmmi9vcR6e1GCQTyBgFsCtWABel0dVFW5CnfPPovk9RK45JLkGKkkXPR4oKgIs6/PzfplOg9VRVZVwl1dBMrKQBDQdu1Crq5GLCpC27sX/8knp91WkmXMcBgBeGbTJj50HNTuJ36/ucg6SJKUJBvgCrsksiO7du3CsqxB5Vp+v3/YdZfrDEgkEgE4YTMgAwMDvOc978E0Tb7zne/w9re/HdM0+dSnPsV5553HV7/6VW6++eZjPc0TGnkCkscJh+OBgAwMDLBlyxZ8Ph/r16/PKN09WU3ooiiOu3G6p6eHLVu2UF5eztKlS5Ekid7eXvoqKrCbmpBtGyUeJJj19VBdnbYUQ6yshHAY/cABDFVFsCwCixcPyzbYto3d3Y06bx6mro8rOFJXr0ZetozoN76BVl2Nes01eLxerFiMyJEjCKaJuG8fwe99b9BcJVXFGKM0aSJhqFlXhzBr1mB5UQavQDuOgyOKWLEYnhRHZIivOs+dO6icxerrw9i9m+jDD0NPD8RiiDNmIK9di7RkyaDsSOS115BOOil5/ZqJFfL4fCxdx9I07FjMrdtPIRemprk9M3EyIXm9iIlAPYugxFBVtxlb192xcrhCmCA86VTTEnDKywmrKv5p07Bte5iPkINrWGfFYtiahjEwQCx+vgRBcEmKICQJiqgoyIrikugEkUlTBjQIZWVor7yC1dSE1d+P5PONm3CMhkQ5lmDbSLLsEr7ly9EeeghjwYKjjew5gijL+MvLcRzH7RNpbUXy+VCXLUP77W8xFy8m+q9/4Tn5ZNQ46R8JnpNPRn/lFeQR+sZG3C4YRADCnZ14fD6shgaCF1yA4zjo27aNuJ0QXwSxDIPmvr7jogckQcomYy6qqjJlyhSmTJkyqFyrq6uL2tpaFEUZVK6lKAqWZeU0AxIOh5M+KCcidF1nzZo13HPPPcnXZFnmF7/4BW95y1u47bbb8gRkgsgTkDxOOEiSNCGlotGQSTnTkSNH2LVrFzU1NcybN++YN8+PpyQt4c6+f//+YaVjGzduRF++HHvvXjwzZya30R98EOnSS3FGeEj5b7qJ3v/8T3zf/Ca+ISUZCZhPPIF4+unAcBPKrKCqKDfdBE8+SfQLX0C/6iqk8nJ8M2Zg7d0LJ500jChJqoo+SdcNQOzhh1He/vYR30/0qIiqimjbGV03UlER0rp1EO97cUwTo74ec8cO9H/8A6JRBK8XcflyrIMH8VxyCVYkghGJIBiGmzWwbXAcREVB8nqRfT7k0tJkUAYQbmjAl6LYNm7kOJjK9uoYi/QIuNeBNMqCgWPbWLGY+6dpmKbpnsM4OXFs21VRC4Wgvx+7thanqQm7vx8hLvlqRqP4LrsMtbh40j0nLF13yyAFAcXvRw8E3Ad7yoJHwlgtQUomQoIEQcAbz/bqoRCRzk4sSSL8179ScNllGXkCycXFxBwn6eGRDdQ4cR945hmC8d+FIAiIpaWYPT3IaRrWRUlCUFX0WIwBn49wOExFRUVW+801Es+CySZDo5VrHT58mF27dlFQUICmaUSj0ZxlZRIKWCdqmVJZWRn33HOPqwjZ0uJKaKsqqqpy2WWXceGFFx7rKZ7wyBOQPI4pxnNzmqxMwlhj27bN3r17aWlp4eSTT876AXa8lGBZlsWuXbvo6upi9erVlAx5YD+9ezdccYW7Qp4SsNtHjqDOmYM5Qt+G1tOD8t73Yv3hD/ClL6Xf91NPEbj9dsBdvR2PKZ9lWZiWhaNp2AsWIFRUINx/P+LZZyPMmYP+wAN4P//5YduJOXT8Tge7uxs1hbANmnNKj4rt8WBHo+PahyDLKHPnwrRpEA672YzeXowDBzAOH8b6wQ8Q4qTDM306zJyJsnAhzJzp9t/YdrJnJin3m8sA4ThYWZ6oG7ogii5JS1Fos0MhjH37sA4fxjpyBEfX0bxenIIChKlTEU8+GaGoCNHrRZYkjAceQC4rm7T7VCqseLYpAXnFCvTXX8e7fn3SWFWJq605joNhGIOkficSbAqhEM7zzyMWFmJ1d6ObJsO7MNJDXrKE2JYt+NasyXq/dkcHciBALBZDtm1X1W7hQmJvvIG8fv3weUoSjm0jOA7RggKef/FFampqst5vLpG4Nt7sbMzQcq1YLEZ3dzf79u3j8OHDHDp0iJKSkuRnfD7fuO4R4XB43NseLzh48CB33303O3fuJBaL4TgOqqriOA4nnXQS3/3ud4/1FE9o5AlIHicc3owSrIRbcQLRaJStW7fiOE6yTyJb5NJlfei4mQY6kUiELVu2IEkS69atw5umaXNrczN2cTHi3LmYdXXIK1Zgd3cjVFWNqPcfbWlBME0K3vY2Ivv2oT39NN7zzhv0Gau1FaGiIunnIcTN2LKBGXdytjs6XB+DmTOxZ85EXbOG6G9+w8BXvoKoqmlXQd2dTs7D0Ni9+6jk7hA4to1p2yiy7GbYFAVriMnaqGNrGmY4jB2JuKQQt45eKShAKi9HmDEDe/ZsoocOEfjYx8BxiEUiiN3dWEeOoL/+Os7f/ga67v5JEsLUqVBTg7hwIVJRkdvcblljulmPifj2OTvL4/m+xklAbNPE7ujAamnBPnIEu7XVJeCqCsGgW/q2ahXiWWeB4+Ad0r/gWBZGJIKlaRjRKJG2NhzcHgpRVVG83omf3xHmnZrRUefOJfzyy4M/JAhIqY3pKc7spmlmJfUMYEUiaM8/jxCLoZ5zDoogYD/3HI5pEmprQy0sHNH8MznPmTMJx3vPMgnCE7OyDQNj504C55+PFYsR7uwkUF6OXFSEFvf/GTqepKoY0Siyx4Pl8/HXZ57hmg98YMx9TiYS9+xjHaB7PB6mTp1KbW0ty5cvRxRFuru76ejo4MCBA3g8niQZKSkpyTijd6J6gCTQ2dnJjTfeyL/+9S8uvfRSXnnlFUpKSujq6qKzs5OLLrroWE/xhEeegORxwmEyS7ASNbCpiiCdnZ1s27aNqqoqFi9ePO462cnsAclk3MRxTJ06lUWLFo340O9SFKyeHpS1a7Fqa2HFCmIPP4x03nluKcqQ7bSODpxwGH+8d8H7uc8R+dSnMJcuRZ4y5ejnfv1r5CuuSP6/QOYPX8dx0DUNrakJWZIIzJ2LGD+fdvxa8F17LeYtt2A1NhK55x6873//8HKQDFcbE4aFmUL/y1/wvP/9w+ZsxTMOiQZ5GL0XxdT1JNlwTPNo6VQggHfatBH7MYytWxHnzUv+v6AoKDNmuA34a9cO+qwdCmEeOYLV2Ij12GOYfX2YXV0MiKJbzlVYiFhc7Da9V1UhVlS4f2Op6Gga5LjcaFyhWZrfpx2JYLW2Yre2Ynd24vT1YYfDySZ6JAlHlhGLixFKSxEXLsSzYUPaciKtp2dQxiE5V0lCLSiAggLsqVPxBIM4Xi+CaWJGo2gDA25JmSC4yl0ej9vgPcFz5pim60yemIcoIhQXY4fDI7rSC6KIBElH9kRDtBH/LYkppVqpv1HHstBefx370CE8Z5yBHDcMFCUJYeFCOHyYwIoVaD09hAYG8BYXI8fJ0dDvUhAEpJoajPp6PGlkfIcdZ/zf6KZNqCed5GZv4iQn3NFBoKICado0jKamQaWj4Jouav39bn+Px8OehoYx9zfZSDxjjjUBSSDRAxIMBikoKGDWrFlYlkVvby/d3d3U19ezc+dOCgsLk4SksLBwxPtCwgNkTO8iy+IHP/gBd999N01NTcybN4/rr7+ea665ZtTturq6uPHGG3nkkUcYGBhg9erV3HbbbaxLI9N++PBhvva1r/Hkk09iGAZnnnkmt99+O0uWLBn22QSB3bx5My+++CLPPfccgiBw7bXX8qc//YnOzk4++tGPpt02j+yQJyB5HFOMtwRrMn1A4KgiSF1dHXV1dSxevJgZM2ZMeOxjIcPrOA719fXU1tayZMkSpk+fPuJnbdumV5LAspDXrMH49a8BsHbswP/hD6OHw4MCvFhPD1Z3N4EFCwbNx3/zzYS++U2C3/9+kiDZHR14FywYXNefwfdv2zbhlhacvj4Cs2YhpwaFQ7fv7aXwpz/FeOMNwl//OtKaNXivvPKoFOgkPeydUGiQAZzjOG4w5zhuMJeyX1GWcSzLlaoNh7HCYRzDANtGkCTXAK6yMqvaeHvr1mHeEyORKDEYRF2wAFK+s2hrK7Lfj2jbWL29mP39mD09cPgwbN8O/f0IpulmYGwb4n0Ros+HUFgIRUU4oogdDmPs3Yspiq4ksMfjNo0n1KEUJeuSE1vXIRLBDodxolGccBgnEsHRNNA0nGjU/dcwIBYjVluL+dOfIiR6PSQJPB7E0lLXmHLpUsTiYqTCwqwa7JPn1bJGbYQHkObNQ9+7F3XlymHlXBBfxY9E0Ht6iMVJveT1uqpoWS5wOJY17FqRly8ntnkzvjPPBEa/zw5yXmeI1G88EyyKIubhw+ivvopn0SJ8V145aP+y14s0dy7h7dvxnnwyvtJSbMsi2tODLkl44magQ+FZtIjoP/+ZEQERAKOjAyIR1JTfmhIv8wl3dOCdM4fYxo3DCIggiu55EkXkggLaenvRNC1tBvjNwvHkyJ74zocurkmSRFlZWdI3JVGu1d3dzY4dO7Bte1C5VmrGI9MMyAc/+EH++Mc/8ulPf5qTTjqJF154gQ9/+MMcOnSIG2+8Me02vb29nH322fT09HDddddRXl7OAw88wNlnn81jjz3G+eefn/xsQ0MDp59+OgUFBdx00014PB7uuusuTj/9dJ599llWrFiRdh8tLS0UFxezcOFCfvOb3xCNRikqKqK8vJy1a9fyy1/+kgsuuGDM48tjZOQJSB4nHCa7BAvcG+2OHTsIhUKsXbuWwhEeoNmOPRkZkNHGTZUKPvXUUykaQ/aytraWfr8ftaICobgYenrcALCwEFFRcCwrufqr9/djtLQQWLRo2DhiZSWet76V6N13E/j4xzGeego5nYHgGIQgFgoRbWhALS7Gv3hx2s8kCI2xfTviokWIgoBn9Wo8q1cTe+opwl/6EvIFF+B561vdIDnHD35z3z7EFOldO97vkfCmSHw3tmWh9/dj9vejR6MITU0u2SgpQfJ6J+Q/YrW14U0Qy/GQLEkC20YKBJACAdT4WElXdttOOkinBqv2wAB2fz92Xx/69u3Yuo556JCrMmXbCHF/EMcw3H9NEyGuvBXfwdG/xP8npHtFEb2/H7u4GCFOZgSv1yU2Xi/EXxdV1ZW2VVUEVcV55hnk+fORpk4dpoKVE2RQqibPmUPsz3+GlSvTvi8qCp6U36Jj2+gDA2idne51IEmuwpTfn1V5UgLqrFmEX3hhzO3SjpUi9Qugd3cTfvZZBJ8PJe7rYcdFFARBwLEsJFl2My/l5Zjd3cilpYiSRKC8HCPhIxIvjUwlQ6LHAx4Ptq4P8wsZCjsWQ9uyhcC55w57T/Z68QoC0b4+9zeXrrk9FkNQVURZxi4p4c9//jPve9/7xnWOcoHjjYA4jjNmdj9RrjV16lQcxyEUCtHV1UV7ezsHDhxAVVUeeOAB1q1bx8DAwJgSvI8++ij3338/jz/+eLKk6aqrrmL58uX893//N1deeSXL4h5Uqbj11ltpbW1l8+bNVMcV16655hre85738JGPfIR9+/YlyeVnP/tZAoEAr7zySvL5d/XVV3POOefwsY99jFdeeSXt3AKBAKZpcuDAAYLBIKIo0traysyZM+nu7p7Q/ToPF3kCkscJh0TAPbRPIxdIPFTfeOMNCgoKWL9+fc5UbCYzA5KOgIRCIbZs2YLX681YKnjja69hzplDsKICM76irD/2GFJcuSqxSm+Ew8QaGwkuXjzid+C5+GLMG25A37IF4/HH8d92G9bQz46wrW1ZhBsacGIxgvPmjVimkrq1/uCDeIY41Hre8haUc89F/+MfCX/hCzgbNmAWF6Pm0BxL/+tfkS+7DDjaIJ8wRIyFw+i9vcRiMQTHQQoG8U+fjmCaBEZoWB8PBFUd12p+cntJSpayDXo91XdiSKmOAAh+P1IwiDJjBvT1YZeV4Tv9dAxdR86Bv4bQ2Jj0AckUYmkpTnc3ZLldprAzkCuVi4vRsnCjF0TRJSTxAMm2LIyBAaLt7e77spwkJMOMCtOcY0EUEYqK3L6h8fbEGAbaxo04nZ0Ezz0XsaBgECFNkBDLspLZNs9JJxF7+WXklP4vxetF9niI9vURbmtDKSzEk7IyLi9ciL59O97Vq0eei6ZhvPIKBeecMyJRkT0efEVFhEtLidXV4UvJ8AHY0ShyPChVp0/nx7/61TElILn23ZgIxqPIJQgCBQUFFBQUUFNTg2matLa2Ypomd9xxB42NjRQWFnLLLbdwwQUXsGbNmmELAj/72c84//zzh/VTfOITn+AHP/gBv/jFL/jJT34y6D3DMLjnnnv48pe/nCQfifl897vfZfbs2Tz22GO8853vpKWlhb/85S/cf//9gxbfVFXl9ttvZ8OGDbz++uusTrn2Eudg/fr1zJ49mwceeID/+I//wOPx8M1vfpMlS5bwyiuv8JnPfCbjc5VHehwfV38eeWSBxMN/MoL5pqYmHMehsrKSU045JacSmm9mD0hbWxuvvPIKlZWVrF69OiPyAfD4jh0o8+cfDextG/P55/Fs2OD+f9z9WquvJ7Bw4ZgBpu/mm4n86Ec4RUVH6+lTVo6cNFK8Wnc3A3v3IhUWElywYOwa+URQZJrIlZXD3hZFEe+73kXgu9+F+nrCX/86sZ07Rx8zC9idnSizZmGaJqZhYIfDaE1NhA4exOjoQPL5CNTUEJgzxy2tkqS0zuPjDdbt/n4oKJjYQUiSazo4ChKZD1mWURUFOS79alkWuq5j9PTg+P0uUZnYbJIYl4t3SQl2d3eOZpAGIwgxDIPXO+7fuyhJeIqLCUyZQmDKFLxFRTixGJHWVsKtrUS6utCjUdeMcIQxpGXL0DdvznrftqYRefllIg8/jDxjBoHLL0eMX18JQirLMqqqDroX67ru9r/o+rB7s+M4KIEAgcpKbE0j1N7u+gDhNqObnZ0jz8c0CT/zDPKyZchjZKJljwd1xgz0w4eHveccOZIs9VJLS2mMk7tjheMpA5ILRS5ZlpkxYwZ33XUXO3fu5FOf+hRz585lz549XHrppZSXl/OOd7wj6ath2zbPPfccF1988bCxRFHkoosu4qmnnhr23qZNmxgYGEi73axZs1i2bFlyu2eeeQbHcdI2jJ9xxhkUFRWl3QfAtGnT+MY3vsG5557LjBkzuO666/jb3/7G1772Nd773vfysTSGvHlkh3wGJI9jivEEXYlVFMuyclZiYVkWe/bsoa2tDUVRmDp1as6zK2+GDK/jOBw4cIDDhw+zfPlypqQ0gWeCrfX1eJYuPfpCVRXWkSOI8YyBbZqYra0ULFuWUa26KMtI1dVJUzaG1AQL8cBXkGXMWIxoQwOCLOObPx8lHuBmgtgjjyCfccbocxFFfB/9KLGGBqy//pWBP/4RzzXXoKZ4lmT7jVsdHdhlZYSam7EjESRBQA4G8U2bhijLWJaVXCkeMpmcBSD6G28gLVw4oTESMqVZbTMkO2KGw1BVlWywT6zwvtlBllhQgJ2Fyti4kMF1KcyYgX3o0KBem/FCVBS8cdlUADMWwwiF0Ht7MTQNaWAg6UyegGf2bMIbN5LZ0gOYfX3EXnsNenqQV6zAP0pGIjkvUUSUJBRFSWbIxDlziO7ahWfxYldZa4jZpq+kxO0P6e7GiGctxPJyzK4u5HivQQK2ZRF5+mk8y5djZHgd+crL0eKiFWo84+E4Dk4k4i6C6DqyqhI6xsH/8URALMvKuXGlz+dj6dKl3HfffViWxebNm/nnP//JG2+8wUc+8hG6urrQNI1Zs2al3b6mpoampqZhrzc3NwNktF1zczOFhYXDpObBvXZnzpyZdh/gXjOnnHIK4H5X7373u3n3u9899oHnkTHyBCSPEw6JYC5XGZBIJMLWrVsRBIHTTz+d1157bdJ6NSazCV3XdbZv304kEmHdunUEx1Fm1G0Y+BOr6YIAwSBCfNXQAfSuLvzV1WM24aZC6Osj8JWvEPnKV1BvugkxJcgQFAVL09D6+7EGBlCmTnWbdrMkluZzzxH4xjfG/Jzk9YIo4r/uOuy+PqI/+Qm646BedhnysmWDgqWRYDsOen8/Vl8f+m9/CyedhNfnw5sFaRVVFVvTMjJtG3M+27ejXnrphMYQRRFzAte8IAgIoRBSQQGqqiblphMyr6meE5Ot+iMWFGCHQpM2fsbGo3PnYr7ySk4IyFDIHg+yx4MZjSKGwwiOQ6SjA+IeJmqCjBQUuOpko2RA9SNHMF5/HcE08axbh1xenvE8UrOXifJV35IlRB59FHn58kHN7MSzZQnSEqioINbfT6i9HXXhQvQ33kA+++yjY9s2kWefRZ0/H6WiAiOLrJZn1iyitbUoS5YgCAJGWxvCkH4ES5aPaSP68URA0jWgTxQJFSxwn31r1qxhTZaeL+O9V2Sz3SCVt5Rm/IRRbuLeNfRaz2PiOD6u/jzyyAKJlddcBPPt7e28/PLLFBcXs3btWrxe76QThVwjMd+XX34ZURTHTT4AjCEPY6e3F+rqANDa2hAhK3Ums6UFpk9HmTsX31e+gnbjjZgdHcn3bSBcW+tKmNbUoAQCWZMPu6cHobw86S8yGlIDYLGoiMDXvob/M5/B3LiR8Fe/SuSPf3RVlYbAwW2IDx0+TKSuDqJRPFVViD09BDdswDekuTaBkR5UgseDqWlZHedIcLq7kSboYi5kUII15jyi0SShEnCvS0VRUBQlmSUxDAND1zHjfg2T0cYpFhTgRCKTMLKLTOcsT52K3dMzafMANxMiKgqewkICVVX4y8pwLItIezvhjg6c+fMxt24dtp3jOMT27iX08MNY27fj27AB/9velhX5AFcBa2g5mqgoCIWFOOFw8hqQZRkhvl/TNNENA9M0UYJBvIWFxEwTI+7CDS75CL/wAur06ajV1dhp9jMa1JoaxM5OInHSYhw+jDRr1qAg0hml/ObNwGQE/ePFZPSjpBKQdCgrK8Pr9XI4TbkcwKFDh9IqNiZey2S76dOn09/fT0+a36Ft2zQ2NiY/myAbie9kaI9pgmDnyUfukCcgeRxTjPfHLMfLW8aLRKnStm3bWLx4MUuWLEnegCeTKExGZqWzsxPTNJkxYwYrV64cd99Kb28vztAV+Y4OpNJSYvv2YXZ0oFZVZVWqo//udyjxWl25uhrfzTej3XQT5pEjRNvbXcWckhKk4mIUWR5klpYRBAHz979HufDCjDcZ2n8hFhbi/8QnKLjjDsSqKmLf+hah730PvbYWU9cJHzlCuLYWu68P/7RpBOfORS4vx4hEEIuKUMbor0kXsIqqipMrU8oJNqADSLI8Llf6VCRLXIZgUO+Iqiab0y3LwtB1DMM4ukqeA4iKkjsjxAlAkCSEDHuvxgvHMAb1SAmiiLeoiEBVFb7SUqSqKvS6OsKdnejRKLauE33tNcIPPojT1YX/bW/Dd955487EGZqWNhuqLFuGNoT4CIKALMsuKY2rZtm2jS2KeEpKcCoqGNi2DcdxiL76KkpJCWo8+2obRlrvlZEgFxYm5a+1UAgnHEYcsrgilZfzwEMPZX/QOcK/ewYkGo2OSkBEUWTDhg08/vjjaefz97//nbcMkRYHWLNmDQUFBWm3O3z4MDt37kxud8455yAIAn//+9+HffbFF1+kt7c3+VlBEHj44Yf5/ve/T3t7+6ixSW1tLQOTXeb5fwDHx9WfRx5ZYiJZCl3Xef3112lpaeG0005j2rRpORt7NOS6B8S2bfbs2UNdPEMxd+7cCa3OvPjii5ByLhzbhkAAzyc+QfgXv8A3ezYIQlYExG5oQEkxbBIrKvDddht9n/88Zm0tntmzcXTdNeob58PYqqtDSSPVOCJEccRVbO+ZZ+L5xjcQL7+c8K9+xcB11+G8+ir+GTPwTZ+OIMsYhuGu3j/9NEo6aeGhSBNYyx4PdhYqSSPB7u1NKidNBMKQEoPxwDFNhAyyUIlVxknNjkzSynJWc3IcKCyc1HIw2zSRRlhwECUJX3k5cmUlsm0Tefpp+n77W3TTxHPJJXhPPXXCAbCt6+kJyJQpOP39I24nxJ3ZUwUNAiefjN3QQM+zz2ID8oIFyWvSNs3sSXZBAYqioDU0uF41DC4Z81ZW8tq2bdmNmUMcTwRkMjIg4XB4TB+QT37ykzz55JM88cQTg17/xS9+QX19PR//+McBd5EtUdapKAof/ehHufPOO5P9IAl88YtfZObMmVwaL0mdOnUqb3/727n11lvpT7keDcPgq1/9KqeddtogBaw77riDz3/+83ziE59g06ZNaedsmiZnnnkm//jHPzI8E3mMhOPj6s/j/zTGEzSPN0vR29vLSy+9hCzLrF+/noI06kGT6deRK2ITi8XYtGkTXV1drFq1CmDCc960aRNCSmOfvWMHwrx5WF4vQmcnYtwwLdNSHbOxEaqrB/VV2KZJtLMT3223Yd17LzQ1IaRr0s4Q1t69iAsWZFfzq6pYQ8qsHEAPhwkdPkzs0CGk4mKKv/Utin78Y2Svl8jNNxP68Y+JHj4MjoOiKNhvvIEaP/fZIuGpMlHoW7YgzZ8/4XFyYdAojKO/Y6zsyKAegmwwGf4fxFfisxhbrKlB37dvUuaSwEiBuW0YaDt3YvX0EP3TnwiefDIl11xD8OSTMcNhQm1tRLq7XbntccI2zbQZQEEQoKQEs7c3o3HEeO8KjoMCONOnE4tEXFIaL9dCFNOS+ZEgz5qFcfAgck8PVlmZW9Ofco+UAwEik+QnlQmOJxneye4BGQlve9vbuPrqq7nyyiv5yle+wgMPPMAnP/lJPvOZz3DLLbewbNky6urqmD59Om9729uS2914441MnTqVdevWceedd3Lfffdx8cUX88gjj/CrX/1qUF/PnXfeSSgUYt26dfz85z/nV7/6FWeddRa7d+/m7rvvHjQfx3H4wAc+QFdXF1dffTV/+MMfhs058ZzNhTfY/3UcH1d/HnlkiWyDecdxaGhoYNOmTcyaNYuTTz55xF6DycyAJJRiJoIEifJ6vZx22mnJm/xECcjWffsQUwiI+eyzSKtXozc34/voR9EeesgNdjKcv/7AA6gp8odGOEz0wAE806cjzZhB4Pvfx/zxj7Hq68c959hDDyGluN5mAtHnw4z3CFiGQaSlhfDBg5jd3fimTsVXU4NaXo5AXML3oovwf+tbSBdfjHn//Wjf+Abac8+5rt5DHK4zhQA5CfqdPXuQUlS8JoIJ1zbngsQMyY4kGkGNlL6BhAfQqJikDIit69mVAs2ahdXQMClzAYadc9s00fbsIfzww0T/8AcIhfC9610oZWXI8T4hSVHwlZURrKpCDQTQe3oIt7ejp+l9GhOjSBIrS5ZgxDMMY90xbMMg/PTTyMEgSlERwSlTQNcxQyG3LDN+b9MNAzPDkj21qgqrrw9iMTzFxeiahpOy2CEIAuYx7MH4d8+AZOqEfu+993Lrrbfypz/9iY985CO8+OKL3HvvvXzta18DXEPA8vJyZsyYkdymqKiIZ555hre97W1873vf41Of+hS6rvPss89yXooHDcDMmTPZuHEjK1eu5KabbuILX/gCVVVVbNy4keXLlw/6bHt7O29/+9t55JFHOOOMM/jEJz7BLbfcQmeKTLRhGGialnbxMo/skFfByuOERDY9IKZpsnv37mS2oDRFzjIdJtMwECYmH9zY2MjevXuZP38+s2bNch+icQO5iRKQA+3tKCnGTvahQ9iBAL7KSpRlyxh48EGEK67IuFfAPnIEOe5ernV2YnZ04J03D0QRRZYRVRXp+9+n90MfQq+sRD355Kzn7PT2uiZ4WUDyetEaGjD7+hAApbwcNUWu2BqyImzFnc3V2bPx3XADtmkS+s53sBoaCP3P/yCvW4d6yinDaszHwkT7NgDstjbkXBnuTZRA5DiAEQQBIZ4dgaMKNYngM6msFf/cIExSYGll2YsgFhfDeAL7DJAIwB3LIlZXh7VjB044jFxTgy/uWJ5o+rbi7uVDg0zZ40GurMSxLLTeXkJ9fciBAJ5gMDNCOspnlMpKjHB4zCHMnh6izz2HZ9Uq5IoKok88gbBsGf7SUvRIhEhnJzgOqseTLBW0bRvDMFwzzBR1tUFNw6KILYrIwSCeYBCtrw/TMJBSMjaWqlJXV8ecOXPGPtYc43gjILnOgITD4YzEUCRJ4vrrr+f6669P+35VVdWwUitwm9h/+tOf8tOf/nTMfcyaNYv7779/zM/puo6maRQVFXHPPfckScvmzZu54447WLx4MbZto+t6noDkAHkCkscxR2KVMxtkmqUIh8Ns2bIFRVFYv349ngxq1CcrA5K4wY+HKCR8Strb2znllFMoS5GyTTzEJkpAemMxlBR3bluSkCwLpbgYAHnlSsyXXkIesmqUDonyK0EQCB8+jGBZeObOHRQ4AoheL/KNN6LfdRdWczO+Sy7JeL7mgQMI8dX/hBPzaHAcB62jA7O7G9swKJgzZ0wSYFoWtmW5hCkxZ1lGchz8t9yCWFBA7IkniNx+O3g8SCtXoqxfj5xBX0bChHFCmQdZziognlRMcjA1kiu7ads4luU2HSfKwHw+t/cifu3mCo5pImVwD0lAFATI4vMZz8Nx0Pbtw3j9dSKmiTR9Or4LLhiRBIszZ2IePjzI8yYVgiThKyvDiUtMh9vakLxePIWFIwbJY92zBUFAKCvD7O5GGOF7iNXWYuzaReAtbzk6d1XFNk1EWUb1+5E9HvqamzF1HdXnG3T/cGwb23HSklIH1/2cuLKX4vFghMODCIhSVMTOnTuPGQHJlY/VRDFZJViZZECOJ1iWlfQMsW2bT37yk6xevZqPfexjvPWtb+WXv/wlK1aswDCMcStN5nEUx8fVn0ceWSKTLEVrays7d+5kxowZLFiwIOPVpsl0LIfs/Uui0Shb44oy69evH6Zbnwi6Jjpnw+PBF39gGHV1WIEA/pQHs+fqq9Gvvx4yaPjWH3gA+eKLCe3bh1JcjFhcnFzRHhq4SH4/3m99i9h99xG69VZ8n/0sUgb1tfrDD6NceeXY5R22jdbejt3Xh1JWRsHChYQOHBidfMTLfhxIlgINejsUSpa0+N7+dnj7292VsRdeQPvRjwAQFixAOfPMZAA0FKLHg6Vpbu37OGCbJuTQwyCdO3tWSD2fkyxVmVjtTgaiQ7IjTkEBVm8vTlFRTmUzHcvKygMHQCgqwurpQUpjhpbVvh0Ho6EBY9s2nJ4enJIS1LPOwp+BBLOyaBH6k0+OSECScxUEPEVFeIqK0MNhoh0drkR2UdEgtS0AS9fHlOSWlyzB2LwZ9YwzBl0Tjm0TfeUVhFgM/4UXDro3izNnYtTX44n3NomShOr1osdVh9SU34sgikjEF3ccBzuFlMYOHEAqL8fu7k76kGCa7u8mfiy2adI+igv7ZOJ4y4Dkci6O4xCNRk+4IL27uztJChMxxtq1a3n11Vf5yEc+wuWXX87HPvYxDMPIZ0BygDwByeOExGglWLZtc+DAARobG1m2bFnWbuCSJBGLxXIxzUFIBEzZEIWuri62bdtGZWXlIKngociFwpadsloV/t//RTnrrEGr66KqIgSDmA0NkFKqlQ5GvFnbO3WqmxmIr1ynq90WvV6scBj/Rz+KeeCAa1j44Q/jGaPB2+7sRJ09O6mOMux9y0Jra8MeGEApL8efagiXQeZDEARXLnTouH19MIKzrnfDBtiwAQB9xw703/0Oq78fo6YG5cwzkefPTzblCx4PZiQybgJi7d2LmJKxGoZE0JUjOI6DbVnY8SDOsSz3L/7f+sAANDe7gWAioBEE1/8h3dxG3xmA25fQ3JwcB3CV2FL+WxBFl0xKkvuvIOB4vZhtbcQqK90Snfj1J4jihCR6HdPMeqVYnDsXff9+fGvXZr0/KxRyFwNqa6G/H6GyEt8ZZyAWFhLt6nKNNTOAXFxMLMtmczUQQA0EsHSdWE8PMUApLEy6i1uahjAGGVMrKggN8WSxolGi//oX6pw5qGkEFDw1NUSffjpJQAAQRQJlZa7ZIoNJSBJx2V1RFLE1DefwYfznnkv4X/9ypZ5NEzkYRA+F8CS2tyz2HTqU8TnJJf4vNKGfaBmQT37yk8yNSz8DyWyrx+Pht7/9Laeffjpf/epXAcZssM9jbOQJSB4nJEYqk4rFYmzduhXDMFi3bt24bhKT1QOSGDsTouA4DocOHeLgwYMsWrSI6jEC/pwQkEStPa4CVuAznxkWKHo//nHC3/gG9vr1I7qGx1pasESRgnnzcOLa/6M9aAWv120WBeT58wn86EdEb78d85VX8P3nf6ZdcTYPH0YYoffDtiyiLS04kQhqRQVqmh4JQVGwDGOYhGmiwVmM96mkPb6nnkJOkW4cCery5chLl2KaJmJ7O/rf/oZ+//1QVoa8fj3i3LlYEyC61rZtiAsXpn0v4yDbcTB1HSsWw4jFCLe0uN954nsf8q8giq6/hSQhyDKSoiAGAi6hKy4mEDf1MnTdNZ+baIDV1ERglAUEJ15+ZcfJUOJffD6spiakgQG3TCf+e3aIN9uLojt3VUVUFGRFydhgM9tjUmbOJPb665ABAbEjEfTaWpdwhMPuCv+cOfjOP39YeZVjGCjZSDCXlGAPDCBmuXIrqSr+ykpsyyIW7xNRAgEsw0DNYCyxvByzqwuprAy9tZXYSy/hO+ss5BHKskSPB+JZ6FQHagHwV1QQ6ehwg8JRgtvo66/jW7XKXfjweJBlGV0UkVUVIxQipmluwG3bHDh0aOKlkOPAv3MGBFwCcqJlQH784x8Pey1xXTiOw8c//nEuvPBCtmzZgm+cC0d5HEWegORxzDGeG78kSRhDVvR6enrYunUrpaWlrFq1atz1tZNVgpUYeyxyY5omO3fupKenhzVr1lCcQR17TkhTfKXSGBhA9HgQvd5h50GurkaYNw/tD3/A/773DRvCiEYJ//a3qJdcghMP4sf6fmWvl1h7+9FjkWUCX/86sX/9i9AXvoDvc58b1JsCoD/0EMpb3+r+T3x8yzTRWlpwolHUqirUNC66yX0EAhgDA0gpggSWZSUzH6MZIlqbN+P//OdHPaZhxzhjBvLHPgaA3d9P7O9/x/zb39D7+rCrq5GWLUNZtgypoiLjMa1Dh/BdcMGYn3NsG0vXMWMxHF3HjsVcIQHbdlWMZBnR40FSVdRgEDnTBuQU2KFQTsvBYOweAyCZ/RhKUp2qKuympuHlSYkyHdPEjMWwdB0rGsVInA9BSP4JkoSgKIiKghT/y+asJPqSpKIinLhQxFDY0Sh6fT3WwYMQ9wuRamrwnXvumOaAmQTNqWdQXrQIfccOvOvXZ3EURyGm9on09aGFQknyNhqUxYuJvfoqZlkZHDlC4OKLxyR74vTpGA0NeGpqBpV6pZIQIC0J0VtbERwHOf7bFktLsTo73Qy0JLnkSdNQCgtBEGhsa2Pjxo2UlpYm/9RJNpCE44+AZNIfmc14mqb9W2UJEr+1mpoaampqju1k/k2QJyB5nJCQJAlN0wD3QXz48GEOHDjAwoULqY43P09k7MnMgIw29nia5iE3pMnRNOyBAYy2NqTKyrTlO6IoIl92Gfbdd6OfemrSqRjAjMWI1tYiNTaifuQjbu/E0AHSjCl5PGkDNM+556KccgqRb3wDc/16PG9/ezLrYjc3I8dLqmzDIHLkiCu3OXVqRqpYst+P0dYGpaU4uOTFjvt7mCMEi6nHkLH8brpzWFiI7z3vASBUW4u/vBz91VeJ3X8/zsAA+HwIs2cjL1+OPGfOyD0HpulmH4iTjFgMU9dxYjGMSARJEJLZDFFREDweFK8XqbQ07Sq+09V1NEOQJey+PoRcl1tMoIRMDAax0ikwJcp0VBU5rhJl23aymTlRJikIAo5lYcVi2LEYRjhMzDRdKdfWVkisrHs8yKo69jzjAa2taeiHDmEdOAADA+A4SLNm4Tv77OzdyDM9N/HPKdXVRF56Kbt9pB1OwFNcjBknsqH2djyFhSgjNcAHAsSamvAFAvgzIMwA6pw5aM8/nyQgqaWgSRISV8fypAS5jmUR27qVwNlnJ1+TpkzBOHgQpk1zyyp9PrTubve7FgRkr5elS5fS1dVFQ0MDu3fvpqCggLKyMkpLSykcpRF/IjieCEiu5xKO//b+nQhIHrlHnoDkcUIiQRJM02THjh309fVlnC3IdOzJwGhEob29ne3btzN9+nQWLlyY1QMhFyVYkiyj19VhdXQgjRLEC4KA75ZbCH3pS8h33ono8WCbJpEDB1BnzUJXFNQsSkMEGFE2VSwuJvg//4P2298S/vrX8V1/PWgaTJ2KY1mEm5uxolG806ejZpHul71eYrqOA5iGcbTZnNHLl8yDBxHGKIcbitHW8QVRRAwE8J57Lpx77tFm6r17MV56CeP3v3dVlEpLkVasQFmyBLGgACMaxTQMwg0NSVlkUVEQVBXF70cqLHSPJ4trSJBlNzsyDjh9fQi5LklwnHH3a4gFBTgZyN8mlLUY0sScLMXzepH9/qMSr0eOEIiXIxmRCEZ/PzHTTGZNRFVFihM9xzAw29vRjxxBb2vD/vWv3fdnznT7OCbQxGpbVmaqYylZJFGWETyenASbiaZub1GR21De3Y0eCuErLk5mKxzLQtu6FfvQIZSqKpSUxYqxIKWQMds0h/VJCYC/vNwlIZAkIdGdO/HMnTsow6KUlrpywCmETfH5iIVCYNtoceWjhPpRLBaju7ub7u5uduzYgeM4lJSUUFpaSllZ2TARkPFiMvouxotcy/BG4tn0PAHJYzTkCUgexxzjLcGKxWK8/PLLeL1e1q9fn7O0+ZvdA+I4DrW1tdTX17N06VKmTZuWk3GzgW3biBUV6Nu3g6YhLV6cvnkY3EArGMR71VVEfvIT/Nddx8C+fagzZiA2NSGPImk54jctiq5J2AiBkffqq5EPHSL69a9jKwriZZcRra3FO2MGtqIgZ/nwFOIBo2EYaZvNRyIN+j//iTzOEpZ0SCfFK4oi4pIlKEuWAG5mSW9sRNu4keif/wyWhaMoCOEwUnc38owZSCUlg87d0PLETCBKUrJXIlvYAwOQ4wyIM4EMiOD14owgTjDyRkebmBP7t+P9I3Y8k2THXxclCU9BARQU4DgOVk8PZlMTRl0dekcHYU3DsSyE0lKk2bORTj8dua8PX46uHVPTslbjAhBnz0Y/cADvCL1DGe8/Gk3uXxBF/OXlmLpOtLsbQVWR+/uJbdqEOm8evssvJ9LQgL5vH8ppp2W8D6GyEqOlBUeW3SzT0PdxSUi0q4uY4yA5Dk5bG+q55w7+nChCipcMgBoMEu7oQHActCHXvMfjYerUqUydOhXHcRgYGKCrq4vW1lb279+Pz+dLZkeKi4vHHbgfbxmQXBKQaDSKLMs5LevK498PeQKSxwmJ/v5+ent7mTNnDvPnz89pA+Gb2QNiGAbbt28nFApx2mmnjVvab6IEJBKJoC5YgLZjB2pBAVKivyId4udaXb8e89ln6X3wQXxvfSvewkKiv/410hAn2qFIF9yLfj9mKOTWZY8AuaYG9Tvfoe+KK1Ati8CnP43s96OPI9i2bRsL16chm14h+/BhvB/6UNb7GwmiqmLFYsjxVVXbNNHDYexIBMcwwLbdZu+yMoquuipZihL95z+xGhtx6uvRn3sOOxx2FYkUBaGsDHvGDOxZs1CmTXObejOZSxbmnkPhhEIIuV7tzNIbKBVJZawJYGh2RI9GwTCI7N+P3dSE09aGGIuBZSEGgwgzZuBbtw453sdjxs+lYFnEWluJbd6MPWeO218iy8h+P4rXO657l6VpGStgpY6uLlxI7PHHYaIERNOG+aHIqgo+H5FnniFmGHjPPhtPPBOqTJ2K9vrrWe1DnTOH2BtvwIIFI54jAfCXlRHp6iL6xhsUjtDoLyRK8uJ9IYIgIMoyhq5jCAK9vb1ps+eCIFBYWEhhYSGzZ8/GMAx6enro7u5m7969GIZBcXFxMjvij2fLMsHxREBy3YQeDoezOhd5/N9EnoDkcULBtm327t3LkSNH8Pl8LEiVVs0RJrsHJEEUBgYG2LJlC36/n/Xr16OMY0UzddyJzLm/vx+ntBRnzx4cTUOaOXOwGlIKnLgMquM4xK68EuH221EuuMD1Ijl0CO/SpVnvXwoGMXt7RyQgjm0TOXIEu6cH39q1BD72MaI//SmxggLkq67CqazMeF+mZblu9D4fGEZydXQs2LYNPt+I6l/pMNonHcAWRcLNzUiy7JYcxftLvKWliKNl9OrqUM8+GzWNDK/Z1kZs1y7M557DbG93v0NFAb8fcfp0hJkzkadPH9YLIkqSqyA1DjgDA4hZOtKPOeZEZYTHsaLrWBbWwAB2by92Tw92VxdOTw+Ew5ihEAgCSk0Nypw5CKef7rpt2/bR3pHUIC7+fUqqiq+6GkdRkopelq6jDwxg9PUlS7dkvx8lQ7JoGwbeDLxyhkIKBnFysLgydP+2aaJt2oTd0oL/rLOQiotdxayODjxFRS5xjotaZOzHVFSEo2lk8mmxqwvB48EQRdKdQbGqCr22dpB8uMfrJWbbWF4v9fX1rFy5csz9KIpCZWUllZWVOI5DJBKhu7ubrq4u6urqUBQlmR0pKSkZ9Z7+7yzDGw6H8+VXeYyJPAHJ44SBpmls3boV27ZZsmQJdXV1k7KfN6MJvbW1lR07dlBTU8O8efMmvFI00axNf38/kWjUlaX1eBAFwS07SQNBlt2G86YmvEVFKN/4BtFvfxv/N78JweDYAXqacRW/n2hLS9qPx/r60Fta8FRVYW/Zgr1mDWJFBYGbb8asryfy/e9jzJ1L4AMfSDZlp90trsKYY9soioJTUIDZ35+xD4f5yitI4yBXqcdrWxaxvj6s/n6I1/FLkkQgLpyQifITgNXaiieNvDCAXFWFU1qKnPDFSOxb07Dq6rD270d//nnsUCiZNSEeIBq2jTB3LkJxMWJREVJhIWJhIcIYJM0Jh3PfA5JQpRovhgRUtmFg9/VhxcmF093tkgvDANN0S9tsG9HvRygqQiwvR5k9G2ndOkSfD62zE9HjSetBkewdMU1MSDpxJ2YvDHFEl1QVX1kZ4BItU9Mw+vvRLcslJF4vaiDgEtN0cJzxZ3gCAWxNG9E1PVMk9h+rrUXfvBl12TL8a9Yk3/cWFyf7QyzHQZg+Hb22Fm8a74+04wsCeL1j3otjhw5ht7RQePrphNvbUVR1mMqWWlmJtmXLoNeMvj5Evx9blunq6spoTkPnFwgECAQCVFdXY1kWvb29dHd3U19fz65duygsLExmRwoKCgbd5/+dMyAnogdIHm8+8gQkj2OOTILvhCFfRUUFS5Ysob+//5gpVU107NbWVgYGBjjppJOoysDFONNxJ0JABgYGcOL+DoyxCuvIMuH6ejyBAL74iq568smEvvzlrGq8UyHK8rDg2zIMoo2NiKJIMF5mF9q4Ee911yU/I8+eje+b38Tcvp3ITTchrlmD98orh8uy4pa7CYCiqgi4RmvRuJznIIxwPZovvYRy+eVZHZeDW65idXdjR6OuLGtBAf7qatfjwLYJ19dnTUDTSc+OBdHrHdRbMhR2KIS9ebPbC9LQgNXXh9nbixMOuw3PiXKk+J9QWIhQUoJQUoLZ0IBQXY0uii5BdRxQVde8UpLcLFPcFyTTwNmJN6E7to2j6+5fXJWKxL+67jabx2I4mgaa5qq5aRpGYyPh++5ziV5c2UwoKHDJVXk50pIliJWVGZ9H2zSRRyC4Ylzilbhxme04bjYl3tAuiiKOz4cdiw0riUsoMylxYuM4jutV0d3tZitEEcnnQ/X73X24G2U053SQZs9G37cP74oV49o+kZkye3rQXnwRqaCAwOWXpw1gE/0hsUiEWHEx2qZNGRMQAKqqcNraYIT7pH7kCObBg/jOOgsB8JWUEOnuJlhRMegciaqKkzAATch2NzYiVVdjW1ZStWkikCSJsrIyyuLEUtO0ZHaksbERQRAGSf0eTwRkMjIg+RKsPMZCnoDkcVzDcRzq6uqoq6tj8eLFzIiXeRwrpaqJQNd1enp6cByH0047LacmTRMlIPX19YglJQh9fZDwzxjy8HAcB9M0MS0L0bLwpZTceN77XsK/+x3qaL0jYyGl+Vfr6MDq7sZbXT04Q2EYyEMVtgQBdeVKpFWriD31FOEvfQn5wgvxnH9+MpNjGgaiKCKlNJunIz0pBzvsJbuzc1R1sOTnbBu9vx+rv9/13RBFfJWVKGkM9YS45GvWmASfAjEYRJw1C88o/ikJ2LYN3d1Y7e3Y7e1YnZ3Ie/Zg7t+PkJCvdRwE23YzC5Z19N+EohQM8t0YdL05DrauY2kalteLIMsIqur2uHi97vF7vQg+H6LX6xIhnw8hEEAMBLA8HvjtbwnE5Y5zAceyRs5IpEAQBCRBcLMpccJl2zZMmYJ24ADqokWD5H7Tba8WFCRN/hzbRh8YQOvsdK/XCS6QKHPmoD36KIyTgBh9fRhbtkAkgn/DBsQM7mOSqhKsrmbg9dcJtbfjLys7SqZGgVhWhl1fn/Y9vbMTfccO/OeckwzkJUVB8XqJ9vfjS7lPOI7jkkM4SmqjUeRAAKO3l/64B0su4fV6mTZtGtOmTcO27WQze3NzM3v27AGgqamJqqoqioqKjikZyWdA8jgWyBOQPI5bGIbBjh07GBgY4NRTT6Uo5YEy2QQkoYCTq5tyX18fW7ZsQZIkqqqqcu4QO1EC0nDkCMKcOdjNzYOaiRNheCKIdywLenvTOjArc+di/vWvxIJBPCO5Po8SbAuKgt7fT6y1FSUYJDikv8dsbkYYoewoQRg8b3kLyrnnoj/0EOEvfhH5He9APOUUZElKv8KXEpSMhrH6P8xYDL23120GdxykYBDf1KkIkoRuGGlVfJJTTyFepmmOGpwC2F1dkI0DdhbIlAyJogjl5Yjl5bBkCeamTXjf8Y7k6r5hGK4T+gRWQM1IBCMUwpdiFpkpHMsCWcbW9dF7abJE1seTUNaSJNSaGsxXX0VYvNjNcsQV2ERBcDNaI9xrBFF0m7nj37nW24ul64Tb2txm9kAANYtyKmmcgaHZ10fs9dcxW1tRTj6ZQDaZjDiUqiokQSDS2emSrLHmIstpz4vZ24u+adMg8pGAp6CAcGcnRiyW7KlxLMuVII7FkDweYm1tyCUlyB4Pum3T09eX9bFkA1EUKSoqoqioiDlz5qBpGi+99BKmabJr1y6suBRwIjvyZgfvk5UBySOP0ZAnIHkcc6R7qPf397NlyxaCwSDr1q0bJrGbyFJk4gacLRI34lytCjU1NbFnzx7mzp2LpmkZ1/lng4mWjdX19UFxMVJBAebGjXDttcmg3LZtDNN0zR8PHyYwdy56U9Og7W3bRggE8N9yC5EvfhEMA88ZZ6TdV7qjd4g7kR8+TMHChWmdkvXHHkMeYcxUiKKI5z3vQbziCrS77kL4618RrrkGKY3yj+j3Yw4MoIyhPmbt2oU4e/ag1wxNQ+/qwtE0BElCKSlBqagYdD1m5OYd76mx44FoslfFcVxJ3vgqemJUY9cuxAyceDMhVum2GQ8cw3AzFDnERJvQhYIC7L4+xCzc5UcfcGL3GXnKFIze3kGBXsJzxI57GiWI52gE1DFNfKWlKHH/nVh/P+G+PgRFcZ3sU76HEb/PYDDjPhC9tRXjjTfANPGcdhrC4sXjIoUA8pw5mPv3E1i7lmh3N2Yshj/uv5EOjuMgDOlZMcNhoi+/TOCss0Z0VPeXlhLq7ESuqHAzUKbpOqLHPY6sxkZ8S5cieDw4jkPPwMC4jme8SDSnL1y4EFmWCYVCdHd3097ezoEDB/B6vcnekeLi4qyU+rKF4zg5z4BEo9F8E3oeYyJPQPI47pAI2OfMmcOcOXPSPohTSUKub86JG7FlWRNSprJtmz179tDa2srKlSspLy9n//794/JoGAsTzoD09SEUFkJnJ1JJiavZv2ABOA6GaaLIMsbAAKIgoBQUMNRhwd69G3HOHERRxP+d7xD5yldA1/EM1eRPs2/btonU17vlUYHAiEGFvX8/3g98YMxjSZgLIooUfPrTOOGwq5jV349y/vmoZ52V/I7lYBCju3sYARkauBnPP4981lluE3lPD1ZfH4Ik4amsHL2JPZOg1etF6+vDV1Z2NAhIycIlmpsTgam5dy9KDr1Ihs53PKR+3KVko2ECRoQABIM4fX2QKwIyQYiJZv/U11IyH0lX9pTsSOI7Tw0O7ZSMmijLSTJg6jp6fz+abSOqKp5gcESzQmnuXGJ79uAbQfnJsW30+nqMHTsQvV58Z56ZdGqPtbVl3QCf+D0pU6divPYagiDgLysjFgoRam/HV1qavrxNEJCqq4nV1+NbvBg7FiP6wgsETj99VHlpQRTxFRYS6ekhUFaGZRiIJSVYR47gTJ+OE40mCY0givS/yQQksViUIJoFBQUUFBQwa9YsTNOkt7eXrq4uDhw4gKZpFBUVJdW1gsFgTn9riedGro0I8wQkj7GQJyB5HDewLIs9e/bQ1taWDNhHwmQTEEEQJhTQpyp2rVu3LpmOnqwGd0mSJkRsOiIRHJ8PolF8X/sa0bvuQvjqVwGSJn16YyPBRAPzkAeg/sILSKeeCrjH6L/9dqI33IBtmvguuGDwzlKyApauE6mtxTt1KnJhIeF9+9LOz7ZtV51rBEI4qFQsHqwn5i0EgwS+9CXXY+Phhwl/6UtIixahXnEFSmkp+pEjo54bBzAOHsQ691z0Q4dQiovxzp6dkyDAtCw3cxAOJ0v/Ekj6UCSOzbZdtaXmZpzKykEr5rkKSIS4FO9YqldvBhzHSTYOjwdCQQF2f3/O5jKuOQx9QVFGLO1M+33btpsZTPmuE58dCllVkeP3TCMadYmyZSF6PIiFhYN6LtSaGqJbt8IQAmKbJrHdu7H270eeMgX/hRcOWhBINMWPFwk1sMQ58ASDKB4Pka4ulIICPCllO5ZhIEgS6rRpRPfvx543j/Bzz+FbvTpJhkaD7PViaBqxUAjHtpGLizEOHMBsa0NK8fwQZXlSekBGQ+LZku46kGWZ8vLy5PMvIfXb3d3NoUOHkCQpmR0pLS2d0CJZ6lzyBCSPNxvH/imTRx64N6ytW7ciCALr16/HN4akZ+JhPJl9IOMdu6enh61bt1JWVsbSpUsH3dgnq8F9ohmQqCS5zZmyjFhZidXR4QZv8dW2SEMDnqlTk4GPM6R3wj5wAO+11w6aT+Bb3yJ8001EDQPfJZcM2p8DGAMDxBob8c+Zc9TUbISeDPOVVxDHkMBNLRVL54wuyjLe974X73vfi7FzJ9qdd4KqYq1ahT17drK/I7FvyzCIdXa6poBAYPr0cblPuwc8uJwokaVxAG8gQCSdGtfQ+YsiIq5fh+r3Y8dLJxIZC1EUk/0E44WQ6JvIloBMRgNt3F9j3AgGsRsacjIVKxbL/pykgVBWht3ZiZiBb0267IhtWViJDEn8+04XxCZUtUzLwgiH0bq6cADJ58MTDCL6fIOuR1vT0DZvxj5yBGXePDyXXZZ2XD0cHmZAmBFSCJxYVYV55AhqXNBBVBQClZVEu7uJxGL4iosRBCHpti56vThA5IUX8C5fjpzGMHAkeIuLCbe3J/toDMfBbGrCv2zZ0fl4PLSPQ4Z3Ikh4x2Ryffv9fvx+PzNmzMC2bfr6+ujq6uLw4cPs2rWLgoKCJBkpLCzMupQqNRuTK+R7QPLIBHkCkscxh67rvPzyy0ydOpVFixZlblQ1yY3o2Y7tOA4NDQ3s37+fBQsWMHPmzGEPmMnKgEyUgOheL9g2jqKgGwbKu96F+cgjyFddhRmJQCQyyPRO9HqxwuGjsqSSlLaePHDLLYRvu80lIVdckXxda2/H7ukhuHDhYDO8hCP6kCZ941//wnPVVSPO37FtDMdBlmWkDK4fZdkylNtuww6F6LvzTsL/+hfSqafiufBCYpqG1duLJIqo5eUImkZs4cLxk4+hc42XtQnEs0tDFaDGQlzOVuKoYEIiQDUsyyWSxFersxxbUBQsw8j+wTAJcpvOBMcV/X7IgbwquAREyMH3L86ciXHoEHIWxplwNDtiaRqK14skyzhDsyMJAppyzgRcjx25sBDHcdBDISLt7W6DfiCA3tKCsWsX9PWhrFyJGs9ijgRL05Lu5lkjPi+puhpr2zZIUZRLlGTp4TChjg78paVYhoGnoABb1zH6+vAuXIiSZTldwim9t7kZX2kpjixDSvkVgOT10t3cPL5jGifG2/QtiiIlJSWUxPtmYrFYMjuyY8cOHMehpKQkSUi8GfT4JLJRuSzrikQiTEmj+pdHHqnIE5A8jjk8Hg+rV68epHKVCd4Mw8BMYVkWu3btoquri9WrVycfEENxvGZAdK8X27KwRRFZkvCcdRYDDz2E/f73ox86NEzxJkEU5HiDKKM0cQduuIHIt79N9H//F++73kWsqQlZlgmkcbGXCgsxu/8/e+8dJtdd3/u/Tp+2vWi16s1Fci+y5I5twLjQmzEJoQeC4bkXrgEbGyfggAnBgUDuvUkIEH7O41R6CSEGQjE2oGLZVu8raXuZnXL69/fHOXM0MzuzO7M7a8s3834ePZKmnDbt8/5+Pu/3e3wGARGTk6gV7GELiexCCDRNqyulHALr2dh73oOfz2P/4heYH/wg0tKlxO64g/jatQDk//mfUWpISa6E8qOpZglcawfBz2ah7NoUawUgIB6u6wYdEscpcVmaq8iQVDXI/agXi9EBWaBZg5xI4OVyDTkU33Hmt/JfBrW3F3vnznk/3zNNlFgseJ+Hzm4lBDTUzRTICBAV/pIkYbS0oBkG5tNPYw8MYO7eTcvttxOr5i5XBuH7NVkRV0Lhnad1d+NUGXnSk0nUcCTL8zw0wPzlL9HXrAksnecBWVFQVBXHNBGKglz2XaUlEgwPDs5r2/NFoxwWDcNg6dKlLF26FCFEZPV76tQp9u7dSyKRiJy12tvbK5KexUhkz+VyDXd6bOL/PTQJSBNnBNrb2+uesz5TskAK42OyLLN169ZZV50WShRm2+58r0U2myWvabi5HGoqFf1Iqeefj/X97xPbvHnG6r8Sj+NMTADg/PKXKOefP+s+Eh/+MNk/+zMmPvc5jDvuiAIMy6Enk2TLViMLFrjliMTmQqAUF1x1wJqexhkfx8vlaL39dpTXvhb75Ensr3+d6UwG9frrcffuJfnqV9e97XJ4ITGoZAksqSqebc/ZZXH37kWeI6dDkuVAvKsoQbp6qB2ZIWyu0B2RVRV3Pu+jxQgcWyABkRIJyOcbcyiOg9qAgkrp6kIsQG/g2zaxsoWacgLqCxF1Rwrjea7r4hw8iLd7N5JloZ51Fm133IH5ve/h6zqZoSG0VApjlrn9hbqSFR/vbDk2sqqS7O1l/IknyJ08SctLX4pv29hPPgkVFi1qgapp2JkMXjqNHi4sRPA8rAa9T2rFYhT9kiTR2tpKa2sra9aswXEcJiYmGB8fZ8+ePTiOQ3t7e9QdKQQFNtqCF5o5IE3UhiYBaeIFizNhBGt0dJSdO3fWPD62WMc8X2KTz+f55je/ibd0KcqpUyhFxEB94xvJ3nUXetHoVHRfLIZlB15Y3q9/jfrGN866Hyefx7/1Vox//3fcv/97/A98AKUCUZNkecZqurtzJ/L69SW3FToJs+UnzAYrncYeGkIxDFLr1pE7eDBa4ZaXLCH2oQ8hSxL2t7+Nffgw0v/+36hXXYV+0UXzGsXywlRsrUqugZxM4kxPY8xhb+rt34+8alXN+5UkCUlRKOxRFAubhZjRHVFUFecMISALtuFNJPDtcr+2eR6L5zVGAyLLsMBRrrm6WIXuiCxJmPv3ByNWuRzyqlVoN90UdFAKrznBiJIQAmtqiszgIEoiQaylZcZ+nHy+YZkqUmcn7uhoJJovhvB9sr/6Fer0NMqWLdiWhZFKIeb5WhZG+fzBwcCFzLJK7vcsC73BBfhceC5S0DVNo7e3l97eXoQQkZh9bGyMgwcPomkaXV1d6Lq+KB2Qpgi9ibnQJCBNvGChKAqu6y7KtufqKAghOHz4MAcPHmTjxo0sqyE9urDdxeiAzGe0a2xsjB07djA9PY20YgXi2DGkoqwLe2wMpbMT99gx9LKit7DKDuCPjKDOkkthTUzgDA6S3LAB+dxzyf7Xf5H94AeJffCDM1cjOa1DUMJCzf35z1Ff9KLo/vJOgut5Na2WC8CemsIeHkaNxUiGtsEAhKnoUdElRCD2vukmvP37if/BH2D94AfkvvMdSKVQLrsMY+vWQMw7xz4hKDhmGxHTEgnsGsLQxIkTKFu3zvm4apBkGSXUj0S2rwXtSLiS7rvuDNH8nFikESxpAYWhFOoiGoJGEqx5EpBaCJkQAufYMZynnkKk00h9fcRvugktLAYL3bCCdsTTtCg0MtbeHnxGpqfJDQ8j6TqxIvcsL5+PtlP3sZf9X12xAufgwRkExMvnyf/0p4ieHuIXXIAej5MbG8PKZOZ93fywSyqfPIm/ejVifLx0n6ZJvI4gx0bguSAgxZAkiWQySTKZZMWKFXiex+TkJOPj45w6dQrLsvjd734XuWu1VCCg9aBJQJqoBU0C0sQZASnMH6gHz1cHxHVddu3axdTU1IyE9rlwJojQi8Xy55xzDgDS9DRiZATp8sujx4hcjth73oP1N3+D/slPztxQ6FhFYSa9AqypKdyREZJnnx39oKlbtmBcfDHmn/wJ7uWXE3vd60p+jJXWVpyJCZRQqOsfPYq6bh0Q2NZ6nle1k1DxfAFrchJneBg1kSC1du2MwlRJpbCnpjDKHHacJ59EPucc5JYW4q9/Pbz+9fi2jfXjH5P7zGdAVVEuvBDtqqtQy3Q/hWRzCKw1ZxsRUwwDv4b3hZiaQqkhBK6W0iGyfVUUECKw+A1zKOxQp1LokEiSBEWjPb7rIjwP4bp4loWdz8PJk1F2h+d5MwTRUFaIzvF5d0wzyD2ZmgrOp+DAVvRvCscny6Ao0b8FAQHxCYruBRORBhIQqa0tCEisU/PmVulACCFwTp3CeeopGB9H6ukhfu21yKkUnuuWHHu5eYHT1xdkY/T3B9oRSUJLJjFaWnBMk/zYGJIso7e14btuScjhQqAuWYLz29+W3GYPD2M9/jjxrVuxXBctJAWJri5yY2O4moabTqO2tta1L9c0cfftI37hhfimiVc2buVbFsk5FhIajeeagJRDURS6urro6uqitbWVY8eO0dfXx/j4OMePH0eSpEg70tnZiVGn/qlJQJqoBU0C0sQLFs+HBiSTybB9+3ZisRhXXnnljIT2+W53oaiVgHiex7PPPsvo6Ggklo/H42hf/SrCNJHDHw17agolmURZuhS/p4f8D35A/GUvK91nIoE9OQlVVg+dbBbn5MkS8hE9N5Ui9Wd/hvnII2TvvZf43XdHBbzW2op5+DAUnIJ0HUlVccJ08EqdhGrp6tbEBM7ICGoySWr9+qqrelpLC9bJkxEBKWzP27ED9bbbSo9d14nfcgvccgu+72P/+tdY//t/Y7ou8oYN6Ndfj9zXF42I1dJNkKC2LkLogNVQCIHnukEau2UFIvmRkYCEhoSkcPSyLAcr4oqCpChImoYGiPZ2EkU2zY5toy7wWM2REWRdR59Nl+D7CNcNDBQ8LyBFth0QJN/HtyxyxQLjUPciaxqSpiFrGqqmBedULXl8gVqUckj9/ThHj2JccEFdz3NzOdRwrl74Ps7gIO4zz+CPjKC0t2Ns3jyTBFOdjEqShLZ6Ne5TTxFbtWpGd0RWFGJdXQjPw56YwDZNDMdBnU8nouwayqoKRSNt5rPP4h05QvIlL0FWVayRkZLPaqKri+muLvIHD9JSpyGEMzaGbNvoPT24mQxWmcmCsG3aZjHRWAw83wSkGIUsrWXLlrFs2TJ83yedTjM+Ph6FAqdSqag70tbWNuuxF8a9ziQRuud5TFcIm9Q0rUmUnkc0CUgTL1g81x2QoaEhdu3axYoVK9iwYcO8fkCezw6IaZps374doEQs393djTE5GcxGh7c5w8MkVq/GFQLjve/FfP/7cS+5BHXJkmh7SmsrzhNPIK9YMWNfjmliHj1akXwU/y92552ohw+Tv+ce9N//fYytW1E0LSr63FOnoKcnEFAT/GCUF1QF29kCBGCNj+OMjs5JPApQYzHMCq+LPzyMWuH8CpBlmdiVV0KYTO48/TTmI4/gTU0hr1yJ8aIXIWZ5fsl5FEIAZxs7WkAOiee6uKaJsCw82wbPA9+PRp1kXUeJxdBiMRLhingBhRDEAiGJNASyjDc9jRwKWhuJyEZ4FkiyjKTrlH8SCwJsWltJljk8CSHwLCv4k8nghmSl2LJYUtWIoEgwr1GwarRFWboU91e/gjoIiBACZ2gIMTqKPTgIloXU1YV+wQUln8l6oS5ZEplJVLN29iUJYjFUScKcmAjS1zs66n+9yx+fSuFOTWE99RSyopB88YuB0wGE5UisWcP0j3+MmU4Tq7ELIoTAfvpp2m64IThfXceitCsmTJP2rq76zmWBWAzh93xRfiyyLNPe3k57eztr167Ftu3I6veZZ57B8zw6Ojqi7kglsfl8c0C+853v8OCDD/L000/T09PDm9/8Zu65555Zc8FM0+T+++/n61//Oul0mksvvZSHHnqIrUWjqj/+8Y+5+eabZzz3Fa94Bd/85jfrPs4mGoMmAWnijMB8ipfnyoZXCMH+/fs5evQo559//oL8zRezAzLbtSiEI3Z3d7Nx48YZP34p22bQspBCO14cJ1ilDEdx4vfdR+7Tnyb5538eES8tlSK3YwexSy8t2ZbnOJiHDgWajxpImrpmDckvfpH8pz6F++STxN/7XiTDwLMsrMcegwsuCGxrw7DE2WCGxENraamJeJQeiBqt9kfFo67X5a4ln3su2llnkVBV/BMnsL/zHZwTJ3A6OlA2bkS74AKUZcsqblNOJHAyGfQqozl+JgNz/Kj7joNjmri5HMJxkISYQTLkeBy9ra2qqNpJp2dc50IIImFxWhCyC9fFm5xE6PqMUafZVt9rxYJJTYXnS5KEGouhVuncCYLr6JkmvmliZ7N4rosIx5lkXUfRdbR4fF7Hp/b04ExOzvoYIQTe+DjO/v34AwMI08SXJLTNm1GuuKJhq+eyqlYkteXOWs7kJHoyiawoOKbJ9OAgajJJfAFaAam3l/Q3v0nq6qtLMoacXK6iQYWSSKAZBsJ1MaenidXQtTD370fp6iqxUFZiMczpaeLh50xYFp01jDU2EmdaB2S2Y9F1nb6+Pvr6+hBCkMlkGB8fZ3h4mP379xOLxejs7MTzPPr7+2lra5vXCNaXv/xl3vnOd3LHHXfwvve9j0OHDvHwww/zxBNP8P3vfx+1yvfVG9/4Rh577DE+8pGPsGrVKv72b/+WG264gSeffJLzQ3fGI0eO0NbWNoNsdFcwQWjiuUOTgDTxgsVz0QGxbZunnnqKXC7Hli1baFlgq77QqSgRPDcAsxGb48ePs2fPnqrhiACtto3keQhJwh4fj0Y5JAhsbvv60K6+GvNrXyPx1rdG58LRo2ivfW20Hd/zyB04QGLt2tldg8rGkmRZJnnvvVg//zmZD34Q5Q//EHNkBHfHDhJ3310x2bwYnm1jHj2KGovVTzxCFHQgavga+1NTUGPqsoBoJb0wIiavWIH63vdi2zay5+H99rfY//qvgQg2FkNetSrQj5x1FrKmoSQSuGNjUIWAuPv2IReFtwnfx87l8LJZhGUFyeGyjGwYyLqO1t4+v5n90Lq32vhUQTuihBog37bBMHBCvUtUzCx0dKkRtq/zcK6SAEXTIhMEIQSGYaDH44GuxzRx83ncdDrSo0iahmIYaLFYJNquBlnTKp6XOzmJc+AA/tGjYJpIySTqOedgXHopeB7mxATaYqzUJxL4plkxSDSC72OE96uahp9IYKXTpAcH0Vpa0OPxqqnsMzblupi//S3+qVPo3d0l5AOCz3Ki2vesphHv7CQ/MUE+nSY+SyfEN028Y8dQyyzCFcPAM01obQ3csSyL3joDDheKxbDhnS/q6cZIkkRLSwstLS2sWrUK13WZnJxkbGyMz372s3zzm9/k/PPPJ5vNcvz4cS666KKavotPnTrFBz7wAe6++24+/elPR7ffdtttbN26lb/5m7/hPe95z4znjY6OcvDgQb761a/y6tAq/bWvfS2bNm3ic5/7HF/5ylcAOHz4MOvWreP666+v6TybeG7QJCBNvGChKAp2g2w2K207m83y+OOP09LSwtatW9EakIRc+KJvdAu+0giW7/vs2bOHU6dOcckll9A1S/GyoauLbXv34gPu6OjpkEBJiroBsVe9iszdd2Pv2YMeitfF5CRS2BESQpA9cIDYihWzh7bN8oNkXHMN6vnnk33gAdz169EAbRaxrgDMoSG8dJrk6tULCovTWluxTpwIRK5CYD/+OMq55875vILYXBCOiFXqbhgG6jXXYFxzDRCONB04gP2rX+H88z8Hq9AdHbh9fejXXYdSobCyn30W0ddHdmAgGJ8iKKb0lhaUnp6S/RbSsecDWdPwLAu1BmGuBEj5PHIyiR52QXzfD95HnocUrvQWxOx1oREkPcw5WEixJ2w7IqWSJKHF42hF10YQWLm6+TxmNhuNc/kEq+16PD6TCOo63vQ09qFD+IcOQT6PZBjIZ51F/LbbZpB3c2qqIUGIlaCsXIl96BCxjRsr3i98v0SfJBF8jyU6OhC+T258nHw+j97SEpkAFMhIeSq7degQzo4d6Oefj3755WS/852K+6xKfltbcScmiHd0zElC8jt2YFxwAeW/ECIMJrSyWYxUCmyb7udhBOtMISALIUOqqtLd3U13dzd/93d/x4c+9CG+9a1vsX37du644w7a2tp4yUtewktf+lJe/OIXV+04fO1rX0PTNO67776S2y+55BLuvPNOvvSlL1UkIN3d3ezatavkNsMwuPTSSzl69Gh02+HDh1kbOi46jtOQ3/ImFo4mAWniBYvF7IBks1mGh4dZv349a9eubVi3ovBF73neohIQy7LYsWMHruty5ZVXzjpDC3DVmjU8+uSTeLaNNEvhl3jgATIf+hDqX/wFciyGnEziptPInZ1kDx7E6O2dt1UnhNawySSxP/szMg89hH3oEM6xY2hlq6QQjGqYAwOobW3oa9dGK9bzhWoYJToQb9cujNe9btbnFOeRaMXJ5nNAlmXks85CLQpW88fHmfq3f8P8q79C2DaeriNWr0ZZvx6pqwt33z5iF1+MsXRp44XoRZA0Dc+2ayIgACKbRQpXxws2v75tl5Dt8oRuucjGuep2G9EBicchm4UFdC5FaMlcDRLBe0ctIwhWqLexJifJT0zgj4zA0BByNot74gT+d76Dds45xG++ec58Dd+yiC3SmJC6fDnWT34CVQiInclUHVeTZJlkdzeubWNNTiLpOkZLS6BZcd3IWctLp5l+8knUZJLE7beX2F8Xw3fdWfU2clcXztAQakcH8Y4OcqOjOKYZOWZFxzw0BK6LbxjIhU5c+LecSKDKciCqT6UQnkdnnY5kC8WZREAauRi2ceNG+vr6+NSnPsWRI0d4+umn+fd//3c+85nP8OY3v5mf/exnXH311TOe99hjj3HddddVHNu67bbb+MpXvsLg4GBN48+O4/Cb3/yGW265JbrtyJEjpFIpNm/ezO9+9ztaWlp497vfzSc/+ckmGXke0SQgTZwROFM0IL7vs3fvXkZGRmhra2NdaP/aKBQXZY2ELMvRbP709DTbt2+no6OD8847r6Yfl0vPPx/p7/8eZ2yMRIViP9pPIoHxlreQ+8IXSN19N3JrK146TS6dRmtrQ69xZKkSyot59fLLEZqG/bd/i9XRQeytb0Vtb8f3ffInToBtk1y7FiFJNVnY1gRVDVZ8ATE2hjyLwNf3fRzXRVGUOUfE5oLnuthCILZsQYS2xoqmIR08iP/rXyPGxvCPHMH7yU8wV61CWbECddky5Nk0IfMcgZI0ra60bpHLIVVahS4kroc2v8XaEbdg01sUgljxWBYSREgQ8Oin08gLICD1HIFvWTgnT+IPDOAcP47suuA4KKkU2vLlSJdeiheL4T3xBCKVgtWra3I/m4sELQRKe/uMcL5iuKZJYg7yo+o6am8vdjZLPtRgGYkEnuOQf+IJ/OFh9KuvRgnJSWHET0ql8KanUcLXx85mK+o/ov10dGAfOxb9P97VRXZ4GFXXI1LuTk1h79xJ4rrrMKem0Mvem1IshsjnQdOCz3o+z/Iac5wahTOJgBRcsBqFbOgy1tHRwYte9CJe9KIX8elPf5rBwUE6ylzaCjhx4gQ33XRTxftWhxlTAwMDNRGQe+65h+PHj/OHf/iH0W2O4/CTn/yED3/4wzzwwAM8/vjjPPTQQwwPD0djWk0892gSkCZesGg0ASl0DRzHYe3atUzVEAxXL6Kwt0UgIBB8ke/Zs4f169ezevXqmgu4TZs2BdfTcdDmKDaMK67Ae+wxct/6FsqSJZgTEySWLMGoUdBX7loFlYt5+eBBvLPPJnnXXbgHDmD+6Z/ir14N11xDfOVKtLCw8Bp4LQsZJGpHBxhGVQF6oYhWVRVlrkKiwjYEQQfHmZxEmGagq2htxejuRtO06NxYuhQKK4Z/8ifEX/UqnN278Z58EifM3UDTwDCQli1DXrUKddkyRFtbkO8xn2ugaZGeoyZYFvJc40Hh+744BLEwruV43unuSNghIcwdWXDnMZkMxPsLgKj0+vk+7ugo3okTeMePQzoNtg2yjLxkCcq6dcgXXxxoQiq8P+SzzsI/dAgJMEdHg8+DoqDG4+iJRKmYvwY3sNkw1zMlSZrdXU2ImjtuejKJlkxiTkwwtWcP0qFDGBddhHTJJWihu13xay56e7EGBoife26QH2PbJGbRdSgtLfi5XMmxG21t5CYmSHZ14WWz5J94guQ11yCHiwmF4jr6zlFVhOOAquKMjKAoCitqdKprFHzfr9vCfbHQ6G58LpcjVva+HxoaAgIzlHLUagBQy3fBX//1X/PZz36WBx98kPPOOy+6/cknn2Tnzp1cGhqm3HLLLSxZsoS77rqLe++9l/Xr19d0DE00Fk0C0sQLFo0kIJOTk1HX4NJLL2VoaIjxssTcRmExOjeFL+e9e/dy0UUX0VOnqFJVVWLxODlZnlmwVFhJj334w0y9+tWob3gD+D6xMqvTelC1mD96FPmyywCQVq+GP/xD2LkT6Stfwb3uOpRbb0WuwRmrHhhtbWQPHQrGNip0cwRBt8L3/brCECEoOuypKdzp6cBdTNcxOjtRi66dnc3ijo+fJiDFUFXktjaMLVtgy5bSbbsu3qFDuHv3Yv3qV3iTk4GFbCyG1NGBtHLl6a7JHIWPomlY9bw/czmoU58gSVLgylUUgih8P7AKBuSQpM87gyN8npRM1tXNKYZvWbhjY7jHj5M/dAgxPo6YmgqIhusit7cjLV9O/JprKoYKOrPo09TOTuxt2zDa2iLTAd91oxRyCKyA1UQCfH/O12zBqCJEdy0Lqc4RFW9qCu9Xv0JLJnG3bAnE3sx01hK+j9/dHYxZrl+PRNAFnc18QArzZ4qhxWJ4pkl+fBz3d78juXXr6etVZK0cbUNVEZaFrChYBw+S7OxkeZG5w3OBM6kD0mg9YsGCt5gwLFu2rOpv3k9+8hOWLVtWotkoxpEjR6JtzIZ/+7d/473vfS/vfOc7ueeee0ruU1U1Ih8FvOENb+Cuu+7iySefbBKQ5wlNAtLEGYF52VmqakMK+YJL1IYNG1i1alXk8rOYFr+N7IDYts3OnTuBQLQ3b0vJTCZwUypDpRJQlmX0K68k/8//TOyP/xg3k0GtJ3hKiIrOUSVwXeTWVnJDQ/hTU8RWrEBdvRpe8QrMb3+b7N13o7361ahbtlTNXKgXsqqCJOFu3468YUPZIc8tNi+Ha1lYY2NYphloBZJJEkuXVnUIU+PxisYKvu/PukotqyryWWehhZoSt5Bkrih4IyO4+/bh/dd/4YQrkeh6MH+vaUjt7UhdXUjt7cjhH+E4c55bAaKWDshskKTgtS/qjvi+H3QZPA8fToua6y3akkn8sKCPjlcIRD6POzmJPzkZEIvx8YCoeB6EKe+SLOPH40iJBMqqVcjr1iF3dNRVOFZ7hyidnfhlgXiyqhIrGlHxLAs7k8FKp1F0HUtVg+5IPd+VNepo5KVLcY4fxyh7zzvZbM1aIN9xMJ98EjE+TiJMYhdCkB8bw8vn0bu6ZqSy6x0dOLaNpmlY09PIul7iplYY0ys55wqfHT2ZZPLf/53k5ZdHY4mebVfWk2haYFGtqnjT08R6e5/zbsSZ5ILV6GOplAEyNjZWdTEhlUpxww038NBDD5HL5WY897vf/S6bNm2adfzqxz/+MXfccQdvfOMb+T//5//M2PenPvUp7rvvPtoqLBQ0cvysifrQvPJNvGCxUJLgeR67d+9meHh4hkvUYgUGNnrb09PTbNu2jdZwlTE2m5XmHFCFwP/FL6JQPZh9fMMZHib2rnfh/sVfYL73vaQuvLC2HYXOWm5Y5FYr5oWu45omcj5Pa5FYGyD28pej33Yb5le+Qu6730W98070opb7QiDH47i7dpUkvxeLaiuFIUaPA+zpadypKYRtB6LslhaM3t6aVhmlsBAvhz8wgFQnsSz83Cs9PSg9PXDVVTO3a5r4IyP4IyN4IyN4e/fipNO4AwNkk8mg2AuTz1FVSCaROzqQOjuR2tqQ29qCESdZnjtEsUYUFgBkWQ6ctQgImBvmjsiyHFgOOw7CtiFMcBe2Hfw/n8fL5YLbT53C3bcP/8QJcF0I09IlTUNqa0Pq6EBZsgR10yZoaZlRiJnj40iKgt7gVOdKK/nlUAyDuGHgWxaJ7m6s6WlyQ0OgKGipFHostnCRfmFffX2427ZBGQHxHYf4HLou33Wxnn0W78AB9AsvRC/qzkmSRLyri/zUFJmRERKdnSXkW5Ll4LUg6DjF29uj0SlfCDzfD16vkKTKsozQNHzbjrocQghyv/oViQsvxPF9jJB0Ofl8RecwSVGC90I+D7EYxvMQCPj/cgckn8+TTCZLvtMrFf7FeMtb3sInP/lJPvGJT/CpT30qun3Hjh088sgjfP7zn49uy2azuK4bbfNXv/oVr3zlK7n11lv56le/OuO6ep7HF77wBdra2kpctr7+9a+jKEpFUXwTzw2aBKSJFywWUsjn83l27NgBBKng5S5RixUY2MhtDw4OsmvXLtasWcO6dev48Y9/vKDtSrEY7NiBa1mnHX2qFDiuZeEPDZG47jq8jRtJf+hDxP7yL1FrsbMMCwtZllGrOEfZAwM4vk/LsmVYJ09W3IwsyyTe/nbcdJrcl75E5pvfJPa2t6H299d4xpWhtrdjHToUJaD7vh/Z2lZbLfMcJ5jlz+WQYzFiPT0oYYFk23bdgYi+65YUat6RI5HdcSMhx2JBkn3ZDHz22DGSZdfR931Ip/GGh/GHh/H378efmMA+eBAeeSSY6Q91G4XXVyqMwBT/gdJ/FwqG4vuEwJ6YgGQyWMUP/wjPi9LYUVUkwwjsa+NxJF1HxGIoiQSyYSB1dAQdC8siOYebWTX4tl01GHLBqGHlteAEJikKsZAI+K6LlU6TTaeRVBU9lZrhwFX3ofT0YJdp3srtd8vhmybmzp34J0+irV+PUexuVQYtkUBOJsmNjaG3tqIXf98aBr7rBkL78JpUS2V3XRfR0oI9NITe3w+SRO6JJ9BXrkRfuhQ7myU3NUWivR3ftkvDCgtjeaqK73n4J0+i9Pdj1NHtaxTOJALS6A5IpS7GXFi6dCmf//zneec738nAwAAvfelLOXLkCJ/73Oe44YYbeOc73xk99qKLLmJ8fJyjR48yOjrKLbfcQmtrK2984xv57ne/W7LdV77ylfT29vLxj3+c+++/n6GhIbZu3coTTzzBX/3VX/HhD3+Y/gX+XjQxfzQJSBMvWMx3BGtsbIydO3fS29vLueeeW3H157kIOZwvCsnsx44d48ILL6S3txdYeGfFy+dRL7wQ6/HHUecIbDKPHkXr6AiStZctQ7vrLnL33UfigQdQw+OpuI9wZVMOna4qwZ6eJvOd7xDbuhWttRV7ZATf86q6AMmpFLEPfQh5fBzzi1+EJUuI3Xkn6jxH0dREIiiGdH1WsbkQAmtyEndyEgnQu7vRKpGEOleplUQCJ53GKDp+/9gx5BoySRqGSlkmsgzhiBZFHSlvcJDke95TQrIcx0FR1bpS5Gfg+PEZJKgEYVFa0I8ITo/t+IVE+6kp7G3b5n0IwvMWbO9cFbo+g2iWw83lZug/ZFUlHr43PNvGSqcxJycDTVEqNfN4axnBUlWksuOwpqcrjl+56TTWtm2Iqamg4xHqtKoiLPwVTSPZ20t+bCxw1mpvD8bvenqwjh1DquKQVK4d8bq7A/F/Xx/57dtRW1pQ+vsRQqAnk7hjYzimGb0fSrYFAanyPMhmkfv7SSw0MHMeOJMIyGJoQOpNQQd4+9vfTm9vLw8++CDf+MY36Onp4X3vex/33HNPyfGtWLECXdfRdZ0jR44wNTXF1NQUb3jDG2ZsszD2de+999LT08PDDz/M3/7t37J69Wo+//nP80d/9EfzP9EmFowmAWnijMBzYcMrhODIkSMcOHCAc845Z1bnkzNVA+I4Dk899RTZbJYtW7aQKhoNWWhnRdg2sXe/G/Ohh6CYgJT9QJvj4yi6jle06qqtXQt33UX+gQeIf/zjqBXsa13XDVbGw4KiEvLDw/iTk8QmJ9FuuCE4r44O7NFRYtUsccNtqUuWkPrEJ3D37MF8+GEwDPSXvxz1/PPrKoQlgHgcx7IQkjRDbO7k89hjYwjLQk2lSK5cOas2od53tppKYZ86BUUERJw6hRKGGD4nqGOkqpD18JxDkpAVhcKVLxnbCQkImlZR11Tfbhbn3KTOTvyREeRZDBzcXA51lmJO0XUSofuck89jTU4GBWUsFmRc1HNAmlZSGHumGW0bwB4Zwdm2DRwHY/Pm2rqdBYTXUJIkEt3d2JlMMJLV1YXS20t+2zYSNVrhqu3t+Pv24e7bh6aqGGeddbo7AuitreTGxioTuzC13pmeRmtpwReC+POQA9Hoon8hWAwXrHo7IAXcfvvt3H777bM+5rHHHov+ff3119dsVPGud72Ld73rXfM6riYWB00C0sQLFoX2fC2rSa7r8vTTTzMxMcHll19O+xxzzWeiBiSTybBt2zYSiUTFZPaFitt930fr6yOfTuOOjUUFhih7jHPqFKmNG8kW/WhpHR1Y6TTJBx4g+8ADxO+/H7WQkE6p2LzSuQshyB07hixJJDdsIDM0hBISRL29PXAGmiWToxjqOeeQ+pM/wU+nMb/+daxHHkG98kqMl750hstPJXiDg0h9fVjj4yT7+gLbZM/DmpjAS6eDcZje3lnzCiqdX61QwkTxkudnMihVVogXA7KuB2no8ywkGqVNqGuXRWM7rusGI1uGgWdZOKEep9YQxNMbXbzzkJcswT1xosQFrRy+46DVKJAuJLQLIXCy2UD87fsYra0YNbyOUkcH/sQEcldXifWvdfQozq5dSLpOfOtW5AUEjRagp1Iouk5udBTVMPDT6ZrPU0kksMfG0CWJxOWXA6c7HdHvga7j2jZOwYwh1J1BMILlTk2RuPBC7FyOVI0i+0biTOqAPBci9CaaqIQmAWniBYvCqs1cX6C5XI5t27ahaRpXXnklRg3z0sWzx41eAZ1Pp2J4eJinnnqKlStXsmHDhorHtFAC4gG6EMiveAXWv/wL6rvfPSOzI3/sGLFly6LV5QIKKeJyTw/JP/5jMvffT+JjH0Pp7y8Vb0sSPpR0VXzXJXvoEEZnZ+CUA6Dr0ciVLMuBLmK2H+0KBb7c2krij/4oIE2PPUbu4x+H/n5ir30tapXVViEE5u9+h7pxI5gmdjaLMzYGrovW3k6sjmyV+SIaEymGotTnALXAY5Q0rXYCcoYUUsUoXENV07BVFVVVo+5IrSGIfuiEtViQu7tx9+2ren+UBF/naylJEnoqhZ5KYVsW7vQ0melptGQSI5msuj152TKco0dRu7owp6fxBwbI/uIXKJ2dJG68cd5WwNWot6LrJHt7yYUjlrWcp/B98k89hbDtiHwUIzIwAJRQuC6ECAwMwsf44TVVUynsqSk6n0NiX8CZ5ILV6G5MLpeb1whWE//90CQgTZwRmO8IFgRf5uXdgAJGRkbYuXMny5Yt4+yzz675S79424226aunAyKE4NChQxw6dIjzzjuPpbOsli64AwJgWSgbN+J/8YvBtkJBMATBeVgWWlsbvmlCWQdA0nV8x0Hu7ib1p3/K9D33oN19N/qKFShVxOZOPo95+DDxVauiYtf3/cAmtghqYQyrir5ktv6CLMsYN92EcdNNuMePY/3d35G3bbSbb0a/8spoPKswxsHevYitW7GyWWRNI9HfP+uc/mJA0nU80zzdZXmO9y9rWuAkVQsWi5A1aruhfW+JqDkc13Icp3IIIuDm83VnYNQDtasLZ5aw00r6j3ohyTKxzk4kScKamgo6i/E4sdbWGd+56pIlWDt2kP/d7zCffZbYOedg3HrrohbKkiQhaxqyppGfmiI+i+Dfd11yv/gFWkcH+iw6Mwi0O0ZLC3YuR7wQWOp5QSfz2LEghNBx8EyT9WvWPOcdiTOlA1LrBEE9aBKQJmrF8/8JaKKJeaIgTKw20nPgwAF27NjBxo0bOffcc+v6ki0mII1GrR0Q13XZsWMHAwMDXHHFFbOSD1jY2Jjv+/iShG/bQQDaJZdg//SnJY+xjh0jvm5d8PgjR5DLigClowN7ZCQYfWlpQf/4x3E+/WnEiRMVyYc1OYl55AjJDRtKVtr9oSGkslR1vb09CPBbINQVK0h+7GMkP/YxxMGDZD/8YbJf/zrO5CSO4+BOTeHs3o3c2Ul8yRLUVOo5Jx8ASioVFae+7z/nBETRdUQ9aehnGEoIabkQOdSOqKqKruuRE5vnutiOg+s4eJ6HZ5rIi0hA5spOcXM5tAaNB0mSRKy9neSSJciyTHZoiNz4OL7nIYTAPnYM6+c/xx4YQEok0G+8kfhFFz0nRbIXOo1JQpCvQsjcdJrsj36Evn49xqZNgS10FfihdklPJvFM87T7lSQhXBdx+DB6W1vwPRzm8/z85z/nqaee4sSJE+Tz+cU4zdJjPEMISOF3qNkBaeL5QLMD0sQZAylsl9eDSmJxx3HYtWsX09PTXHHFFVFGRr3HAotDQGrpVBTGxnRdZ+vWrTUFZS1EhJ5Op4NCzbaRW1sRL3kJ7uc/jxaK0V3LClaJC8Ts2LEZmgy9vZ3c0BBuby++72P09GB85jPk7r0X71WvInbjjdFjrfFxmJoidfbZM1Zivd27kcoMAuQwi6LSD/d81sllXSf+e78HQO6JJ5i+7z6IxdBf8xq0nh6MpUtRJAnz+PHFs2GdBXoySW50NPjP2BjSc3wMSpjFUBMWS6TdqA3NUehJsoxSKQTRNNFjMTzXjfQj9ZxrTd9ksxBL33FQGxCQV3zEkiRhtLRgtLSQO3qU9E9/ipicRF+2jPjVV0M2i7R0Kcoi6d/K4TlOkPsRi6HrOrZlzeiEWAMDODt3krz2WuQCIVPVkiyQYtjZLEr4OFXXsXK5YPQMsJ5+Gu3ss/GPHg06Xo7Di170IjZs2MDY2BhDQ0Ps27ePeDxOV1cXXV1dtLe3N5wsnCkEpPD71ugOyGyhgU00UUCTgDTxgkY5AZmenmb79u2RUHu+CbeFWeLFyAKZy2FrdHSUnTt30t/fX9fY2EJGsFpbW1F8H396Gm3FCqyjR5FbW3F27EC54AKs4WH0oh8Vb2QEadWqkm1IkhR0UVwXzTACYtHaSuLzn8f8y78k87vfkXj/+3FyObzxcVrPPrvisfiHDqFccMGM25X2duyxMWI9PfM6x3IIIcgND+O2tZG49140Wcb8+7/HOnAA8Y//SOLGG+smxI2CVCSUdo8fR2rQOdd+AHUU24tQSAlqLOBrQT0OaOHnHkVBliQ0wwi6g66LS2kie0O0QFUIyHz1HxU2VPJfd3wc+6mn8IeGUFpaSF1zDVIqhTU5ST6fx5MkpFyO2DwtrKuh2llY6TRaMonb0YE7MkJs1SrMiQnyU1PEWlrI79oFY2MkXvziku9BKZHAz2YrEhDPskiE+R9GayvZ0VGMZBJnYgJyOdT2duzjxwEQpklPTw8tLS20tLSwevVqXNdlfHycsbExdu/ejeM4dHR0RISkPDOqXizG2NN8Ufi9eL5zQJr474kmAWniBY3iYr4QzLd69WrWr1+/4AJhsax4ZxsbK9gEb9y4kWU12lIWb3e+BESWZWKKgjM2hr5hA6bnkfhf/4vMBz6A8ZnPIDIZtOXLo8dLplkyQuILges4KJ2d+BMTSEXjYrIsk/jAB7CefJLpD3wA8drXkrzuuqrH4h8/jlaUQl6A0dFBbv9+KC/Gw9dZUNuquRACc2wMe3QUtbWVlrPOinQg8be+NdjOeedhPfIIztAQ6TVriL30pairVj2nRYOkqviOg3fiBFI9lqcFLJA8VUynFwLhOMFxuS7CdXGzWXKnTiEK7+nQNUxSlAV9Bu1cDgYHoWCpGxzAaWJSMIgoEAJZjv7tFyx64/EFESQ51IbAaZtf3/eD8yu6X6pGFuY6f02rmAXiZDJzjmjVCjeTwXnmGfzjx5F1Hf2yy1DLLJ0Tvb34nkdaVcmPjaG3tVXN3WkkfM8LSF5HR9BVXbWKWEcHudFRpn78Y+JLlmBce+2M50mJBN70NGqZgFxAYLUbvmaFrq1tmlhPPUXssssgDB70XRcch56y7xNVVent7aW3txchBNlslrGxMYaHh9m/fz/xeJzOzs6oO1Lv+FJhUeNMsOEtWPA20lgjl8uV2MM30UQ1NAlIE2cM5juC5boue/fu5fjx41xwwQUsqdGudS4slhWvLMvYtl1ym+d5PP3004yPj7N582ba5jFys1ARemsiwejwcGFjSLqO8Z73kP/sZ9H/4A9KHityuUiE7vs+juuiKArx7m5ye/dCBb2KcsEF8I53IP/DP2CNjKC88Y0V8zlEOo1coeCWFSUIb3Ocec3mF4iHMz6OnEqRWLduRhK7u3cv8vLlKBs3Ylx0EYZtk3/iCdzvfS/Qt/T1oV17LVqdmqL5QG5pCdKph4eRy7pNiwHhurj5PF4+j29ZWNksYmAguD4FG9MwlVtS1eBvXUeKxTC6u5GLnLocxwnciBZyjQYGSM42yhG61ImQEPi+HyWl+66Lb9u42WxAZE6dighZIXRP0XUUw6j4Xoo6EEUoCNlRlJIQxEL+xHy6I1JbW2B9W1YEu9ksxhxW4bPBN02sZ5/F2b8fRVHQLrwQffPmWZ8jKwrqkiXI+Tx2Oo0tScQ6Ohb+Pq/yne6aZkS8lLY2vHQ6uD2dxnvySZQ1a/CrfJdLiQT+yEjlbZZ1RWJtbUw/8wxaVxeyruNbFpKi4JgmmqIQm8VOW5IkUqkUqVSKVatW4bouExMTjI2NsWfPnpLuSGdnZ00r/4vRdZgvFqMTk8vlFtwlauK/B5oEpIkXNCRJ4sCBAwghZgTzLRSL1QEpH+3K5/Ns374dWZZrtgmuhIUSptX9/QyHowlyKoWbTqOddx7ZRx+F/fth7drTDzZNpFgM1/MCF7LisD5VnZFc7jkO+UOHaLngAsSFF2L+wz+Qu/9+4h/6EEo52dK0qj+KWnc35tAQiaJuTC0wx8dxRkdR29owVq4Mks0rrEC6Bw4gF52nqutI/f0ktm4N7h8awv7+93H+8R+hqwv16qvRL7hgUcTKeiqFOT4OY2MoDRqJEZ6Hm8sFJMO2A6F5YdxLlpENAzkex2hvR8gyie7uOa1oXU1blLTwOUv4MNBSkuUZHQTXdU+PU7W1kQwJsfB9PMfBC8XmTi53unMjRNBVUZSgixOSm4rnP1sIoudFBET4/qxhjlJ3N97QEGoZARFC1H1NfcfB3rcPb+9ehOuinXsuxm23oRfGIWuAl0yij48T7+7GMU1yIyMo8TjxlpZ5j4MViGs57EwGPdTnKckkwrZn6D3MiQny6XTkZFWAnEjgVRCLO7kcejh+FcH38Y8fR3nRi6L/oyj4jjMr+agEVVXp6emhp6cn6o6Mj48zMjLC/v37icViJdqRSt8xi6G7mC8Www642QFpolY0CUgTL1hMTU0xPT1NKpVi8+bNDbfLXSwNSDFRGB8fZ8eOHSxZsqRup65K213I8d508cX86tAhANS2NpyREZRUCumNb8T7v/8X97LLTocTWhaeqkJogVzcySi4YcXC1Wvf88gdOEB89WpkVcXzffQ77kA6epTcRz+K/o53YFxyyekDmeV11FtayJ48WfM5ubZN/vhx1FiM+Jo1eL4/I9m8GOL4cZSrr8YvWrWVEwmcbBYtmURdsgT1rW8Nziudxvr+98l961vQ2oq6ZQv6ZZfNDDucZ+EmK0qghchmkes0UhCuiz09DZYVkIyQYEQkIxbDaGsLitxquRCahmeac2eBnAGF1KwIPxeF7oRqGKhVSL4QAs9xMCcmEJ5Hbmgo0mLImoZsGOix2AxSUcnm1/U8XM9DCvNEKoUgyu3t+M8+W7It33Fqyh8RnoczOIh74ABidBQcB2XtWuK33hoRsvJO66zb833ktjbE7t0AaLEYWiyGlU6TGR7GaGtDq7Ngr7qvsIOkFpEse3oaad++Er1HrKOD/MQEZjpNrOgzoCQSuBUS7oXnzRDu5596itgFF+DkciitrQHhlGV81yW1ALem4u7IypUro+7I+Pg4e/fuxbZt2tvbS7QjkiRF39GLnSdUCxqdgg5NDUgTtaNJQJp4QeLEiRM8++yzJBIJli5d2nDyAYvbAfE8j6NHj7Jv3z7OPvtsVq5cueDtLpSAXHnxxYjf/AYALZXCPnYMO51GTSaJf/jD5D/zGZKf/jSSJOHl8yiGEYULFsPo7AzGsPr6glXCgweJ9fejlhUv6rp1JP/iL8j/6Z/i/eY3xN7xDvC8GfkixZAkCSmVwpmeRitf6SyCAPJDQ/jpNIkVK/BDMllOlmY8b3ISuacHP5wTB9A7O7FOnEArK1bk1lbib3wjEI68/Md/kP/UpxDxOMoll6BddBHqHHkFJfsWAi+0RS0UywUyNltBKnwfJ5PBy2TwbRtkGSFJyIkEend3UJDNo9iRdB23ljDCM6CQmhWGAbkc1LAqK0kSqq6jALHu7oioCCHwTBM3nyc/PX06VVvTgs9BLBYV/VI4plYg54VxrRkhiJKE0tGBG44eFWBPT0cuTsUQQuCMjOAePIg4dSpwrOvqQt+4EfXqqxd0iSAQhOsdHbhl33lGayt6KkV+YgI7kyHe3r5ga2onn0cJiYI9OIj15JNIkkSigt4j3tFBbnw8cLMK34uyYZR8RiHUdJQV0/bEBFI+T3zZMqYLZLIQeihJGA383SjvjuRyOcbGxhgdHeXAgQMYhkFXVxfJZDJ4j5wBn5tGhxAWzrvZAWmiFjQJSBNnDGr5QvZ9nz179nDq1CkuvvhiTp48uShdClg8DQgEbl3T09NcdtlldDQoiVdRFJyyH+V6cMEFFyBlMkD4WigK7sgIWn8/aiKBdt55mP/0T6ivehWSbaOlUlUT2QtjWLmjRzE6O2eShaJ5/OT992P9x3+Q/dCH0F71KqT+/lmPM9bTg3n0aLTNYoEykhSEGw4MoLe1EV+3LkhiF6IiWZoBVY0ISkHUrhoG5hzvMTkWI3777XD77fiui/2LX2B97WuYuRy+YSBv2IB+0UWoa9ZU7L6IgpYgJB8F5yVCG1jh+5HQ2TNNnHQa3zQDrYIsI8fjqG1tqOEqqxd2PRZSXCiahpvNzvoYvzDCtQgQDSrQpFgMP59HrqMo8l03KpAhJCbxOGoRMRBC4Ns2Ti6Hmc0GtsUh+VBiMQhX98ttfoXvB7opIRDxOH42G4wsht0Rz7JIhKv97sQEzsGD+AMDCNNEaW1FO/tslMsua/jojGeaJHp7cSsU5ZIsk+jqCjqK4+PIhlExzLBWuNksWjxO9qc/Bdcl+ZKXkP/Zz6o+Pt7RQXZkBM0wAq1RkdC8ACtMey9A+D72zp0krrji9IMKuiFZRgCJRRKCS5JEMpkkmUyycuVKPM+LtCNHjx5FCMH27duj7kgikXheCMlijWA1c0CaqAVNAtLECwamabJjxw5832fr1q0kEgmGhoYWjSQsRgfENE0OHz6M53lcc801dc8gz4aFdkBSqRRK0Vy1pOv4mQxSWJBod9xB5n/8D5TLL0dyHKRZjl3p6GB6zx6Mjg70GvQLxotfjHbRRUz94R+ibNkyqzhSMYxgNKngghRCCEHu5EkwTZKrV0NIyCRZniE2r4oqK6JS0RjWXJBVldj110OYoWLZNv7TT+P+6EfYg4MQiwVZCxddhH7OOUiGERynJAUr5sX7bWnBsm0yx48H2gJZRtZ11FSKWGfn7E5FC3TBUnQdZ64wQtOMCu0zFoUOSJ2YqyCUJAnFMFDKxrl8x8HOZnHSadxQsK8mEmghOZQUJXjdhECoKna40OF6HiKbxdm3j+yvfw35PFIshrZhA8YttyyqK5XvuoGxAMw6AqnqOmpvL3Y2S3Z4GL2lBb3OcRvfdbH378cfHia2efNp/YuiVHQEg+Baxzs6yE1MkCoLKS3ebrzotcht24a+YkUkSpdVFc+2g7FEWUak07y8KJtoMaEoCt3d3XR3d7NkyRJ27dpFd3c3Y2NjHDp0CF3XIzLS0dHxnDlkNboDAk0C0kTtaBKQJl4QmJiYYMeOHXR1dbFp06boS3OxxqQK225kd2VycpLt27dHLfhGkg9YOAEBSgiISCQCtysCUa/v+yQ//nHyf/Inwf5mKVQkRcG3rEgHUnIflTMe5J4ejJe8BG9yksyHPoT+hjcQK169LILa1YU1MkIsHHFys9ng/z096P39wQqz46AqSs0/sL7rBsVqBRhdXRXHsGqBIssoF16IWqRzcY8exfnVr8h+85v4koTU2Yl20UVI550HqRT21BR+JoPvOAhVJb5kCbKmnQ7KK/wNp21gGwxZVed0pRP5PFIDwvIWE1Ishl8HAankgFUPZE0j1t6OnEigaVpASKang2R7SUI2DLREAkXT8CYn8XM57B/9CJHJBJ/f/n7U665DCcXjxVbAiwVraip6b0upFP70NPIsI456MomWSGBOTJDN5Uh0dtakW3GGh8n+7Geoy5eTuvXWkvuibI8qDoCKpqHpOub0NLGWlpLOm+c4wUJJ+Lrlnn4axTDQV6+OHiNrGp7jQC6HUFViExO89c1vnvOYGw3f91FVlRUrVrBixYqoOzI+Ps7+/fsxTbNEO7KY3ZFGd0B8329qQJqoGU0C0sQZg2q5A8eOHWPfvn2cddZZrFy5suRxiqJgVRAjNgKNJDcDAwPs3r2bDRs2kEqleLZMeNoINIKAqPk8Xi6HkkigCBHNWfuFEabOTvRbbiHzV39VdRtCCJyTJ9Ha2vBsu2SUZS6IiQnir389cl8f5l//NdPf/jbG29+OXuzARZAJkt23D7+7m/zAAJ5tk1yzBkVVKztz1QD/4EHkvr7TxWdRIaoaBmaYQdGIUkBdtQp5xQrk0L7YGx0l/5//Sf7b3wbXRe7sDEa2envxenpQVDUq8IqFzr4QUfek2Aa2UZir8BGWdeZ3QGKx4DhrhG/bUdevEVB0HSOZxM1k8I4fxzl2DCudRtg2JBL4+TzJq65CbW0lF3YVVF2PEtk9z8N13YCIhKNHjS5IC+GhAFJXF254HLNBkiTinZ04pkl2ZIRYR0fl5HYhELZN9pe/DPKDLr+cVIWMIymRwJ+ehlksyI3WVrIjI7hlizfW9DR6OGJnHjiAlM8TKza2ANRQUC/lcojOTvpbWuhscOBiLSjv7hZ3R4BIOzI+Ps6hQ4fQNK2kO9JIvWOjRei5kOg3NSBN1IImAWnijIXneTzzzDOMjY1V1UosZgekERqQYs3KJZdcQldXFxMTE89pwGE9ePGVV/L9732P5Oteh2+a+GE2i16knzBe8hJyX/wi+e99j3jZKiZAbmAAo68PdB3r1CkS5RkWs4nA02nkjg5kVSXx3vfiT06S/8IXsONxYm97WzSuIckyniyT2buX+PLlCF0PvP1DvcRcYvNKcPbtQ16xour9Smsr9uTkgvIZon25LtbUFCKbRXJdZF0n9cpXotxxRyBadhzc7dsx//Vf8YeHST/0EGprK1JPD/KqVSjLl6MsWRK5CPmhrqCQSVEQuZaPqdWLOXUYL4ARLCkWQ0xO1vx4N5+vmLBdC4QQeBMTuAMD2EeP4qTTUfCd3NuLsmYNxmWXRdsXvk/6kUcws1mkXA47n0cLizc5dC0raEcKuSN+gXAWEZKFwDFNpKLXUGprwztypObna7EYiqaRHx3FSyYxiopP4ftYe/bg7dtH7IorEK2tSFXIoJRM4tfwOsW7usiNjpaOX3oeqmFgDQzgDQ6SDG2zS7Yvy4EFr+vi53LcVkHw/lxgruyNRCJBIpGIuiOTk5OMjY1x4MABTNOkra0tIiSFbvpiHUu9KBCQ5ghWE7WgSUCaOCORy+XYsWMHsiyzdevWquNKiz2CtZBt27bN9u3bcV030qwUtrsYwvlGbPc1117Lt/71X/Ff8xpc00Tt6sKdnMQoCwTT1q/H/+1vMYUgdttt0e2uaUI2ix7mdNjHj9fXNbAsKGrfy+3tJO+/H/foUczPfhZp7Vrib34zVjqN7PvIsVjg2GXbQfYD1CY2rwBx7BjKdddVPVajs5Pc4cPzJiCe42BNTeGm0wjfR29pwejvL5ntF+EfSdPQN2/GGx4OXKiWLCHW349/6hTu3r24P/wh1vh4UFTpOrS0IK9cibJiBUp/P8IwAnesULxekthdD8IAwmrP8k1zUUawFqZeKYNhIEyz5of7ljWrw1r0ONPEGRzEHxjAP3ky0BY4DlIqhbxsGfollwQjiLNcc0mW0To7MRIJpGQSMTKCm8lgTU4i6zpGKoUSvp+LV6ojwun7iEJ3JHx9632NnelpjGKL25aWOc0HyiErConeXszJSXJjY8Q7O3HHx7F+9Suk3l7it9yCqqpkR0aIV+k6FMwC5tyXLKOnUuTC19SxLCRdxx4Zwdm/n8QsjmBCCITrIg0N8e7QTvu5Rj1Fv6IoEdmA4HdxfHycsbExDh8+HHVHOjs76ezsrLs7shgdEFmWGz5e3MT/m2gSkCbOOIyOjrJz506WLl3KOeecM+uX9WITkHp89IsxNTXF9u3baW9v59JLLy35YWjEqFQlNGK7my+/HOkLXyD/9NPBLHtPD7kDB6C3t7SQEoLkxz5G9sEHMSEiIfmjR0msWXP6mNrbscfHMcqLjmraAkWp2LlQV60i9alPYT35JJPvfz/qVVeR+r3fI3foEH7BulaSUDVt3iNSYnQUuYrAFcIk9pDk1VpACCGwJifx0mkUWUZKpYgtW4am6zOOM7J2laTo+oixMZRly3BDdyx52TLUCuMrfjqNu28f3rZtON/7HsK2g65QPI60dCnSihVIfX3IXV1RQrkcumrNBknT8Gcbo1usEawGfj5kXQ9m/2vdtesGI1D5PO7kJP7UFGJ8PPiTyQTHFn4vyL29KGvXlnQ1ABACu8Z9FtLQXc9DS6Uiq1nHNLEmJ4N8jlgMI5WKyGqxLiTqjngeftjxKiabs73CIhzzKg49VFpagvT4OlEQilsTE0z+8IeonkfyRS/CDz+Tfmh/W9VcIpHAq5Eo6okEOcA2TdxsFkWSAsera66p/tkUAllRsPN5egyDnrLwx+cKC+k6FLojy5cvj7ojhVGtZ555pu7uSEGP0igUBOhngsVwE2c+mgSkiTMKhw4d4uDBg5x77rksryHtWlEU3LmceuaJ+ZKbkydP8swzz7Bu3TrWrFkz48u4sN2FjseUY6EExPd9xsfHSa5bR/6b30R63etQw5X0cggCXUjy3nvJ/umfkvd9pKuuQo3HS4rVAoGZQUCqYZbVON91sdvbSX360/i/+AXZ//W/EC97GVldR+/tRVGUBekzRC53OvCvyuuidnRgj45G4vdqcPJ57LExhG0jJ5PEV6yIXu9yR66KVKyw/8lJlLY2XMeJnIpgZlEpt7aiX3YZXHYZEKxsCkAWAu/QIbz9+/F+/Wu8dBpbURCyHFxrTUNuaUHu6kLu6EDq6EBpbQ3+HYsh6zpuUWbDjGu2WB2Q0F64ITCMgCgVtu37iHwed2oKf3ISMT6OPzYG2Sx4HvbEBCIeR1LV4P3Q2YnS24t67rlBp6nBgnCptRV/fBzfMIgV6R8KQYACcLJZ8mNjAKiJBHpRkRd1R0JnLb+QOxJ+d7mh0LhSd8RKp2fkvMi6Pi8C6KbTWNu3I9JpkhdcgK1pOL5P4RNdLHSvBDmRqKtTpSYSwRij4+Dt2UPy6qvnzCeRNQ0vm+WVFUZHnys0ynmquDuyYcMG8vl8pB0pdEc6OzujDkklouF5HnoDP7/ZbPZ5sxRu4oWHJgFp4ozB4OAgx44dY/PmzbTNIkQsxpmkARFCsHfvXgYGBrjooouqrrAVr1yeKQTEsiy2b9+O7/v0tLRwfGICEY5hSIkEbi5XUjxIihLMtus6yXvuIfvgg9jHj9P+nveUHpOqBpkgZfaaVUdsqvwwO/k85pEjxFeuDAqm229HednLMP/6r7H/5V9Q7roL7eyz53XuxfueSzditLWRHRmpeJ/v+1jj43jT00iqSqynB8UwcEIHMUVRUMvOb65RIzE9jdzaimrb2FNTxMJRjOLnznbEsqoin3UW2llnzdy2EIH16/g47tAQ3sgIHD+ONz2NSKfBtvGEQDgObmtr8NrEYkidnUgdHUjt7XgnT0IigTs5iaQowfui4J61kCKrkHtSfszhyJGwrKDLY1klf7AshGni5XJIphmcw8QE3pEj+FNT4HmBnbGmIbW2BoSrtxdj48YgBRzg1CmSZSOHiwmprQ3/8GFYurTiaykRuE7pySRCCOzpaXLDwyDLaMkkejx+mrAWmRGIIoOC4gWP4nEt1zRJVSLTdayK26OjONu3g+NgXH45aqjV04D8+DhOPk+svR3PdYnPMpojh6GNtUKSJGRVJf+b39B+7bVz6nYEgSGAME3e/+5317yfRqPRuosC4vE4y5cvZ/ny5fi+H2lHDh8+zDPPPENra2tEWFJhhlOjbXibDlhN1IMmAWnijEFfXx9tbW0zshBmw2LpKerdtm3b7Ny5E9M02bp166wivMIXfqMtEOcrQk+n02zbto329nbOP/98Ov7xHzn18peT//GP4dJLUTo6cIaH0YpGq1DVYAyl8KN/552oX/0q5re+RfyVryzZvtbbi3nyJIla0t4r/BhaU1PYp06RXL8+soYtFFTJ97wH6fBh7L/5GzxdR3v5y9EvvrhuAXp0TkWopH2QJAnJMCJ3r8LqtD0+Dq6L1tZGbPXq6HleOKsvS1Ld5AMA10WKxdANg9z4OBSNiElFxVrxtmo9c0mS0FQVenvRe3ujlXNRsPeVJPB97KEhEmE4pJ/L4Q8P4w0P4x87hvv008G2DhyAkBzg+3i2HQikC2NexeNec/0fEK6Lm8sh4vGgKPX9wE3J9wOio2kIXQ+KzlgsIEbhH7mtDam3FymRQGttDTpn//ZvJF73ujmviWeaDXHAqkfDoqRSWOPjGBXSz8shSRJGaytGayu+52Gl02Smp5F1nVhra8WsECW0ohZhCF/BotqzrOojhTUUpfbAAPZTTyFpGvErrkAuKzwlINHZST6dJnPqVORSNccJzv2YEAKwfvMb1A0bZuy76nNsG0UIllUYY3yusBjhf+WQZTnShQDk8/lIO3L06FEURaGzs5NcLkdLDXqnWpHNZomHeTdNNDEXmgSkiTMGsizXRT7gzBChT09Ps337dlKpFFu3bp1zprbw49No4jQfMjY4OMiuXbtYu3Yta9euRZIkzuvrY3dfH2LXrmBGOJnEPnWq5HkFbYAMOLkc2DYtH/842YceIg8lJERvaSF74sTp51b5cfJddwYJyA8N4U9PkzrrrMjVqZAYXhCbJ1avJvOWtxDv68N+9FGy//iPKFdcQexlL0OuoaiLUONKoNbVhTk4GIhmMxlkXScR5nQUo2AHLMtyVb3HnCjM8lfSaxT9v5yMzEfELUtSpHOJdAWShOs4OI4TrJzH46irV6MW8hU8D7mvD+Pcc0u25ThOpDWZD9x8Hmd6uqpgec7nu26wQq4oQe5DjWOabj4/I1hwsSGHuRt6nc5BsqIQD7sNTj5PfnQUSVUx2tpQqoT5FTogANmJCfTW1igEseCoJUtS1c+CEAL7wAGcPXuQ29pIXH/9nJ0HLQzx9EwTf64RthrfL77jYI+MIK1cSby/HzOTIV4kpK+G/KlTJBuoeZgPFqsDMhvi8TjLli1j2bJl+L7P1NQUY2Nj5HI5Dh48yOjo6IzuyHzQDCFsoh40CUgTL2g83xqQQgG/evVq1q9fX9MXd2H8odHEqZ4RLCEEBw8e5PDhw1xwwQUsKRo5ue6ss/iHvXtR1q/H/s1vkC++OCAcRWNUkqZF9qLW8eMkwpyO5Ic/TO4znyEvBPFXvSp4rCQhhxa2+iwOUv6pU0hhQSWEIHfsGLKikFy3Lrg/tJktJIYXrrWsKIHTkaqSeNe7gmP6z/8k98ADsGwZsde8pqJwu2Tfvl9CfqTgIGYU/Z7j4IyNYU1Pk2prQ68wZicICuCCHXAhOLD4/ppRVAhKuo5nWZUL5KLj9MORLy08n1pGtWZuTopWzm1VjchtYaQnKmRtu65xnZqxwBT3Eug61Pgd4VsWsec4G0LS9QWPY2rxOFo8jmtZWOPjCElCb22t2lEQvg+ShB6+l0R4m+/7OELgqSp2JoOaSATfK64b2OkePIja30/ipS+tuYh2w/eskUqRGx0l0d29oALcnZoi//jjCFmmZd06VMPAHhmBlpbZLb59H3fvXjZt3DjvfTcCzwcBKYYsy3R0dNDR0cHk5CR9fX1IksT4+HhJd6SgHalnUbBJQJqoB00C0sQLGosl6IbZR5qEEBw4cIAjR47MKOBr3XajOyC1btN1XXbt2kU6nWbLli0zWvCbL7sM6WtfQ33963EfeQT94otRu7uxTp0iHuZkiJCAeI6DRGkqeuLuu8l99rPk//Vfib/mNQDE+vrI7dtXQkDKR5zExARSSwtCCLIHD6K3t6OHmodC8RvpKMpea62nB2twEC0kQsaNN2LceCPu8eNYf/d35F0X7ZZb0Ddvrjie5Q8NReSnEjzHwRwcRFgWsaVLqwqvBeA6DgIipyu/7P66UFSoqCGJi1d7rxU0HSHxiUTKCxzVItQMFHfuooA80wwCKz2voQF5hQK5EZAUpaKRQrX9ziVkbjScsIvWCKiGgdrbi++65Ccm8FwX2tsDnUgRrKmpEvG5RGAJXHiN3Y4OxOQkjiRh79qFOHUKbd064i97GUqdxXOhk6XqOrH2drKjo6S6uyvnl8zxmlsnTuDs2kXimmtwf/YztFBTouo6Vj4fOYhVfO6hQwjX5YILL6zr+BuNRusuFgLf94nFYnR3d8/ojhw9epRnn32WlpaWqDvS0tIy62f8udSACCGYmpqacbuiKA0dK2ti8fD80fAmmmgACl/kopErpkXbrlTQu67Ltm3bOHXqFFu2bKmbfEBjQgMrbXMuApLP53niiSewbZutW7dW/KJesWIF8ZGRYBbecfCGh9Hb2vAymegxkq7j2zbWyAhahS5A4kMfQhw8SO7LXw5W/BQFKR4PxrWqQJgmxGJkjxxB7+iIyIfneTiOg6qqwXhbJZveWCwYGyq7puqKFSQ/9jGSH/kI4tlnyX7kI+T+8R/xy3IO/GPHKlrweo5D9vhx8kePYnR2klq7FjUeJ9bVFeg+io8/FP1S6NAUrlXh/qpnPguKijQ9mcSvlugdjqZRNJoWoWiESwqPR+L0qNacxyXLJQW8LMsoqoqmaShCIIep3U44quUVug0L+EwK329YortUT1hfo2fXa9iem82i1DMqWANkVSXR3Y3R2YmXy5EZGsLKZqPXxLWsWYt1YjHMxx/H/fGP0Xt7Sd56K9pZZ0WfRS+0/J0LnuME5g7h97RqGMTb28mMjtZMCiHsiD71FN7BgyRuvDFIhi8iikZbG84s2SW+ZeEeOYKSTLJxw4aa97sYOJMISLkepdAdWb9+PZs3b+bKK6+kv7+fTCbDjh07+MUvfsEzzzzD4OBgRYv6+XZAvvOd77BlyxZSqRRr1qzhvvvuIz9HJsy+ffuiTk7xn2uuuWbGY3/xi19www030NbWxvLly7nrrrsYL/v+buK5R7MD0sQZg/msnha+yF3XbaidYGHb5SQhk8mwfft24vE4W7durVuzUrztxeiAFGb3K7X4JyYm2L59O0uWLOHcc8+tOgYgyzJLgEOmSfw97yH7hS+g/+mfRm5YaiIBySQim8W3bfSlSytuJ/HBD2J+85tkP/IR4h/+MLH+fszDh1HXr6/4eJHLYedyxONx9M7OSGzuF5LN5ygi1Z6eoEtTwb5ZjsWI/8EfAGD98pfkPvlJpN5etFe/Gn3VKtwTJ5CK3IB81yU3OAi2jbF0KVpZgSiHbk+FsTRfCFzHQa7gdAVhAFqdRbVv26UZG5IUEBLfLyEmItx3weJ31qK3WDcSPPn0dopvLz5XXcczzRl2rQCS66IYRpDIXmQBW3DYkgv5JTVkjhRjMRYU5oLveY2z/q0DQoiSJPJGQpJl4l1dQR7N1BSZoSFQ1YodFz+fx9q9O3AMy+eROzpIXn/96QcUOmAFfZDr4kLkuiVV0DpZU1MzxOfFJGRGJ6TC9fddl/zjj6O2t2NcdRUQaF7U4vT20P3LtW3UCueWf+oppDVr4OBBlj6HDmeV8HyPYBVjriBCwzDo7++nv78f3/dJp9OMjY1x7Ngxnn32WVpbW+no6GBgYICrr76abDZbNwH58pe/zDvf+U7uuOMO3ve+93Ho0CEefvhhnnjiCb7//e9X1VQeOXIEgB/84AclwYepsvfbD3/4Q17+8pdz44038oUvfIHR0VE+97nP8fOf/5z/+q//orUG7VATi4MmAWniBY1iR6lGo7xLMTIyws6dO1mxYgVnhaLoRm27EShci0o/cAMDA+zevZuzzz6blTW4UV3Y3c3B0VHUjRtRzj4b85vfRL/lFqyBAdT165F6e3GHhpDm2Fbsla9EvfRS8h//OPqddyJ6eoLCugKswcFARLtkSUWx+VzQW1rIDQ/PWegbV12FcdVVuIODWF/9KlYuh2+axO68Mxq18nI5Yv39swqD9e5uzKEhjKVLcV0XVVVnjKcIgiJQKpwPRAW5LMuzFuX+2BhS2Y+jkkphp9PRKJsIdTGFrkTdmEXIHt2uabhVCIhw3cB6N9xW4bxsywLPCzQz4YhkoQMTjcAJEeynsN+iv51cLrpPDu19ZVWNrH7r/uTVUPA5uVz1wMVFgpPLBR2kRV4RlySJWHs7AkgPDCDCQD5VVbH378fbvx8cB2XjRhK33447Po73m99U3FaJWQGnU9l9z4uIgBx2zQTheGbZ+1w1DOJtbWTHxkh2d1f9fLuZDPlf/pLYeeeh9fUBQVdFVlVE2XOMtjbMdBq1yKoawAkd6kilkBwnShV/vvBcuGDVinq6MbIs097eTnt7O+vWrcOyLMbGxnjmmWf4/d//fRRFibonIyMjNQU9njp1ig984APcfffdfPrTn45uv+2229i6dSt/8zd/w3vKrN0LOHz4MJ2dndx8881Vt5/P53nHO97Bq1/9ah599NHo9te+9rVceumlPPjggzz00EM1nX8TjUeTgDRxRqHgdFTP4xejmIfTXQrf9zl8+DCHDh3ivPPOY2mVFf/5bLuRqOSu5fs+e/fu5eTJk1xyySU1//i+cetW/vmpp+DaazHe9CbMu+9G2rIlyGAQAmXpUqydO0lu3jznttQVK0g+/DD5z3wGP5Egf/PNaAUXpRDW5CT+xATGhg0I38epIDafE5IUWP4ODhIPbWNnPa6+PtSPfATfdZl85zvJfuEL0N6OcdNNQZ7BHGMxejKJeeoUiuuiqeqMoqI42bywihe5S/k+bqFgK8plKHn++DhS2Yic3tqKeeIEent7JMpXi0ZcFoQq3RFZ13EmJ7E1Dd9xoiwN4ftYo6N4o6Moth09X0gSvhBBBklYfEqF7pwQeEJEmoPCeFR07gXdSvj6F2xihesi8vlg30Xv78JxlhAZQMgysqYFmohYrKbui2+aqM+xgNZJpzE6OjBDoXej9SflZ+07Doquo05Nkfv5zxHZLMY55xC/+eaSfcuGgVtloaB8+4osz+iOuK6LOTGBlkoFr0uF73Q1FiMGZEdHT5OQos+QMziItX17EDBYRH6tdBq9rQ2rbJuKpkFIhOSi0Vxr1y7U884LRkgl6XlLQC/gTOuAzPdYirsjR48e5Wc/+xn33nsvTz/9NH19fVx66aW87GUv4+abb2bz5s0Vic7XvvY1NE3jvvvuK7n9kksu4c477+RLX/rSrARkbaj5c103CKIt+5x/61vf4tSpU3z2s58tuX3VqlW8//3v5+GHH+bBBx9saBp8E7WjedWbeMFjsax4C1+YO3bsIJ1Oc8UVVzSsXbtYInQ4TUAcx2HHjh1YlsXWrVvrEgdee+21KI8+GljjArGPfpT8Zz6D/KEP4UxMIC9fjvjBD9BqFPvJskzyIx/BeuwxMg89hHT//egrV4Ik4WSzOEND6C0tCE3DCVf0K4nN54LR3k5meLhmUwIhBPbkJMRipD76UVTDwPrBDzD/9E+xW1tRt2zB2LwZuSxAreB0JaVSiGwWuUzAXo1Cl6RWc3r12AnF/JIso4TjLP7kJJQVxLKmIQgKB8/z0FS1MVoJIfBMEzefx7esoEsVul0JwDFN5EQi6D7oOkpILkQqhbFsGWrZ56LQlalW3Pi+jx+OpYnCmFbRGI8wTSRNw5gHIRBCYOfzgRtYWAjb2SzS4GCwuCFE0FHRNGRdRzEM5JBcqc+hBW8hl0NRVaRkEpHJwCwucQvdl3PyJLknnkA2TVi+nNZbbkEoCubEBGY2S7y19bSzXCyGCF3u6kGhOyLCbpdmGJHNrxQW3gW7XwhIiCFEREIKMJ99Fn94mMRNN5W8hwrvF1XTqKSG0pJJrEyGeBhkax08iNbTg+d5SJaFomn0VgpefA5xphCQwqhkI/Qouq7z4he/mEcffZRNmzbx7ne/mx/96Ef84Ac/4C//8i+59dZb+frXvz7jeY899hjXXXddxbGt2267ja985SsMDg7SF3a/inHkyBF83+fGG2/k5z//Oaqq8qY3vYmHH3440jY+9thjnH/++SyvMJZ722238fGPf5zf/va3bNmyZcHXoIn60SQgTbzgsVgEpCCys22bK6+8sqEak8U45oI9qu/7ZDIZtm3bRjKZZMuWLXWv8MRiMdptG3N6GqmlBbmrC+366/F++EOcK69E7e+H6em6j9G44QbE2rVk77sP+S1vQbv6asxjx0iedRb5n/8cEVq+zutHMSQdWnc31tAQsQo/WsVwLYv8wABaPI7e2ora0YEsScRf+1qUV7wC2XFwfvITcp/6FBgGyuWXY1x5JVIyiRsWZ4meHvJHjkARAalHvVBcpIuwKHc9LwjiGxtDSiZn2AELVcUJHX/qIh9C4Nk2bjhyJhwnIGqyHIyK6TqyYaC1taEYRsm2s8eOBZkc5SvZoe6lUmjjnOcNpZkjoa5AkiR8zwtWtOcBSZKCVX7DOG1S0dpKInw/CIIxnsIfd2oK4brY+TwMDiIpCophoCUSM7JdGonC+BUAiQR+JoPSYALijo/jhMW83NGBcv75tBQHigLJ3l7sbJbs8DB6ayt6PB6c9wIWSMypKfSWlqDT63nBeGDYAXM877TrliShhQYS+YkJBJB9/HEUwyBRQUxsptNBVwUqdlX0RILs6CgQCs+PHyd57bVkR0cR6TRGa+vzntR9pojQCwtVjSRD+XyeRCJBX18fv//7v8/v//7v43keExMTFR9/4sQJbrrppor3rQ675AMDAxUJiOM4bNu2jXe84x188IMf5JlnnuETn/gEhw4d4j//8z+RJIkTJ06watWqObffxPODJgFp4oxCvSNYAKqqNryYHxsbY8eOHQCcf/75DRe4L9bYmCzLjI6Osm/fvgVrVda3tLBjcDDqcsRuu43MRz+Kt3o1GMa8V4tjq1eT/1//C+9HPyL3ox/R9rGP4fs+Xj6PHovN+8e58K4xOjvJ7NuHUaULIoTAHB7GS6dJrFiBoutkwtn1AiRC4fqtt8KttwZp2j/9Kbk//3M8QLnoImLXXYfS1gaaFsylL7BYlWQZBaLUaieTgZ4e7FBgXuiayS0tiEwGaY5kaeF52Ok0XjaLCAXWkqYhGwZqWxtqGcmY/eBKR6QieB4UOX6Jsr9r27R0migQEDHb9/EKnaFizUw9KHcCK/wTUDWtRMQshIDBQZK9vbiui2uamCExISRpsmGgxeMNCyp0p6eJhcRVSibxi1zmFrTdqSnsZ57BP3ECEaaUq9ddR35sDKOsk1eAnkyiJRKYExNkslni7e3zFuQLIfAcJwpJhNB5TVEi280C2fbCUURZ03BPnMA5cYKWK65Ar5DbU2m7VQ4AgPyuXegbN0baHj+fJ/U8kw84szogQEPJULkL1tDQUPR7Pjg4WPLYzhrzdqr9fv3rv/4rTz75JFdccQUAt9xyC+eeey633347jz32GDfeeOOCtt/E4qNJQJp4waORxbwQgqNHj7J//37OPfdcnn322efU4nchKBznnj17OO+88+ivQQcxG96wZQu/27ULrci2MnHvvUx98INY73gH+kKC03p7sa+7jng2S/ajH0V7//tRPG/GqFOtKP4RkSQJrasLa2SEWNm4hZPPY544gdbSQioMOAQqJj8Xv+qyqqLfeCPStdeiSxL+k09ifvGLgf5g/Xry555L8rzz5nXs1c5HzmZRWlrQQ5vbQuCmGo9jjY4GhUzBXUoI3FwOJ5PBN81gfEpRkBMJjJ6ehYurw31UIiBSWYBjISeEsLNSuL2m3XB6ZVzVNFRVDcip50VjXQUyVlfhMMdj3Xw+6EYU9qtpQbBdCN91cUwTK5NBTE6C7wfHoetoyWTdpKQwfhUFeyaT+CdO1LWN6NjyeezDh/GOHIFcDknXUc87D23z5kAjFAYdzlW8S5JEvLMzcJ0aH8ex7XnlK5mTk+hzjGYWk23fNMk9+SRSPo9IJhHd3VEye3Ghbk5Nne5+QFWbZ4nA0ALbRu/pITsyQryzE9uyWFumPXs+cKYQEC/UoDWyAC8nIMuWLav62/yTn/yEZcuWcfTo0Yr3F1yullUJkZUkKSIfBdx6662kUimeeOIJbrzxRpYtW8aTTz45r+03sfhoEpAmXvBo1DiT53k888wzjI2Ncfnll9Pe3s7evXsbThSg8RqQwrF7nsemTZsWTD4AXn3bbXz0wQfh1a+OCkk5lSL2hjeQ+bd/W9CIhm+aSIqCevnlKBs3Yn/qU3gTE+i33rrg4wYwurrI7N2L0dMTddXyg4OIbJbkypUzxb5zFAReQfBdcLq66iq46qpAv7FzJ9n/7/+DZBJp7VrUSy9FW7duwdaqIptFSaUiO2JZllFVNRB/yzL5kRH8fP70Cn0shppMEgvPuZGIUtgraGGKuyiRNqWCeUBdZCQ8p+JE9oLjkihKZK8m4J95AnMQkFxuxrkVQ1ZVjFQKigpg3/NOk5JwxESNxdBaWipa0hbDyWSQi0iLlEggZsnIKYbvONjHj+MdOBCMQUoSyqpVxK+/voTAF3+/2On0nKYKxeea7O0lretkhoeJtbej1UiwhO/juS7xon1VW74Rvo914ADunj3ol16K3teH+I//wJmeRu3omEE6XdsmVTyiVuX7xzNNnD17aHnRi6JAS99x8DMZ/uj3fq+m81hMnCkuWIXjWEwCMjY2VnUBL5VKccMNN/DQQw9VDDD87ne/y6ZNmyqOX+XzeR566CHuvPNONpTlugghopHjG264gS9/+csMDAzM0IF897vfpb29ncsuu2xe59rEwtEkIE2cUZjPl2EjRrDy+Tzbt29HlmW2bt0a+YovpsC9Udu1LItt27YBgXajUTPOXV1d6CdOzCgglM2bkR59FHuW4K/Z4FoWIpNB6+/HGRwksXIlxmc+w+Rb30ruC18g/u53oy8wLEySJNTOTuzRUaREAuvECfTOTozQNWUGyguCoveh63n4YVFdnqIuyTL6xRcjVq8Gy0KZmsL55S9xHn0UDAOppwf54ovRzz23xMmnFohsFmKxKAFeWBa5wUGE4wSWp45Dor8/EKyHIy0F/URB0N0oyLoepJ6XFenFn9fizJZKn+OS1PsKtxWj0sr7DMelgmYmdGYrFrLP3Pns3yu+bUfjULVCVpRAJB8WXML3sbJZ8mNjgUuYEIjWVrRkcsa5uJkMsSJHOjkeDzpXFSB8H+fkSdwDBxATEwjXRV22jPgVVyDPZQIR7tfJ5UjWKb5WDINEby+50VG8WIxYDYYT+YkJjEqPKz//iQnMxx9H7ekh8bKXRQW5EtpJu6aJkUxGnaL81FTgzBWO5ElQMcjQy+Xwd+9GvfBCZFnGDBPf3eFhdCF48YtfXNc1WAycKR2QRmtRhBAziERbaAZQDW95y1v45Cc/ySc+8Qk+9alPRbfv2LGDRx55hM9//vPRbdlsFtd1aWtrQ1VVvvSlL3H8+HG+/OUvR4/5xje+QTab5fowv+YVr3gFS5cu5e677+Yf/uEfoscdP36cL3zhC7z73e9uOmA9j2he+SZe8FhoMT8+Ps6OHTvo7e1l48aNM5JhF0ur0YgOyNTUFNu3b6ejo4PzzjuPxx9/vKGdldWyzL69e9HPPju6zbdtYh/5CLk/+APciQnUOgu3/NGj6MuXo8bjmOPjUW6Hft55KDfdhPPoo9iGQextb0OtkE5eK2Ld3Uzs2oWRSJBcs2Z2q9oqBYEzSxZJMTEz2tvJHDyIsX59SdCiNzSE8/Ofk//hD4Mb2tpQzj8f7bzzUOawRPbzefK5HIyMBKMShoHW2YkWjyM8j/zx45FQW1aUkiDAwriWFBbl9QYBlkMxDNwqQlIgIgFqkR5kNlQiIyW31zD6U0nI7oWWvUgSsu8Hbkw1nvdCV4IlWQ6K9JaWwP41n8ezbZzhYfB9ZE1Da2lB0fUgH6Po/SjHYogw5V4IgTM6GhCOkHAq3d3omzahzsNC1s5mA1OBes8vJHPJ3l7MyUmyY2MkOjurbscPLZK1WTpJvuti/va3iIkJEtdcU5GUG+3tZIeH0QwjsnEWjkOytzd6nV3TxCd0WyvYPDsOuSeeILV1K2aYou1aFqm2NjJDQ6xaseKMKfzPhONYjE5MNpudEQQ4G5YuXcrnP/953vnOdzIwMMBLX/pSjhw5wuc+9zluuOEG3vnOd0aPveiiixgfH+fo0aOkUik+97nP8Za3vAXLsrj55pvZvXs3Dz/8MG9605vYHNrDx+Nx/vZv/5aXv/zlpNNpXv/61zM6OsrDDz/MypUruffeext6/k3UhyYBaeIFj4WQhGPHjrF3717OPvtsVqxYMePHdTG0GtAYYnPq1Cmefvpp1q1bx5o1a0qEyo3CPW9+M29+5BH0P/mT6DZh24EP/0UXkfnQh2j58z+v2b0nPzaGkCSUWAxFltGXLsU8fpzEqlWBmFnXSd5zD+7Ro5if/SzShg3E77yzbm2I73lkDx9GSyRQksm5czIq/BB7oVuPVqGonjFUIEkoLS04U1NoRat+ypIlKK997enjymZxfvUrrL/7O4RpQjKJfM45qOefj7p8OYTZGk4mg5NOE5dljOXLZ4yMSaHVaYkuoygEDsLMkXAkyhWiNLG6zmJUNQycSraskhSRHW2+rlVl/xfhsddDmKJRrfD5bujwVRjV8gkyKso7WMxjX7VCUVW0QoEtBLZpYmcyuNls4AaVy6ElEviui5dOYw0OIr79bYRlobS0oJ1zDsrlly+4SHSmp0nMh8gX7TfW3o6Tz5MZHibe2Vki4C/AnJjAmGXF2zpyBHvnTowLLkC//PKqjytoUXITE6R6erCnp1ETiUivIMsyOE50m+/7eLaN+cQTxDZtQo7HIZfDs+3AGEKS8CYnecXrXlf/NVgEnCkEZDHcuCqNUs2Ft7/97fT29vLggw/yjW98g56eHt73vvdxzz33lBzfihUr0HU9MoT5vd/7PVKpFJ/4xCf4l3/5F/r6+vjIRz7CPffcU7L9m2++mccee4z777+f973vfbS0tPCa17yGP/7jP47sept4ftAkIE284DGfESzf93n22WcZHh7m0ksvrerIsZgjWIXCrV4IIThw4ABHjx7lwgsvLPG1b3TH5paXvQz5L/4CP5eDMOvBt6zArvOqq3AHBsh+/OMk//iPZyUhQghcx8E+dYqWc86JjtFobWV6cBDf80BVg8RiQF21itSDD2I9+STZe+5BveEGjFtuqemH27Us8ocPE+vvR02lAkesnp6qK/O+aQb7Lvw/XGWVQkFytdX6csS6u8kdPlxCQMohJ5MYL34xhKMgvutiP/EEua9+FX9sLCAk69ejXXYZUkcH8Vm6JHIyiZ3JVBX8SpKEoqpBUR5mbvhC4Bf0E0WEZC5IsjwjebqgTQEaOsZQCBcs2AOX3F7j84v1IQWC4bkuLpQSMYoE6I1GmQuXHo+jeB7OwYOok5NkT5wIwhV9H33JEmRVnREIuCAIgRvmqcxrHE+WS0L9tHgcRdfJjY6ipVIYRYWm57oIQK1wHf1Mhuxvf4ucSJCc6zNccGbSNLRYjPz0NF4+T6psfMwzTaTQMU/IMubvfoexbh1Kezuu6+J5HrnJSYy2tiB80TS5+sor678GDUaU/XIG2PAuRgckn8/X1QEp4Pbbb+f222+f9TGPPfbYjNte9apX8apXvWrO7V999dUVn9/E84smAWnijMJ8xiDqJQmmabJjxw5832fr1q0lgsmFbrtWzJcouK7LU089RSaTYcuWLTO+7BvdsZFlmZXt7Rz7znfQ77wTCDogsmEQv+wypvfsIfZHfxSQkD/5k8CWtgxCCBzXxTp1itiSJdG5R7a5y5aRP3YMSdOC8ZkiGJs3Y2zejPlv/0b27rvR77gD49JLKx6rEAInm8U8dozEmjWR85PW24t58mTVdHR/cjJKHPeLVs2VMiHxXF5okqIgxWJ4+TzKXIJfIbDGxnDTaaRVq0j8j/+BGovh2Db+gQP4v/kNzuHDZLdziIIAAQAASURBVP/8z0HXkbq6kFetQlm+HLW/H0nTgi7UyZNzOg5BmBFTsEEtG9USnM4jmXVUqziLJCSUUiiMbzgqjGDNh4xASEYUBS0McYwyR0IXIDuTQW2wPavvebjDw3jDw3gDA4FY3HECZ7BkkthFFyFfdx2yLONaFnYmg//oo1jpNEZbW2OS7QmsfpPzTf4uLAgUj4opSjCSNT5OzrJIhOOX5sQERtkChPA88jt34g4MkLjmmhlhlXPBaG1l6sQJtGRyxntS5PNBpwPI79iB2tVFrOBmJASOqgbjWYpC7tQpetrakCSJyclJWltbn7cOxGJkb8wXje6AuK6LbdvzIiBN/PdEk4A08YKHoihRaOBcmJycZPv27XR1dbFp06Y5v4AXSwMyH6KQy+XYtm0buq6zZcuWitkki5Gw/nvXXccDP/wh/pveFBSoBdel1auR83k8RSFx111k77+f5Cc+gVJUaPhhoSpcFymfx1ixYsb29WQSG4Iio0r6cuzVr0a/7TbM//t/mf72t4m97W1oZQFT9uQkYnyc5Pr1JQVcrL2d6dHRktXcEuTzSIZR4nRVfg1rNWI2enqwTpwIRsoqwDNNrOFhhOehtLWRWLUqWOkPr5OsKOibNsGmTYgTJ0i+//0AuENDeLt34/7nf2KNjgbFua4HqfHnn4+8ciXqsmW1Cd0rjWoVrG7DMaWCdkQqW8UnXMF1XBdVURavkJpDxA51umrJMr7rIhdczApCdiHwbRuppQXbtmsjYmXwTRPn1Cn848fxQ/tXYduIlha01auJX301cviZMMfHA5vfIqcgNczUES0tyLEY+fFx8DzUeBw9dNSaDxzTRFLVeZMZKRx1oswBS5Ik4l1d2JkMmeHhgADLcjSWJXwf6+BBnN270TdsQH3xiyuObM2FgrGAqPD9K/J5lFSK/J49SKpKrNhSW5ICUm0YwX5HRnjjy1+OEIJdu3YhhKCzs5Ourq7AaGMxul9VcCYREM/zGkpAMmGOTaVU8yaaqIQmAWniBY9auxQDAwPs3r2bDRs2sGrVqpq6LWeKBmR8fJzt27ezdOlSzjnnnKo/YItBQG658UY+8eijuDt2oF98MVLRj6giSbj5PLFzziHxvveRve++iIT4vh8VqvmjR4lXKcoBjP5+MtPTyLOMpcm6TuKuu/DHx8l/8YtY7e3E3vpWlLY2rMFBfNMktX59xdfV6OvDPHGCxMqVMzdsWfiyjOe6kdNV8TWsJwVGMQyELAeEq9AZEAJrdBR3ehrJMNB7e0tCHEV4nWYkwBedh7pkCeqSJTP2lzl0CHHiBN7vfofz3e8GK9a6DrEY8rJlSKtWoS1bhtzRUfX9Xmx1SyGVvKgTVCArsq5j53IQ5nM830XUnEL2YmhacG3KujWFc9MNoyoRk4TAn57Gm5zEn5hAjI8jpqbAsoICXZJQ+vpQ16xBueIK5NAq2Q2d04rhmmaplWzJwcgYiQRGIhE5auVGRgDQW1vRarTRLcBOp2d0JeqCqgakrcrdeiqFYhhMnTxJqqcH3/Owdu/GO3wYbflyki97GbIkYVdZVKiIIstWc2oKvbUVN5uNjCqih+VywcJGOk2igo2qa1mRq5k6Pc1b3vxmBgcHueyyy0in04yNjUW/B62trREZaWlpWdRgusJ3/vP92YHGa1FyoY10k4A0USuaBKSJMwqLMYLl+z579+7l5MmTXHzxxXTXIchcTA1IrUTh+PHj7Nmzh3POOYcVFToIxVgMApJIJFi2ahUnv/GNwHK22NfdslC6urCGhoitWRORkNgDDyCSSTRVxZmeDlaei1dSCwLqEFo8jmQYNWUhyJ2dJO+/H3f/fsxPfhJnxQr0228nVsFEoAA9lcIeHsaz7ZJQPkFgUSo0bYbTlaA+8hHtq6cHc2gIvbMTa3gYXwjUtjYSq1fPOL7CGJSqKDNXqmv4LMT6+7E1jUTZfLtv23gHD+IdOID1s58F11XTgj+qipRKIXV0IHV2Ind0ILe2Ire3I8XjyOWJ1eEx+oqCl80S7+w8LeZexGKtHpSTkcKsfXS/qgaEoczMwHdd/GwW6+hRxPg4/vh4EDToOIiwcyd8HymZRG5vR+nuRjvnHOSenrq1GpEouupJFIVpFjlq+Z6HOTWFNTWFnkqh1zDi4uTzyAvofgABWZuDPHi2jR6LkX3iCZSpKWJnnUX8llui+6PXoM73iQiF5fH2diQhMDMZ4kWdVTeTQXYcUldfPeO5jmkG3RNFwc3laJMkdF2PROxtbW20tbWxdu1aLMtifHycsbExjh07hizLERnp7Oyct7FCNRS0ZWdC+najNSC5XA5d15u2tk3UjOY7pYkXPGYjCbZts2PHDmzbZuvWrXU7dDyfGhDf99mzZw+nTp2aVShf73brhSzL3LB2LV/bswd3fLyEOMipFLqikB8dxViyBGXNGrQ//ENy999P6pOfRG5rwxkeJlFDArG2dCn20BC1vkLymjWId7wDfc8evC99CXPVKqTXvx61St6B0d+POTBAcs0aICQfjoMI8y0aVRQUcgsEQeelWgp5FNqnqvPKroAg+M6q8HrLuo587rlo55474z7f92FyEm9oCH9kBP/pp4PV/YJOQVGCP6oajCrF44i2NvyWFoSqYq9YgdTSgtzaGhX6DQ8+rPPxQghwHDzTxM3nEZaF7DhBmrdt4wwOIn72s+D8HCfohrgunmUhdB2/rw+5uxt9w4aAXJS9Zr7vRx0Sv/D+n6WYrERcrbkSwqtcQ1lRSHR2InwfM50mMziIlkgE41lVnmNPTWHUaY89A4oCs3yXuLkc2V/8As22iZ97Ls5ZZ81pLT0nwv3lJyYwQsKhJZPYw8NBMr0kYR44gDs0RPttt1XchD09jRaLBfqP3/6Wu17/+qqr/YZhsHTpUpYuXYrv+0xNTTE2NsaRI0d49tlnaWtriwhJskKeS704UxywoPEjWNlslkToTNZEE7WgSUCaeMGjGklIp9Ns27aNtrY2LrnkknmtzDxfGpD5EqfFGBmTJInbr7mGfz5xAvsb34Ci1XZpzRrcI0dQV67EGhxE6epCXb0a9f3vJ3///cQfeACqaS/Kjz0UYVtjYxhzFDLC98keOkS8vx913Tq8m2/GPnAA84tfBE1De/nL0S64oMR2VYvFsDUtcD2KxSIRteJ5eEUrnYJgNMcNg/VqTdt2slmsoSEUVSXR3w+mWZV8uOHKerXQPmDOdPYCopTyGtOqZVmGzk7kzk6oQFBKIAT2xATeyAjq6Cjm3r1w+DB+Oo2by2EfP47/pS9BYVwp/LvYGjj6d+F8iu+T5cB+WVWDzoyqIhQFZ2SErGEEXQvPC9yRfD8gv+V/hw5fkqriKQqyrqPE4/iGAbEYUiyGJATysmXoGzdG5EICcsPDaC0tcyZ9R0F5RZkjvudF4Y9zvUcKlsjqbPuZ4/WWZJl4e3uQMTI9TXZoCNUwMNraSgisk88jhaS2Wgp1LZAUBb/CSKSbTmNt3447Oop+0UUkw9FK3fPIjo6S6OpCmcd3rQhfYy+0UC7kiUiShKLrmGHIoOR5GD09FQt5LyTQku8HiyWjo7zjrW8lm83OWfjLskxHRwcdHR2sX78e0zQZGxtjbGyMw4cPo2laREY6Ojrm9XuyGNa380Wjj2U+FrxN/PdGk4A08YJHJQJSyMhYu3Yta9eunfeqzELscmfDbMQmk8mwbds2UqlU3cRpMUawZFmmtbWVFbEYB3bsgCuuiO5TNm3CPXCA2CWXkH7mGZJdXYF17Zo1SO97H9Mf/SjG//yfFbdbXhpJLS3o+Tz26Cj6LIFnQgiyR45g9PScdi+SJNS1a4l//OP4mQzm17+O/cgjqNdei/HiFyOHhV+sv5/c4cPoK1aghroHy7aRCgLawjkrCnpI5nzfxw1HUaJgv6Jixs3lsIaGgtC2lSuRQi1F5tCh0pyOwuMdB0GYmzHb+7LG96zW3o49Pk586dKaHl8zQrG53NKC3tEBZ5+Nt2IF8YLbEJD93OdIvv3tp4ty348IXHSdqgXX+X7UicC28W076k74PT3EV68ObIlreP/P5crl53JoPT2nSVpYmAvHqWgdOxsKmpmCO1ThvB3XjSyAy9+7ThgGOCtqJZySRKy1FVpbsTIZssPDKJpGrKMDSZaxp6aId3XNa3ywBEW22AD22BjOjh3gOGiXXILwvBKHLVlRSHZ1kR0bI9nVVfeImvA8kGXMyUliZdoVPRYj/ZOfkNywAW31arI//WnFbVhTUxjt7Zjj43i7d7N63Tra29vJZDJ1dx5isRjLli1j2bJleJ7H5OQkY2NjHDhwANM0aW9vp7u7m66urpoL7zOtA9LIEbNcLteQLlET/33QJCBNnFFYqAZECMG+ffs4fvz4jIyM+eC51oAMDw/z1FNPsWrVKtZXEVTPBlmWKwfGLQAFUvOuK6/kI8ePYz/6KOKP/zgo9s4/H+vf/x3HddGXLMEdHkYLC1R1zRqU17wG9/Ofx37ve9GLVtsrnZXS14d34AB6fz/5Y8eqOknlQmtOvUrehpxKkXjPe/B9H/vf/53cffchrV2L8ZrXIHV2ImIxRCaDEo60CduGMJ260rlXdItyXfww5VqRZRLLl58WnQNIElpnJ+bICLHwPSiEwA2L1Ll++H3fr7kg1RIJ7KGhmh5bK6oW9OXvx7DDUbAtVuB03kgoxK6WOSLLciCY13VIJErEzrKiIM+Sp1JyrNVE/MWHGRoDzDiPoq5FiWakjs9dyXuk6NyLr6EzPU18Lu3ZPL77jFQKI5XCzufJjYxEnSC5Ed9bqopwHOyTJ3F27QJVJX755cjJJNmRkRkkAUBWVRKdnQEJ6e6uy8HLz+UQihLoxYo+H+7kJPknnkBbvx5l5Uq86enIgrfk+aG1t6ppeAMDKKkUN4WLJQXtxXyhKErU/YCg2C50Rw4cOEAsFovub29vr/o+XIzsjfmi2QFp4vlGk4A08YJHgSQ4jsPOnTvJ5/MVMzLmg8UawSrvVAghOHz4MAcPHuS8885j6TxXsxerA+L7Pm994xv59N13M+I45H/5SxLXXIPQNPzJSTRVRe/pIbN7d6QJ8H0feelSEp/+NLkHH8S98EJir399xTRqALmvD398nERbG5mRkYpjRfnhYWTfx6gh20CWZWIvexm87GU4+/eT+/znEZqG8cpX4uTzGKEzlLBtqMFhqLDyLRwHa3AQyfcx+vpAUXB9H9l1S4pso7096oIU0rllWa5tPCWTCQrzGiEZBl6oZVkoZivoJUUpdfiqdCwhEaHgqhWOH0UdgnlY3VbDrCL+YqhqFHIXPddxgm5V4bjLck4q3T4XCucuSVJQbCoKnuPg+T5e2B2K0rzLsYDCVI/H0eNx0idOIDkOViaDWqdrVjF818UZGcHfswdjxQri114bja65pomkKFWtdRVNC0hIOI5V69Xz83lcz6OtiHhaAwM4zz5L8ppr8CUJa3oaeXoaqUKmiDU1hdbSgm9Z+ENDtKxcybvf8pZg2w3uPCQSCRKJBCtWrMDzPCYmJhgdHWXPnj04jlNi8xsr+kyeaR2QRh5LNpttOmA1UReaBKSJFzwKY1KPP/44yWSSLVu2NKy1/FyI0D3P4+mnn2ZiYoLNmzeX/AAvZLuNQoGAqKrKBarKz970Jqw//3PUCy+EWCzIVcjnkZJJ9KVLMY8fJ75yJdb4OGpHB3IsRuoTn8D8p38i98ADxD/4QUgkSsTsQJCVELpgxVasIH/kCKkNG6L7rakp/HSa5Nq1M45RorpjlQBYs4bYxz6GksthPfII3sGDpC+5hJbXvQ5hmkg1iGc928Y8dQrJ90n0958WKhdb15YV2WpHB/mREZRwVbTWFUc/l0Oqg0xoHR3Yo6NVwxZrxVwFvRyL4eRy6LWEygmB8Dx8xwkE2wRjNl54vRDi9MhSydMEjmVhp9NBeKKiRH8XF+m+5+F6Xm2WwBXyJJxMBrnKNZ4Rghi+V+fTkbQyGYy2tqDrGZIxNySrkdVvqIcpZJXMB3Y2ixqPE29vx5qaIjcygt7aWvMIpxAC+9gx3GeeCVzTVBXjoouIn3PO6ccQ2OPOFW6oaBrxjg5yY2PoNVoBW5OTyK2tQbfK98k/8wxiYoLEi14UXKtw32JiAqPMkloIged5xGMxsr/9LepZZ9GRz7Mq7KIuZuGvKArd3d10d3cH46HZLGNjYwwNDbFv3z4SiURERv5f7oA0CUgT9aJJQJo4ozCfNvnExAS+79PX18eGDRsaOoO6WDkghe2apsn27dsB2Lp1K0aNQuJqWMwOCMAfv/nN3PSDH+C+6lXkv/AFWu+9F2/TJuynnyZ2xRUYHR1MDw4Go0phKGABsde/HvfAAbL33ov2jnegbdo0c2dhkagaBnIqhT02ht7VhZPL4QwOlmyvFhRC8yRJCgTfbW0k3vteYr7P1Fe/Suaee/CmptBf97pZt2OOjOBNTRFfvjzSk0QIk7bLrWs910VOJsmPjpLs6AiIWq3IZpHqeC9o8Tj2ArVKc7pyASgK9sREYE/rebiZDLkTJwIBcbH2IQyDk2Q56DIUCdAlAo2IkKRorE2E4ZaFxHZkOXCbsm1c30d4XrAPCHI5wufIskxh4FAisNuVNQ1Z11FjsajDISlKiZ4BglDIWI2uTQvpjniWRTx0pJLDaxiN84XnJklSkB/jODOySmqBIMj9SPb2BhqR9nbURIL8+DieaQZ2tlVeU3t4OBixmphA7u0lfs01yIkE+WeeQS4LeLXTadR4vKbzVnUdo60Nc3JyBmGYcfy+jzc5SaKrC991yf3612htbRhXXVXyOEVVcaamkM86q+R2a2oKLZnEGRtDCtPbLyxaqHiuOg+SJJFKpUilUqxatQrHcaLuyDPPPIMbdhZPnjxJV1fXgr/vF4LFsOGNL6Dr1sR/PzQJSBMvWAghOHDgAEeOHAFg3bp1DRfALWYHRAjB448/TldXF+edd15DfgwWgzAVjhVg7dq1tO3ejXXddWj792P//Odo11+P9Z3vROJ0fdky8ocPI1WwZ1XXryf1mc+QffBB3O3bSb7lLaUjWUXXOr50KZm9e5FTKcxjx0jW+foWUtgLY0/Fz5RkmZY778Q8dgzpW9/C/d73yP7kJ0hr1qBffz3q8uVAEGhmhpqTZHHa8iyQZDkgG66L5/tBd2J8HD8c+arFVUtYVpDZUQekeBw3n5/X6I3nuvi+jxaOKjmZDJ5p4tt2JA4GIBwpUlUV2TCQ43HiS5aUjDLNF5GIXQgcRUFNJiuOarmuixACVVVLiUHooOTaNq5t42QyAWkRAmd6Gsm28bq6kDQNRdfxa3RnK0c93REnm51JWCkNf4wyS2QZx7bxQwJYnFY/F+ypKdREooRkSIpCvLsb4ThkR0bQkkmMZBIkCTedxt61C39wEDmZxLjsMtRy217PKw3/832cfJ5UHbo6zTCwVTXoAs0yEpsfH4/G9rI/+QnGxo3ofX0zHifremCxXHxcQuDaNom2NnK/+x3xyy5jescO3nf33SWPeT46D5qm0dvbS29vL0IIDh06xPDwMCdPnmTPnj20tLRE3ZHW1tbnVMDdaBveggi9iSZqRZOANHHGQQpXRmeD67o89dRTTE9Ps3nzZh5//PGGf6HC4mlARsKE45UrVy7Ipasci9kBGRkZYefOndy+di1f3reP2F13kf2f/5P4Jz+JOHUqerzR2kru6FHiVXJLZF0nft992N/+NtmPfYz43XejFsbOio5dkmW0vj7SzzxD28aNdRWLxSns5e+JwjtLMQykZBK/tRX9da8jdtFFuAcOYP3zP2NNT+N0diJffDGpyy6bkQsxK0KxuRACTdPQu7vJHDyIFhYhvu8HKeOcJiszVqc9L3JZqhV6ezv2yEjNBMR3HJx0GieXww9XZu2wA1EgF3pHx4yRoOyxY0FIHuCoakPIB5SKue2QoJWnkotQR6Gp6gz9iCTLqIZR0eo2PzCAlM+jtrVFJMWxLLJDQ8EomCyjGAZaIjF7WGAFVOuOQNAxmEt8XnDNkjUNXZKQVLXE7KCgK5KrZY4IgZPLkarSZdDicdRYjPzQEJPbtiEPD6PqOtpFF6Ft2VL9wHy/pBuTGxurKDyfDYIgxd2emAiyOSp0d5x8PiC42SzmiRMkr7oKpQpZ0WIxcmUmG+bEBHprK9bhw2g9PTi2TdI0ufTSS4tO5fm3v5XCQMRUKsX555+PbdtRCOLOnTuRJKlEO9LoEMRyNPqa5PP5JgFpoi40CUgTLzhks1m2bdtGLBZj69at0Rf1YrlVNXK7xS5dAMuXL2/oqtdiEBBJknBdlx07drBp0ya2bNnCV//oj5Bf/WriH/gA5l/8BZhmyZiDGo/jptNQYRWzsE3t5S9Hv/xy8h/7GPrb3oZx8cUzx2SyWZRYLCiQZyMB0ulkdS/UBmgVtAHltDbe18ekZaGF+1XXr4d3vxvzxAn0yUl4/HHy//EfsGwZ2nXXoa1bN7uzT5EOpNhmV21rw56YwOjsLHVMCjUX5da1ohAIWAfUWAyz2ntVCJxMBjebxbeswP1JURCGgdbZiV7jWA2wILF0zSjrEBQK8uAuCc/3I1JS0+bCbIgCQXGyWWLt7dFolGfbQbdrairo+BRIia6jJpMlrkyzH7YU6REojKXVer1C4wa1/NzDnBMndHIq76CZExNoYUhfCUINjnnwIN7evQjHIbZhA8769aDrqHORiSInNjubRVLVui2Lg9OSAj3IxASp7u6S4xRCkB8bQzlyBPfkSdpuv312DUz42kSH6HlBvopl4R8/Tvzaa0kfOsRtmzeXnYq/6AV9LSgee9J1nb6+Pvr6+vB9n3Q6HSWy7969m9bW1oiMpFKphndHmiL0Jp5vNAlIEy8oFFbhly9fzllnnVUSEPZ8BAbWA9d12blzJ9lsliuuuIJf/vKXi6rXaAR83+fQoUMIIbj88stpD4uWntFR0sPDaGvWIPf3Y//yl7iHD6OHY0qSEEixGE46jVZNsCwE6ooVJD/3OfKf+hTutm0I18UPV7xdy0Jks7ScdRbZAwdQa9D3uIVRIk2b4bYlwn0WF0CSLKN1d+OMjhITgvzQEH4uF+R5rFkDF18cbPfUKZzvfAfnkUegry8gI2efXTqiMksWRayri8yhQ0E6dbj/QvdD4bTFb8G61jXNQEdRZ8q4HI/j5nLIqoqdTuPn89F4jxyLoba2osVigStXqI2pO1At7ESUBA42EhW6nwVyqxaE3OF1EpzunMzqqlWW6u1ms6hFq+yKrgcEtyip3HMcXMvCSqcDC1/fR9Y0tFQKdRaDgMJ1daan0YoKxzmF7IoS5KAUQZIklEJgY3gd/KIOm0QwJpgqIhO+6+IMDGA/+yxkMmirVxN/8YujLl6MgFBkhodnDw30vCAY0vexpqerdlhqgaJpqLqOmclE3TPh+0w/9RTi8OGgExO+b2eDPTJS4oBlTk4G2922jeSVVwbjbMeP88Cf/3nJ884U96lqxyHLMu3t7bS3t7Nu3Tosy4psfo8ePRrZAHd3d887BLHSsTR6BKurRk1VE01Ak4A0cQai0ghWsU3tpk2b6C9z+1lMAtKI7eZyObZt24ZhGFHXZjEdqxoBx3HYsWMHpmkClLhzfeR1r+MDX/4y7R/9KIm3vQ3nv/4LZ9u2EgISX76c7N69qC0tsxbRsiyTvPdezB/8APOf/gnj8GH0tWsjNy1ZVdH7+sgPDJBYsaLyRkKrWz8ce5oxpx8+plKBqra0kJ+aYnr/fozOziAAr/wxS5eivutdAHjDw9jf/z7Oo4/CkiVo11yDunEjrucFhKJScSDLqJ2dWKOjFS2ES8LtwlVvT5ajUa1o1btKESV8P0gsz2SYHh0NXJcSCWJtbTOKugJRkutw5So5FcPAzeXQGmBzXQmiKLMhOtai61qsjSjkbpSPas3Q2IT2wQX4jhMlbVeDomlB56PoPB3TxMnlsKamQAgUw0BvaUFW1dM5LyGpM227ZAxxTiG7osywCi5HwQ2qIGTPjYygJJPkT5zAO3IERkaQXBd1yRKMK69ESSQqvsZ6Momq64FLVVsbeqVr4XlIikJ+fJxYe3vNdrrVEGtrIzM8jBePI7JZcr/6FcIwaLn99sBMIDTjmA3+4CDqkiXB6+55eK6L9/TTJC6/HFnXyU9O0iZE5H5VwPOlASlHrUTIMAz6+/vp7+/H9/0oBPHgwYPk83na29uj7kgikZhXd2QxROjNDkgT9aBJQJo44+G6Lk8//TSTk5NVbWoXO7G83pXoYoyNjbHj/2fvveMjuev7/+fUrZJWveu6fdXnK75in3vvwRBCDQFCKoQ0sENxCWBCKA4Q8k1CSUhoJiSQHyUJxQ4YAtjXe9ep3Kmt6tbpvz9mdm5XWkkrnWRfnH09HvfASKvZmdnZmffr836/Xq/9+2lpaeHKK68s6NosdAdkoQhTKpViz549RKNRtmzZwk9+8pOCFbM3/8Zv8Ke3345lGK7v/4c+ROKRRwjdcw9iJAKOgyhJKA0NZM+fJ+SJumdC8O67MQ8fJvPUU2SWL0e+6y4/ByQQi5EcHcVIpVAmPeRyhR+4Y0+TPyW/1Jvm8zO9JG5BEFCn0a3kQ2poIPQbvwGAPTJC9rvfJfv004h1dchbtsD69UiTBb1AsLqa5JkzBCaNoUyBICB4q+2qql4c1bIsnJx9q+gG6xkjI1iZDEgSUkUF0SVLSPf2Em5sLPoeJedmzHT8wSBWMrmoBCTXZSklYFDCve4LMkcmBSA6eSN67h/O77usBIM+cXFsGz2dJjs6ip0TxkcihCor3eTzGQhOUTJSAgHJwRwfRzt5Ev30aVRZRqisJLB6NeI11xSE7s2kpRMVhUhjI5l43HXqmnRfdTytEsEgynzdmrwuTQ7BWIyJn/0MNZOBK66gor3dXTTJZksa7XPSaaS2Nt+m2TlxgtD69UjePUHr7ubP3vzmKX93qUGEC4X5dGJEUaSmpoaamhpWrVpFJpPxuyNnz55FVVWfjFRXV5du9V0OIizjJUaZgJRxWSOdTrNv3z5kWZ7RpnYx7XKBeROQ7u5uTpw4wZo1a2ibVIRfrh2QHGHKjbnl9nHyA+vBdev4t29/m8qHHkJpbUUKBEg+9hjRD3zAL/YCdXUkT5zANoySxL3y6tVIGzagJRLYn/scmeuuI/DAA4iiSLijg9SpUwWjWDmnq5xAuSBPwv+P4p0PcO117XSaUH091NSgDQ4SmIPLj1NVhfya1xCSZZxUCv1nP0P7+793NRyRCOLatShXXYXU2OiOe9XXkxkYIDSNNsaHt/oMhaNaejKJNjKCZRium1NlJcHaWjcrwztGKRpFn5iYkhTvk49ScjNmgBIMkhkZmfffz4ac0NyY677mEY7cdizvmC3LQvDG82xdR1gAPYAgigSiUZxw2NX9OA5WJkNqcBA9lSJYWXlxVG3G3b44kud4eiCg4Fq2Mxn0zk63y5HJuMGTdXVEHngAtcg90fEIq23b6Lo+NXMk773D9fVo4+NucGBNzcX9tSyMVIqK2a7VEqFfuIC2bx9yezvWqlWokYjfnTMnJhBmIbSO44BhIKkqWjKJefw4kZUrUbxFA8dxkPr7+e23vnXK315OI1iXqkUJhUK0tbXR1tbmhyAODw9z8uRJdF2nurraJyTT2eLm3ObKOSBlvJQoE5AyLlvkCuHm5mZWr1494wNkMUewYO7tatu2OXbsGAMDA2zdupXqIivii2WZeynb7Onp4fjx4wWEKXfck7f7mQ9/mH/99V/H/pVfQRRFlG3bcGIxko8+ivD61wNuERXs6CDT2Ulkknd/Mchr1pD8//4/Qr/2awTuv5/s975H8uGHUV/9aoLXXIPa3Eymp4dwR4dfXMqShCiK6Hn7V7DuW4x8OA7pCxfcVPXWVuzRUUJ1dSTPnkXR9ZJcr0wvmyLXdRGiUYJ33gl33umer2wWY/du9K99DSeRgFAIceVK9Lo6AnV1M8+7e1kGAMbEBProqNtVCoUI1Ne7GoT8AMS8US2lstIV0ecREMsT6xYbT5srBG/8Z7FgGYbrIDZTHkkJEEQR2ft7U5ZxcM+DNj6OGAj43+lLOR+TO0pKIOAGL+KOqqXjcXAclEgEdbaOkeiGJQq4I2Jaby/W6dM4iQQCIC1dSujGG/0wSDKZouQjd+yCV3Tn7gm2N7ZUTMgeqKpCymRIDQ0RrKlBVhT0RIJgS8slXy92JkNy715EQSBy551g24xduEBFHtG3x8aQZglgtSYmELwO1MTu3USam1HzRnGz8TgtkQhqke/u5URAFnI/JocgptNphoeHGRoa4tSpU4RCIZ+MxGKxKffyhR7Bii5SV7SMlyfKBKSMyxLnzp3j1KlTRTsHxbBYI1j5BKTUlStd19m3bx+mabJz585pV6EWOzRwLrBtmxMnTnDhwgW2bNlCTZHZ9cnbDYVCrHQcOg8cILppE+r996M9/TSBX/s1Un/zN9h/9VeIwaAbkhcKoY+N+anI05U0Tlsbdnc3AU/MGLznHtQ77iD7uc+R+M53CLzlLW4ac64Y8VbI8wvi2Upjx7ZJd3UhRyIE6urQe3oQPPIaamsj091NZNmyGbeRb7M7HcRgkMCuXbBrF+AVq4cOIT73HBPf/CZKQwNiayvS1VejrFpVsCrv6Dp6NovV2YkYDhNqaZlKWKYJQLQdBwswNA1JUfzVTnkByMfFg1ucYs7y5vrFSyQfk5ETzCuKgm6aBKqrXfvaEjU2xTBdEnt2ZIRAVRVyIOB2SCwLLZEgNTCAIIpuOvkk4mDrOtbEBMbJkxj794NpIjU1Edy6FSlPdO3grvRr4+NESuzUFeiLuJi3YhpGgYhfDoUIqyrpoSE3b8MwSk4xLwbHccgeO4Z59izhHTuQa2txwO20xGJkk0lC3rHZY2OoHR0zbs8YGkJqaCB55AgCEFq1quD32okT/PVf/uW0+3K5EJDFsgMWBIFIJEIkEqGjowPTNP0QxKNHj2JZlm/zmyMKC3lOMplMeQSrjDmhTEDKuOxw/Phxzp8/P23noBgWqwOS8+gvdduJRIK9e/dSWVnJli1bZnQrWYx9ng8BMQyDAwcOkMlk2Llz55SHSO4cFNvuFx9/nJ2f/SzOpk3Izc1k+/sRr7gC+b77SD3xBJHHHkMMBn1BulJV5RbB02S9aBcuTBEHi7JM+Hd+B3t0lMzf/A1WJIJ+/fVUbd5c3GZ3hpEr2zBInztHoL7+ojuXovj2v5KqIlVVoQ0NFRWLO+COfHnF7FwgiiLqxo2oGzeSOneOcHMzVm8vxv/8D8Y3vgGBAHZFBfby5dgXLqB0dBBZsqRkvUL+qJZVXY0xNobjfX9yn9+lrvjnHYyfTL5QyJE6URRxFqNYzF1vglBgFDDFDlnMCwGc5lxNlxqf21Y+wRAkyc/PMDSNbF8fVl8f9PcjZbM++bWyWdT2dkLXXDPtIQiOQ2Z01NXfiKKbNj/H05Cft5JvcWyaJqIgEKyrY6K3F8m2Z3Wlmg768DD6888jtbQQvvNO/z6YHR11u0GRCKnBQdd1TBBwUinEWVbP7cFBqKnBHBggePXVhb+zbdTxcXZ5ZH/K314mGpCFFn7PBFmWqa+vp76+HsdxSCaTDA8P09fXx/j4OACdnZ1+COKl7Feu+1LugJQxF5QJSBmXHVpaWujo6CA4i0tNPhZLAzKXbQ8MDHDw4EGWLVtWUir7YnVAckVFKQ+UnDtXMBhkx44d0xbV0+3r+vXriXV2ku3uJtTRgVBZid7T4+oemptdEvLEE4iqitrY6L5ukkNNDrZpIkyyIc2HUF2N+vDDGKdOYX/uc0z88pdU/tZvFWhLbC8fohjMbJZsVxeh9vYCgbAYiWB5Tl8Awfp6NzgwFivYdk7sLoriJa9iBpqayPT1EV62DKm9HW1oCCubRcxkkA4fxvjlL7GOHSO1Zw9UVSEuWYLU3o7S2opQwnhYoLKSRDyOWltbkKVheOSplDT2mSAFg5jp9ILZ8OZ3lLRUauE7LIKA4Dg4pjmlyzGTHXKxczXTOJuWIwfgmgQMDWGdP499/jyk02AYiKEQUksLwubNWIEAWBZqZSXSwYOIs4RI2paFbRh+fkkO+VR+Lp/IlER22yYVjxOsrSWr66QTCYLR6LTfqcnQ43GMgwfBcQjfeCOOqvoLDYaXFRTydAKSoqBns6ihEJRQmFuJhGuXvWOHm9WSh+zZs9x17bXT/u3LdQSrVAiCQEVFBRUVFSxdupSxsTHf4fDQoUM4jlMQglhsjG02lF2wypgrygSkjMsOsVhszuNUizWCldv2TJ0Kx3E4e/YsZ8+eZcOGDTSVKNpcDBG6lDdmMduDbmRkhH379k1x55puX6cjS+991at41w9/SPAtb0G56y4yzz2HetddqFdfDY7jd0ICNTUkx8YwEgnftSYf2vAwck0Nhm1je2M4OTi5gD9BILRmDeGPf5zxf/kXJv7ojwi++tWou3YheefT9FbR81exzXSabE8PkeXLpyR3C9XVrkYjD6H29oJRrIUScOcgB4NkbJvkmTMIioJSXU0w51y1Zg2ZSMTVlGzahD0ygnH8OOZzz2EMDrqvURRX5N7RgdTRgdzW5rqPkWddGwggeFkOuUIaCsXZuY5D/qp4KRCDQTdocgGQ72CW27+FSlfPQRAEHEBLJJBmGBMpZoecn1yfw+RxNjuVwujrI3vkCEo2i6nrbm5IdTViRweB225DnGZBxbYssuPj7oiiIDBT6ZeJxwkUGYsq6vw2QyewGARBwMhkkFSVcDSKHQphZTJkca/X3PdJEMUp76f39aEfOoSgqoS2bUP0zrHl3TMc2yY7Pk40b2wsUFVFZmTEddiaYeEBQBsawhgdRb3uOmRVdc+vB9swkM6e5e+ffnrav/+/TkAmI2cVvW7dOhzH8UMQe3t7p4QgVsxio57Di0VATNMkmUxO+/tcN8eyLBKT7uvg3mfKROnyQJmAlPGywGKNYM22bcuyOHToEGNjY2zfvp3K6UL3ptnuYnRAYKpeYzLOnz/P0aNHufLKK+mYZfY6t93ptvmbr3sd73vDG9Duvhv16qsRvv51nEwGAHXTJndV9QMfIPLoo4SXLCF14kRRQbo1MUFw+XLMujrsgQHE1lb3WPJyK+S8wrTyV3+ViauuwnruOVL/9V8or3gF6ubNfqJ0vnWt1t1NtAj5AI+ApFIFP8sfxVJqa13yUSTccD4wUym0gQF3zl7TiBTJNhFE0bdkFWtqCFx7LUxa4bXTaczjx7H278f43vfAsnBkGVtRkNrbEVpbyY6PE77yykLnozxx9pQRHG+lf7buiBIMYsTjl3Qe8sfZCkYVbdslWAsJb+TPyWRcx7MS/yZXdNu2jTE+jjU+jjM+TnZ4GMbHETIZt2sny64j2tKlhGYxzJgMUZJc96loFNNxSPb3o4TDBCalmxtzSCO3LcvNxPHGtPxDmulvTBM9lfJJguA4RBobSQ8O4kgSQjBYIGQXALO3F/P4caRolPANN0w1b/C6H36WSN7xiKKI4DgY4+MzdvWynZ1kDx5EaGkhWluLnk4XdLHSBw/ymjvumHEk8nIp/C+n/cgtVgmCQFVVFVVVVSxfvhxN0xgZGfFT2SVJoqamxg9BLHaeHcchlUrNSwPy7W9/mw996EMcPnyY+vp63vCGN/Ce97xnWu3kT3/6U26++eZpt9fZ2cnSpUv54Q9/yF133TXl9w8++CDf+ta35ryfZSw8ygSkjJcFFrMDMl2nIpvNsnfvXkRRnNEieK7bvRTMRkAcx+HkyZP09PSwefPmkpNrZyIgsizz0Nq1fPUXvyDgOWJZeStPgS1bEHIk5P3vJ9DWRubcOZS8wts2TQRvTltsa8M8fx65tfWi05UsIxV5cEeXLyftOIRf+1q0r32N1De+gbRzJ8E770QIBnEsi2RnJ8HWVkzbRvBC7XKWpIBbNBVZgQ3W15M4fRrCYdR5hn3lw8xk0Pr73VXi9nZEWSbd3180LT5nKzwTxHDYJVybNwMXuzSiZeF0dWGePEn28GEcVXUF7ooCoRBCdbX7r6YGqbISMRZDrqx03ZdKHNW61BT0GcfZLiFzZ1oIAnj2vpNJqOM4ONks5ugo9vg4zsgI9sgIZDJuerppurbHgQBSLIZUW4vS0YHY0ODqdrzrNjswQKSxcd4FpuM4hKqqkBob0RIJl4iEQgQ8d6hSheczjYhNR0YcxyEdjxPKvx94ttbhhgbSg4OugD4YxHYctFOnME6dQqyuRrn+ejdFfprPzEgm3S5fkfujUlFB+uTJ4norxyGzfz+CaSJEo4SuvNJ1YLMs37DBnJhA6u/nI3/+5zOek/8LIvS5YCYtSiAQoLm5mebmZmzbZnx8nOHhYTo7Ozly5AhVVVV+dyQSiSAIAplMBsdx5qwB+fznP8/b3vY2Xvva1/L2t7+ds2fP8tRTT/HLX/6S733ve0U1lFdffTXPPvvslJ//9V//Nf/5n//p60bPnTtHVVXVFLJRV1c3p30sY/FQJiBlvCwgSRKapi3aticX32NjY+zdu5eGhgbWrl07r4fbYnRAZhKMm6bJwYMHSSaT7NixY04Pi9n0Kn/9yCP8x2teQ3rNGuRdu8js3QubNvm/V6+5xh3Heuwxwo88gqEoGGNjqF5BpY2MIHvOW/L69Rh792Ju2eK7j03uPOQKKVFRUFtayA4MEH7zm90i/L//m/QTTyB0dGBu30545Urk3HhSbvzItgtC/YoFwJmmidrSgtHbS8BLeJ8PLE1Du3ABFIVQa2uBriTU0ECqsxNl0mo3ougWv6W+R74oWlVh9WqU1avh2muRJAk15zaUTmMPDGANDuJ0dmJ6K/p2Ou0W5rLsjh9JEo6iQHU1xGIQiyHHYm4BHou5IYbzJAm5cTppGi2N4ziX7IDlmCaOruNks67D1NAQRl8fjmGQ3rPH7XhZlv9PkGWEqiqorkaqryewYYMfqJkb/ZvJUEJPpxEUBcu7vvLJW8mw3QBGQRQJVlVBZSVaMklyYADHslArKmY9L7mxuukcz6YL6cyOjKBEowXi/Nx3QgDC9fUk+/vRBwagtxeltZXonXcWaM4szxXMT6MXBGzTxMhmqWxsLLq/SjCI3d+P4pFo/60Ng/QvfoHS1IS0ZAnZ//ovQt7omZNXxKf27eMVt98+q17w/6IIfSaUSoREUaS6uprq6mpWrlxJNpv1QxA7Ozv5+te/TiqV4rrrrgOY02hTX18f73znO3n3u9/NX/zFX/g/v++++9i5cyef/exn+d3f/d0pfxeLxbjpppsKfjY0NMT3v/993vnOd/pBxZ2dnaxYsWLKa8u4fFAmIGVcdpjPg+LFHMHKjS+tWrWKJUuWzPvBthgdkOm2m8lk2Lt3L4qisGPHjjmLDCdb3U6Gqqp8833v45a//VsCH/4wzjvfifOWtxScG3XbNsSaGlLvex/qb/4m2UQCu6YGUZaxxsYIekW+uHYtxje+gexlbExHPvztVlZiJhLo8ThqXR3qLbeg3nILyZ/9DL7yFbTqauz770ddv37a8SPLMNwxL2+13/TyGALhMDQ0kDl/npA3ElYqbF0ne+ECjigSbGlxV4knQRBFlNpaskNDBPNXtxUFSiTUlmm64zZFis5gdTXpnh6fgIjhMOKyZciz2AwD2JqG3d+PPTSE2d+PdeQIxvg4jic+t3QdZ2AAvvAF72CEi6Qk99+C4BIaWUaQZRxJwhYEJFXFUhSX8MgyKAqCR36MZBJHUdxrOJvFyWRwNA0nm3U7Vbbt/nOc6f8XEAIB8Lo/1sQE5tAQwSuuILhsGVRUzFoI5ro0s5EPAGN8nFBtLZIsFx1ry11XM94rPALiQxAIVFSgBIMk+vsxkkk352WaMZdSrKEnQwCMTAbbcQhGIv53KydIB5cMZA8fhvPnMWtqiN56a8EYWIGQnYtOYIZtu6NXnuXxdMcu6jomkCuHzWSSzC9+QfCqq1Dq6xk/fRo1rzPj2DaiJKH19iJPTPDRxx+f9Tgvp9Gny2E/5kuEgsEgra2ttLa2YlkW2WyWb37zm3zsYx8D4KGHHuK+++7jnnvuYdUkm+TJ+OIXv4iiKLz//e8v+PnmzZt5/etfz2c+85miBKQYPvCBD6AoCu9+97v9n3V2drJ8+XLAdXq81ADIMhYeZQJSxssCLwYBcRyHEydO0Nvby6ZNmy65lbuY6e35212Ibk0pjl1bN2/mzkCA7//7vyMEg+jnzhGYVOjKK1cS/chHyDz5JCxdSkqWiaxYgeAVKI7juDPm2awf8JeP6ShQuLWV5KlTSNEoUjBIdmgIuaOD4Ic/jJ1IoH35yyS/9jXkG24gcPPNCF6xniuc9LxZf9srYEXPGSgQi5FOJDASCbdTMRsch3RPDw6u29XkzIfJCMRiJDs73dGS3KqkNzI0G/wVb09oPhm5roZjmm6BPweIgQDikiWwZEmBMDpXZGbHx9H+9m9RX/e6aXM0bNt2LY5NEzuTwcxmUW0bwbZxDANH18HrVpDN4pima7daXY0QjSLU17vOUOGwK2wOBud1/WqnT2M/9xzhq64qqbviC/m962Mm2KZZYO07xVkqz1lrRgcyxynq/pWJx4k2NiJKEpnRUfRkknBtbcEo2XzIB7ifY260SxAEn7w5pulqt55/HiceR1m9mvDGje7PBgcvvn4SBFxSLYoi6XgctaIC0RuPdWCKkN1xHCRBwNI0CIfR+/vRDx0ismsXYjCIlkxCPE7AKyRz+ywA2WPHuPOGG4iVkFVyOY1gXQ77YVnWJY+CSZLEXXfdxV133cWxY8e46aabuPfee/ne977Hu9/9bjo6Orj33nt54okn/K5EPp555hluvPHGol2T++67j3/4h3+gv79/VlOXzs5O/u7v/o4PfvCDBe9z7tw5otEo27ZtY8+ePVRUVPDbv/3bfPCDHyyTkcsEZQJSxssCi0lARFFE13X27NnjZ2UshItGbrsLjXyy0NfXx+HDhxekW1MKWXr6k5+k8dZb0d/+drLf/CaBP/7jqdtSVcKPPUby6acx//7vmXjDGwi1tvpi81wB42QyCHlCxNkCBsNLl5I+cwalsRF7YoKwR37EigpCv/M72LaN/p//SfrRRxGuuILAgw8i5QIXveLQdhwkSfLH2HLuR2pTE5nOTqRQaMZsBCORQBsYINDUhDKHayTY1ETmwgXCOV2MJM1KQHL7NtvDVK2pIRuPEyrRnW025IrMQCSC7o1y2F63AO93Yl6hjapiSRK2JKHGYhdJpVec+0Wv97/mwIBrH6yqCxdG6Dg4ebqfmV/qBhRKJZAPgOzwcFFnKrg4EpmvzfIzRyY5kAm27YcF5qCNjSEFgz65CdfUYBoGqeFhZFUlUFWF5RGg+RRV6XicYHW1f14cx8E4fx7twAGM4WGiGzagbt3qEykEgUBVFenRUSJ5YaWToU1MuLqPUMhNcc9ZQTsOlm27ZFsQsCcmEMNhl9CePIk9MED4llvcLq5hYGQyyJqGnG877Dhkjx8nIMt8rITuR27fL4fC/3IhIAutRUmlUkSjUd75znfyh3/4hySTSZ555hl+8IMfTPusPH/+PLfddlvR3y1duhSA3t7eWQnI+973Purr63n7299e8HPDMHj22Wd5+OGHefzxx/n5z3/ORz7yEQYHB/mHf/iHuR9kGQuOMgEp47LD5TaC5TgOXV1dVFVVzZiVMVcsVgckN4J16tQpurq6uPrqq6kv1flnhm2Wsq+iKPKNxx/n3r/7O4RZ8kjUV7yC4DXXMPbYY6h/9EdQWYnkOV0ZK1ZgnD5NYMOGWYmH/96KgtzQQLqzk+qrriq6b8F77oF77sE4epTsX/0VRKMoDz2EY1kYk2x2821rbcdBaWkhee4c4aVLp8z3O7ZNprcXJInIsmVzLpzlUAhdkjAzGeRQCEGSsKe5nucyGgSghMPog4Nz2p9SIMqyO+M/MYHjuY3ZngAax3EF37lziNtRMsDN5Mj/jueNbgmCgKnr6ImEOwKUG6fKH//zto2nFRFkGVFRkAIBpECg6Lm3TbOkbJG52i07loVj2yU5U8HMIYCmaSJ7o0+CKLrnNpMhOkk/ISsKUU+onujrQ62sJDiPALjs6ChSMIgcCGDE4xiHD2PH40h1dShXXIESCKC2tACF92Q5GMRIpdAzGTfDYxIMz4Y4UleHaVkFn60kCEieM5dj2+iDgzixGPrBgwSqqghde60/7pkZHSUQjZK/RONYFrauw+AgO9ato7m5edbjzN23XmoNyFzymRYbC61FSafTBQ5Y0WiU7du3s23bNuJF3PJqZiCv+ZjtM9u/fz9f/epX+du//dsprlnPP/88Bw4cYMuWLQDcc889NDY28o53vIP3vve9rFy5sqR9KGPxUCYgZbwssFgEJB6PMzQ05CebL+RDbDGCCMG9aZ85c4ZsNsv27dupKGVsaBbMZV9vvPFGrvjgBzleUYG+Zw/BGZKd5eXLUd71LtJ/+7cEr7sO5fWvB0C55hqMAwdwNmyY035aY2ME6uvJ9vcTnGHlTFm7FuWxx7BHRkh/8Ytkjx1D/P73kW64AYo4UkmAFI3i1NSgDw2h1tf78/1WMokejxOcY9djMoJNTWS6u5GXLnWL5SKam7mMBuVDjEbRJyZ8LUjJcBzMbBYrk3E1IR7xyZEGG3BEEVFREGXZ/ecJ1B37Yrp4ztmqYPxomu+Snc0SLpEwO5aFaRj+ark2MeG+l7fqLQgCgiyTHRsrFFgXe995ZL1khodRi4yXlIL8US0A3bNRNkzTHTEaGiI4TaHmOA5iMEgoEMBIJEgPDRGqrS2Z+BrpNEYqhXz+PMkLFxCDQdQtW5A9rUX22DFXlD/Nfodqa0kODLjOVt57ClzMNPHzPqbJIsl10ZzBQeyxMcS6OgLr1vlkTJ+YQIpEMPv6kPNIRjaRwDpzhspolL/JEy7PhNx966Uu/HMdvsvBBWsxOiDhSU6BOZ1IMTz77LO0trbS1dVV9Pfnzp3ztzETHn74YVauXMlb3vKWKb+TZdknHzn82q/9Gu94xzt4/vnnywTkMkCZgJTxsoAsywtKQHJdj1OnTlFTU0M0Gl3wFbTFIE3ZbJaMl8Gxc+fOeSXaFsNcydLP/r//j9rrrsP47ndnJCCWZSEqChVPPknmy18m9fjjhP/kT5DWr0f793+f0z7qiQSiIBBqbSXV3e0Gu80yH25XVhJ4+9shkUBQFLKf/jQOIG3YgHr99UiTEqdD9fWkzp0Dw0AJBEh3d+NIEmprK3ifZ77F71wgyjJiRQX6yIgrQp9kK30pYYjBmhrS3d0zEhDbMDASCax02i/efXIRCKBEIu5Kf973QFMUAtHo1HyVvC6N4hX+ufGjXIGdP6o1X0ctQZJQJAllGhckx7bd0DrLwrZtUv39F8lQIIASDruCeK8TUUzIPx0cLxNjuvee87EYBnIkgihJZMfHEb3iXtf1glGtyRbGSm0tpqaRGhwkWF09o+bINgyyR4+iHTmCGg4jbdhAaOvWqcc2Po48AwkUBIFgLEZmbIywR5J8K9+ampI+T62nB72nh8qbb8bwjAUUVUXPZEAUUYJB0r29BDZtwvKON3v4MGpFBXddfXVJ3Y/cfsFLT0AuFyIEi98BARgeHp7WuCQajXLLLbfwkY98pOjffuc732HdunUzjl89++yzfP/73+drX/valE7w8PAwH/7wh3n/+99fVH9SSue4jMVH+VMo42WBhXSUsm2bo0ePMjg4yDXXXMPg4OCiazUWAhMTE+zZswdZllm2bNmCkQ9gWmvf6RAKhdi1bh3P/eIXhBMJpGm6MLZtI3pz5fZDD+GcO0f60UcJvPWtbg7DHKBfuEDEc9KKtLeTPHMGMRBAnibQyjRN8IS7Zn098ooVKLfd5hb6u3eT/X//DxwHcd06l4x4q8Ph9nYSp065RVhe18O3+LUsd+RInHvCeKiujmRnJwFVhfy050sgH+CNQk0SoxupFGYy6Y60CAKCJCGFwwQbGwusgmeCKEkYqVQBscl1afwRMa8YFSXJ7Y7kCbPzrVv97sicj27m41aCQURJIlBRQdArWnP2sFoy6bp55bQsquoKp0s4/uzICOoCdBd92DaiLLtdnXSaqFd8TR7VAqZcV3IgQKSxkVQ8jhIMuiGGHhzbRu/uxjx6FCeTwaypoeIVr5hxbMyemEAsEhaaDyU3ipXNogaDbjeoshI5l2jv7fvkz9NKp8n88pcIkoRaU4Mci2ElEpi6jiTLaIkE0YYGHE1DchwUVcW2bZLHjuEIAhWmybt///fRdb2ke9zlMoJ1OREQ27YX9PlQLAW9WOGfjze96U188IMf5AMf+AAf/vCH/Z/v37+fL3/5y3zyk5/0f5ZKpTBNs2CbDz/8MJs2beLVr371lG1blsWnPvUpqqqqCly2/vmf/xlJkti1a9ecj7GMhUeZgJRx2eGl1IBomsa+ffuwbZtrr72WYDDI8PDwomo1FgL9/f0cOnSIFStWFJ25vVTMhyx98S//kmV3303iC18g9s53+j/PiXwBN1zQ+7xDTU0kUymURx7B+H//D/3MGULZLGIJK8zZwUGUWOxi50EQiCxdSurMGVeTkbfiVZDAnSs0GxuxhodRli1DFEXUbdtQt21zC/99+9A++1kcy0K88ko3+E8QECWpYORqxoTxfPefma5vQSDQ1IR28CCiZ8M7U7DcXCCoKuNnz6KEQu7+B4PIns1rKfqIottUFKxMxh9by41d+QGDxfbX04BI3mhbTmOTI1m5bsRsaeylwsxm3c8/b1uiLBOIRjGDQVfDoSg4to2RyZAdH3eJGiCFw6jR6NSOluNg6bq72r9Q8FaL05NGr3KjWqIoYnhW0cDFsMi8ayva0EBmdJR0PI5sWRiHD8PYGFJjI6EbbySbSBCJRmfXrJjmjGYLOYRrakgODGBrGoKiFGhCrDyyBG7IpXb0KFZ3N8Ht2zFHR3EmJgBXV6IlEqSHhwlVV7vBjp2dyB0d7nH39uKMjKDW1fG67duJx+OcO3eOiooK6urqqK2tnbZLndNdvNQEJHevf6n3A16cDshsaG5u5pOf/CRve9vb6O3t5c477+TcuXN84hOf4JZbbuFtb3ub/9qrr76akZERurq6iEajfP3rX+eFF17gP/7jP4qez4aGBh577DEeffRRBgYG2LlzJ7/85S/5m7/5Gx5++GFaPG1TGS8tygSkjJcFZFnGtu0Z/eZnw8TEBHv37iUWi7FhwwZ/Rnax9CULIUJ3HIezZ89y9uxZrrrqKhobGxkdHV1wwjQfAtLc3MzGrVs58N3vklm9mtCddxY4XTmWhT2p0AkvXUrq5EkijzyC8eijJN79bkJvexvqDFoQxzQxR0aITlqxFWSZ4JIlpM6dI+rN+06noZDa27G6u4set7plC6o3S5z87//G/Pu/R4lEsFpaSKVSRNatm/J3U6xYvfEj23P/mdaKFVc0rkUi7qrwLMFyM8GxbfSREcxkEkQRKRxGCgSItLVdUop5PiRZxvbIpOONV0mSVEAsZ0NOY4PXHdG9MaNcgV0wqjUPGIkEkqri5O+PN8bk4LmIeR2gQDQKnqDbNk30VIr00JDbnVAUlIoK5EDADe5byO4HgG27Y4SKMoUg5M7t5A5Yjuianjjb6u/H7uzEGhhAkySiN9yAktN1jI25Y2fTdAQLUOr9ThBc2+tUilheUZfr1OQMO4zhYbQXXkBuayN65504QPbgQUIbN4LjICkKejpNoLLSP3arv5/Ajh3oQ0MYXV0Iy5fTPDjIY3/2Z4iiiKZpfiheV1cXsixTW1tLXV0d1dXV/vf7cgkhvFyIUG5fFloDMh9nyLe+9a00NDTwoQ99iG9+85u+m9V73vOegv1rb29HVVW/a1NfX89v//Zvc9ddd0277fe+973U19fz1FNP8bnPfY6lS5fyyU9+kt///d+f+wGWsSgoE5AyLkvkMiFKRe5mZVnWvOY7cx2E5cuXs3z58oKHxIsZGDgX2LbN4cOHGRkZYfv27VTmwuYWQdw+322+71d/ldeNjZH+/OdBkhCvv953utIsC9swEBSlwNUouGwZqbNnif7BH5D52tewfvADUt/9LsE3vxmpSKJy5sIFgtOsaMnBIGpTE+nOToJLlkw7xiR1dGDu3j39gTgO6fPn3RyTG24AwDh8mNTTTzMByOvWod54I3KRmWXBK27FvIIo3+JXEEUksTBDI7R0KeMjIwQdx9VQlFi02IaBPjyMlc2CJCFXVBBub7+4bVFEGxsjMEnbckkQBGxvlErOO875bkvMc/eaLtRvLmTE9kZ7/LtJnmXwTOdWlGU3kbyqyk1E1zT0VAptZAQ9nSZyic5yk+GYJnoiMcX1arrxO8dxMEdGMM6cwenrwzFNxNpalDVrUHfswLYsMqOjrp01bkciUmp2UYn3JVPXsXQd2QtgFATBP7eyR06ze/ZAOk34ppsQvQJSAMhk/HBOI5vFAYIeqTPGxhAUBTuRQD9yhNCuXSRfeIGPPf64fw4CgQAtLS20tLRg2zZjY2PE43FOnjyJrutUV1dTW1tLIBC4bMaeLof9gIXJAclHsRGsUnH//fdz//33z/iaZ555puD/33zzzdx8882zbvu3fuu3+K3f+q157VcZi48yASnjZYH5EhDHcThz5gydnZ1+B6HYti+3DkhuVMxxHHbs2EEwb0xpMQjTfAnIvbffTus3v0mPIJD94Q8JiCKBW27xf2/rupuEnUc25UAAtbkZbXgYYXSU0PvehzUwQPav/xph6VKCr3udG06HO16DpiHPYEOqVlZiZjKke3uJtLUVFYgL9fX+OMhkOLZNuqsLJRotSGRW1q8ntnYtyc5OpEQC/StfQctkIBZDuuoqlPXrp4jYYZIVqzd+ZHo2tn4Su6oiKgpmPI4yi9jWMU2yg4PYuo6gqsiVlW6qepHCOhCLkerqWjgC4uVrmIaBspC5HR4md5LyczRm6yTl9o9cN8brsORE8PIciB2CgBIMogSDZEdGCIVCWJZFqr/f7ZxUVRVNup8LjGSSytragn3KHWtu/M5KpTA6O91uXTaLEImgXHkl0ubNhcWtd66k+nrSQ0PYpklFU5OvuZrpuB3LKomA2KZJdnSUSH29S8ySSSQv90OWZbSuLowjR1A3bHBNGvJgjo+7SfWC4G5nfBwlEHAXngDj9Gnkjg4ye/cSufZa9LExlgYC3JZ378iHKIrU1NRQU1PDqlWrSKfTDA8PMzg4yNjYmO8MWFtbS1VV1UvShbjcCMhLPYJVRhllAlLGywK5wK+5FN6maXLo0CEmJibYsWPHtHa1i53XMVckEgn27NkzZVQsh8XY3/nuqyAIXFddzdctC2fTJpwf/5isLBO84Qa32DAMpCKuPWpVlVtsJRLYiQRSYyORxx5D37eP9GOPId18M8G77kLv7yeYC++bBqZpolRXo+s6hjdHXuz48EaJ8mEbBumuLgL19cVHbkSRcEcH6XPniLzjHa5YP5lE//nP0T73ORzDgEgEce1alKuuQp5EcH2L31yBbVlYuTEtWXbzIbJZ5CI6GH1iAmN0FCQJtboapYQCQBAExFAIM5VCXoAwTcdxXMcuXUdYIDeo6YrjHBnJoaCT5I1qSZMcyPRkEikYdAtqT0MhiOL8XXBsGzOTIZojhbEYpq6jTUxgG4YbDpivRSoR2ZERRFlGyhO/W5aFmc1i9/VhnDvnOrXJMtKyZYRuucXvJhSFp1ES8NLHFQUjm0UOBDBzP5tGk2Qnk7N+lo5tu45XdXUIoogajZLo7yccCoGmkfrJTxAjEcJ33FG00DW6u1E6OtzO4vAw4dpasmNj3sYdrNFRrJERgps3IygKxuHDfP7v/74kIbcgCEQiESKRCB0dHQwNDXH8+HE0TePQoUM4jkNtba3/78VKxV7osadLwWKMYJWa7VFGGTmUCUgZlyXmOoKVK05KLZIzmQx79+5FluVZ7Wovpw7I4OAgBw8eZOnSpaxYsaLoSt7lMoJlmiYHDhzgVTfcwA++/33GfvlL+J3fwfynf0ITRYRt2y4mLBdBqKUFbd06Ms89R+SeewBQN21C3bQJ7VvfIvWe92DdcAPhjo7p98Ew/Dl/pb3dtdCdzp530mdsaRqZri5Cra1IM8zNi4pCoKWFdHc3kSVLEKNRgrffDrffDri5Fsbu3ehf/SpaMgnhMOKqVchXX43c1nbxM/RSonMaCh1QGxtJ9/QQ8sS42DZ6PI6laUiRCOHW1qkWuLMgWFtL9vz5SyYgpmliOw7BaBQrkZiSnzJflBw8KU4N9cvvJImiiJlMEqitRff2VRTFWfNAZkJmZARl0nHKqorskVo9lSIdj7uWstEoagkBgWY2i+WRF8dxMPr6ME6fxorHER0HubWV0LZtiHMNG3QcUoODhGpqkFWV1OAgyDJKMOiTN1+TlEdIjNFRxJk+S8ch5QnlJW/0yjRNBEkie+gQDAwQ3LEDeSbL56EhAitWkPZS5POzYfQLF1xN17XXolRWku7poQlYu3atP96V637lp8xPB1EUURSFtWvX4jgOExMTxONxuru7OXbsGJWVlb6QPRKJLFp3ZKG7DpeChd6XTCYz7xGsMv7vokxAynjZoFSiMDo6yr59+2hsbGTNmjUlPcBeag2I4zicO3eO06dPs379+hk98C8HApLNZtmzZw+KonDbbbex9r/+i+crKjA6Own94R9ifOITbl7G2rUYIyOIlZUXi6C8AqDyta9l/AMfQN21q6DwC/zKr+Ds2oX1mc+Q2rdvqj4kb9Qmf4UzsmQJybNn3fyIyR2NvNwNx7LIdHUR7uiYeaXZgxKJYFVVFQ1AFINBArt2gWf9aNs25v79mN/+NvrwMIRCCB0dsGEDgZUr/ZVJAVCDQeyaGrT+fhzTxBEE5KoqgnV18xa0irKMI0k4nv5mzsgTcEuiiBIKYQwPz307C4iio1peSKHiOVZJinJJ5MOxbSxNm9H5So1EUCMRHNsmOzFBsq8PJRIhME0xbk5MkDx2DCWRQLtwAf7t36CqCvHKKwlfe+0ljbSlBgdRq6r8XJBIQwPJgQG3AxQI+CNpOQey3PfF7O9HzQUJFtvu0BCBqqqLhMkwMLu7cU6cwK6ro+qOO2bcL8e2cXQdfWLCFcUHg5iahiBJbmflwAHCGzei1NdjmybW4cP88vnnUT073ty//HvnTNqg/NEnQRCoqqqiqqqKFStWkM1mGR4eJh6P09nZiaqqPhmJxWIL2iW4nEawFroDUh7BKmM+KBOQMl42KIWA9Pb2cuzYMa688ko6Zlg5n7zdxRjB8h2SZnHuyuWSDA0Ncc011xCbJVwvZ9e5kJgLAcnlkdTV1bFu3TpEUeTPX/c6HviP/8D5+c/RGxsJvfe9ZD/wAVd8XV2N5G3ftxbNFRTRKIokofX3IypKQSfCTqepeNe7cMbHyf7N3yC0txN8/esRgkFfIzBl1EYQiHgid0GSkPMfmrKMnUohhsOkuroINjeXRD5yCNbWku7tRR8fnzEdWxRF1M2bXTtfXDtV48QJ+NnPyH7jGxAMIjQ1YY2Po/X1YWUyGJpGRUcHcjBYMKplOk7pFr95UGtqyMbjhEoMc/ORT+xkGR0vY+QycPbJIUdGbMdBVBS3w+Y42KKIkRfqN+cxqTmknguiSCgWg1iM7Pg4ifPnETUNKZHA6u2FZBJME0PTkDs6CKxZg9PTQ+Cee+btepaPTDyOHAoV2OIiCEQaGkgNDBD0uiLkdT/AJQfZkRGcFSsKAhBzI67peBw5GnW7KJZF+vhx7M5OAm1tBO+8k0w8Puv9TO/thYoKbNsm7GmRbNPEsW2Szz6L5DgEli4FIHHwIL/zqlcR9bo/vqWv53hoWZZ/D83PSMntby64cbrCPxgM0tra6qd2j46OMjw8zPHjxzEMg5qaGt9ZKzBDwGMpuJwIyGJoQModkDLmijIBKeOyxEJngdi2zYkTJ7hw4QKbN2+mNk9MfCnbvRTkHgAzCed1XWf//v2YpsnOnTsLxOYzbfelEqEPDg5y4MABVqxYwbJly/zPcdu2bVzzla/wk+FhVFUle/YsoccfJ/PYY1g7diCuWlUwTmN54lsHcLwshnR3N5Fly3xS4OQyQoJBIu9/P8aBA6Qffxxn505Cd91VVDcBbnEYWbaM1JkzhNrbfQ2K0N6Oef48ZjjsBqrN44Eabm0l2dmJqKrTBiDmw/Q+p9C6dQjr1/s/z548if7d72J/4QvIioIsSSQMg8CaNYhLl6K0tCDHYiAIc7L4zUEJh9E8e9lSM0D8gMF8DUVufE4UcWz70kXoC0j0tdFRhGAQWVGwPDKSs+vOXVuip5UoRZhtGQahEu4btq5jDgxg9fZi9/WBpiGaJlYggFFTg7phA+GWFvRUCkHTCNfU+AW44wVjXgqh08bGQBQLwghzEETRDSwcGCBUW1ugOcn9XjRNAoGAX9jnOg76xIR7DhWF9KFDGF1dqB0dhO+6y//uKuEwWiJBcIbxK/30aZyODqJ5nSRjbAxj/37kUIjQpk2AaxscGhzkw3/+51O2kXu/fKvdHBnJ7S/gu3KV8jyRJIm6ujrq6uq44oorSKVSxONx+vv7OXnyJJFIxO+OVFZWzvkZdTkRkMXogJQJSBlzRZmAlPGywXREwTAM9u/fj6Zp7Ny5c86t4sXUgADTFvbJZJK9e/dSUVHB5s2bSxbOLpYIfaZtOo5DV1cXp06dYsOGDTTljSHlCpl/euwxNv3e7zH+L/+C/Ja3oF+4QOiJJxh/+9vR6uoIXHst4BYNsiSB1yGyrr8e44UXUG67jeTp04RXrcLR9Slp1dL69ahr1mD/6Edkn3gC8corCTz4YFEnKkGSCC9fTvrMGcJLl7rdlVWr0I4cQbnmGtT5CioFgciSJaQ6Owm3ts7YQcllfOSPiFmZDNn+foRolOCaNUT/4A/836X7+3HOnYOzZ9F+8hOcTMYVgKsqQmMj4tKliM3N2LW1rpAdCsnIpIJJqapCGxkhUII1a0HAYJHrUAqFMJLJgkT0+WBBSAwuqTcyGaItLS65sG0EWfYtj/MDEPM7ScI05C07PEygSPfDSiQw+/qwenpwRkb89Hqxvh5p6VICmzdPCfTTkkkS/f1YmkaV14U1EgkIBC6ZfOjJJKZhzGi3K4gi4fp6UkNDROrrp9om5+kscoQ2OzYGto19+jSpvj6kZcsI3367H5CYgxqNkhoamva9LV3HGB0ltmOHf5zahQsYe/cS3LED88AB5OpqHMsie+AAP/ziF0s67vzxq/zuiGVZjI+PI4piQUdnNiIgCALRaJRoNMrSpUsxDMPPHDlw4ACCIPidkZqampLuzZeLCD13bhaSDKVSKb9LVUYZpaJMQMp42aAYUcgV8ZFIhB07dszL/SbXxl/oFaz8B+ZkxONx9u/fT0dHB6tWrZrTapsgCC8qAbFtm+PHj9Pf3z9lRCx/TCIajfLJN72JN370o6jxOEYwiJ1MIv/xH2N/5zukDx0i9Na3FqSWC4JA4PrryTz+OIEHH0RYsoT06dMIwSBqTY3/ILUtC9u2UWQZ4e674e67MQ4fJvtXfwXRKOorX4myfHnhMckyoWXLSHd2Elm2DGfJEqxnn6XiwQcv6VwJkkSoo4N0VxeRJUuKisQn61NsXSfb1weSRKi1FVFRSE36m3BTE0lNQ9m4scA5zLZt7J4ejBMnMF94wbUTVhQcRYHaWoSODsSWFuTGRiRV9Vf7A1VVJLu6CDjOzKv/+QGD0xRQcjiMMTJyyUJ023OruhRYloXlBVz631fLcslaHvIdyMhbOTc88gZAOo01OorW1eUGO46NuW5ppgmWhaCqiE1NqGvWINbXl3R/CESjGIkEgepqUgMDSJEIQibjdswugXyYmQx6MjklR6QYRFkmXFtLZmSkIM/ESqUKvn8AmcFB9GPHkNNppNWrEdetK7A9zxHTXGDkdHAch8ThwwSXLfNJT+b4cZyhIZTt2zF7e1GXLQMg2d3N5tZWtm7dOufzkPsMRFGkq6uL4eFhNm7c6N/H5yNkVxSFpqYmmjwr45yQvbOzkyNHjhCLxXxCMt0C1+XSAcndxxe6AxIqJeCyjDLyUCYgZbxsMJmADA0NceDAAdrb27niiivmPVOd36lYyAfIdNbB3d3dnDhxgrVr19I6yT+/FCxGB2Q6UmOaJvv37yebzbJjx46Ch2+OfOQnAN93++3c9p//yQ8/+1kqPvYx0idPIlVVIb/pTTgHD5J83/sI/+mfIuWt4PpEbXzctThtayN16hThtjZfBJv/uhyU9etR1q/HjsfJfulLaMkkyh13oO7c6V8LkqoSXLKExJkzbudlgT5fSVUJtrWR6u4m6hVV4Do8+WNM3nWVHRjAymYJNjUVZkkUOd/h1lbS3d1Elyzxi1VRFBGXLEFesqTgtbZtYw8MYJ44gfOjH5EdHnbTwCXJ7QYoCiaQqK5GbmlBjMUQYzGkykqESATBI53ThTfmQw4E0PJE/POFY1mX1AExLcsdZdK0QucyyyoorB3bxk6nscbGsMfGcEZHsUdHIZsFz0nLMU0IhTBE0R15a2tDrq+fky6oGNJDQygVFQQiEfRQCG1szC3CL0FjYGka2bExIjOIxydDUlUkWUZLJt0EeMCMxxG9To+VTpP8xS9wJiaIXHMNcmPjlDT2/HujbdsYto1tmpgeYc13eEsNDSENDxO89lpXbP7CC0ihkBsy2NcH8Tjq6tVoySTCmTP8249/PO/z4TgOJ0+eZGBggK1bt/rjQfki9rkI2fMhiiKxWIxYLMbKlSvJZDK+kP3s2bMEAoECIXv+qO3LkYA4jkM6nS53QMqYM8oEpIzLEpeiAcl3jFq3bh0t06Rkz2W7MP+U9dm2nXsg5HcStm7dSvU8w+JeLBesTCbDnj17CAQCbN++vWCUqBj5yOGfP/QhVj3wAPp//zfB664jdfIkYnU1weuvR77yStIf/jDKq19NYPt2/2/kW29F/8lPCD3wAGplJRlVJXvuHGp7uys6FkU30C+3upkrJgQBsa6O8B/+oZsS/q//Surb30basoXAvfcihkKuVkSS3FVyTVuwcyaHQq6NblcX4SVL/NVXURTdz13XSff2osRixQvHIk5Voiyj1NSQHRwkOMtKtyiKiM3NyJOF5nnOR+bEBNlDh5BtG+v0aezxcfREArJZHEHAFkU3Q0JRIBhErK6GmhqXrFRV4ZgmdjaLkJ80fglwbLuk777jOGAY2IaBk826uotUCkfXkUwTrb8fWVHIaBqOrqOdOIEky+jPP3+xexEIIFRVIXgETNq82dUU5cHSdTLDw4Tq6tzry7YRTdNf7Z/rfUpPJEAUUSMRDMNAlCQqGhpI9fejmSbi+HjRUa+ZYOk66eFhIg0NcyZvwepqkv39KKEQoiRhx+MIkQipn/4Uc3gYef16IsuW+S5Z0xHR/MLdVFUsw3BHL3F1NtnhYeRQCNNxwDRJ/fznqCtWoLa3u/qa/n4Czc3YpknmzBn+9PWvn9VsYzo4jsPx48eJx+Ns3bq1YFFkulGtfFIy+XWzkYZQKERbWxttbW1YlsXIyAjDw8McPXoUy7J8IbthGJcFAcmRroW24S27YJUxV5QJSBkvG0iShGEYHDp0iOHhYbZt20bVHB/mxZAroBdLB2JZVoFOZXInYa54MQjI+Pg4e/bsKWplPBP5ANd55p8efZRX/uVfErjxRgItLWjnzxNsa0NsaCD85JNon/wk6YMH3ZEsUUS5/nrSjz4KDzzgugSpKkIsRrari+jKle4YRe7981Y3Tc8BR/SC/YKveQ0A2v/8D+kPfhChpQXhjjtQw2HkmhoSuYyNS3S8yUGtqMAxDNK9vcgNDX4Bl+t6hNvapmhZchBCIexkcoqGJRCLkUokMHNjO3NFnvORXFODvXq1m6DubUvIK9CUPDcmO5nEHhzEGhrCPnMGe2wMvasL4YtfBNvGmJggGQpdHDnLXRM5/YkguMnpuZ/l7Q+43SHbK1zNYNAdg7JtV+g+6X8dx3Fdv1QVFAVbliEQQAqHIRwGx0FpaED0/r9jWQRWrZpKxmZB1gvbkySJ3Hpx/mp/qaJ/cImCnkoRaWjA9IpRSZJAEJA0DaWtDRtI9vcTqq4u6Rq0DYNMPE6koWGqlqMUCALBmhrSw8Mo6TTZgwdRKisRr7gCde1aQrHYxTR2T0MzGyRVxbEslFAIx+t8iJEIRlcXVFaS/PGPCV1zDYp3XWcnJmBgAPWGG0heuECLYfCeP/3TuR8L7r3n2LFjjIyMsHXr1hnHgqYTsueIyXxGtSRJor6+nvr6ehzHIZlMEo/HuXDhAhMTEyiK4ndIotHoS5rIvpDvXe6AlDEflAlIGS8rXLhwgWAwWLJjVKlYzCyQdDrNoUOHCIfD89apTN7mYhKQ/v5+Dh06xKpVq1iyZEnBgyx/JXGmh9zNu3Zx69NP8+Mvf5nwb/wG2f5+tMFBAg0NiKJI6I/+CP2//5vke99L+E/+BKmuDkGSsEZHccJhbEEgXF2NJcukz54lsny5X8gWCI3zZvvNPJcodedOAtdei9HZSfIzn0Gpq0O87z6U5ctJ7d9PhZfAvBBQqqrQMxmE0VHk6mqSM3U98iBEo9jpdFERfbilhVRXV8Eo1nwRqq8n3dNDsKrKFZt7XUTA1VKIFy2RxWgUOU9LYw8NEXnzm93E7njcDQFUFJw8FyLvP3ziMcVxKv81mYwrns/fBlx028L9TEVBcMfIZNkN1wsEUDxbWSubxR4fR83TNhiiOEUDMhuMdBqhSHZIwSp6rpOU76pVZIzHcRwy8Tih+npXT5NHPgCcVAqxvR01FsOORknH46jhMGoRJ6scbNMkPTREqJiQvNRjHBpCP3QIs68PmpqQKyqQt2zBgXmRDwAlFHJJBV5wYzRKIBpl/Nw5BNsmuGsXjiz7HQH9/HmU2loy8TiBM2f49tNPz2t13nEcjhw5wvj4OFu3bp3z/X9yd+RSR7UEQaCiooKKigqWLVvG0aNH0XWdZDJJd3c3kiT5upHq6uoF765Ph4UeBbMsi2w2W3bBKmPOKBOQMi5LzHV1Znx8nL6+PgKBANu2bVtwt5HFygLJPTTb29u58sorF2RVajFteM+ePcuZM2e46qqraMwbAco5XeW392c7lq8+9RTLH3gA64EHCDY1kenpQVRVFG/0Qr3pJqQ1a8g8+STKa1+Lcs89ZH/4Q4Q77nDn1yUJybOiTZ05Q2TFiinFeC4Twg9d85yPDMNAAPRAgPDDD6MEAmhPP41x4ACiLJMIBIiuXXvJ8/6WaWLbNtHmZiZOn0YfGyO6bNkU+9NiECoqcJLJ4r+TJNT6etIXLhCeh06oYFuiiBAIYKbTfpGuKorbkcgjb45lYWcyoOs4XsK8Pj4OFy4gqipSJIKdSBCsr3edn+ZxLWeHhxEUxdckTAfHtjF1HT2TAU3DSqfRvbwPI5NBUhS00VGUaNQlM6Y5589SGx0lMilUcjJyNr45xza/85ZH3ARBID0wgBqLYTkOsiRNIQx2KoXokQ1Rlok2NpIeGcGKx13r30nn0rEs0oODbndmjoWrlUyiHT6M3deHGIkQ2LqVyI03kujtxfrxj5HJIx+WVdAFKwWiLLtBnqOjbtCgqpJ87jmcRIKKBx4osNs2dB2zsxNx0yasAwf47J//OW1tbXM6HnCv0yNHjpBIJNi6deslZ3YUG9XKfRfm2x0RBIHKykqWL1+ObduMjY0xPDzMmTNnyGQyVFdX+4RkMQXdC+3GlUq5dhnlDkgZc0WZgJTxvx59fX0cPnyYWCyG6hWmC43FsOLt7e0lm83S3t7O6tWrF2y7i0WWDMOgq6trymhbvtMVlD5bLMsy//Cud/Gav/gLQh/+MObQENrgoDsO5I2gSY2NhD/8YbJ/9VdY1dU4Z8+i3n57wWp2LhxuOhLiI5f54O40pq5jT0wgLl2KBShvehPiHXeQ/cxnEL73Pca/+lXUnTsJ3nhj0S7EbDC9cSJZUdC8RGxH17HSaaQSRgOdqirs1GQvrItQKyowUyn0sTHUec7L5xDwQhRDLS2ulsdxMNNpzGQSW9PccypJEAgghELIsRiSLONUVhLJ01ilkslpR8pKQqk2vIIAokiwomJKAZ7q7SXY0ICZyZAdG8OxLIyREezRURTbRolEZt1HbXwcORyes/ucn8bOxVHA7Oioe71KEtJ0K+e6Xqg/EQTCtbVoiQSpgQHC9fX+aJtjWW6YYJEcj+ngGAbayZOYntmCetVVKNu2FbzGHh/HDocJxWL+KJIiy/NaFDE0jUBFBUI8TvrYMWxBIHrTTQXHLggC2okTKPX1WEeP8sTb3kZLUxPPPfcc0WjUH2WqqKiYNaj10KFDpNNptm7dinqJiwaTMVvmSO65MBsZyTcxEUWRmpoaampqWLVqFel02heynz59mlAo5AvZq6qqFrxjsdAOWEBZA1LGnFEmIGX8r4XjOJw+fZquri42btxIOp1mdHR0Ud5rIQmI4zicOHGC8+fPE4lE5i02nw4LPYJlGAbHjx/Htu0po22z6T1mw60338xt//7vfP+jH0V8zWsIVFeT6e4muny5O9/vHY/6B3+A9qMfoX3nOwjnzhGYtOpfMgnJQRDQ+vsJtbUhq6pfLIpNTQjhMKE//ENs0yT1ve9hf+YzCJLk5ozs2jU7GfFWSB1ckpXp7kYMBgnX14PjkOzuRhAElFksa6WaGqzBwRlfE25sJNnVhRwOz7tb4zgOlvc5an19aN6IlBgMIldUoNTXT12B9zpJtmUV5Csgiu641Dw7eU4JTnMz2QLbpokgy0iK4hbn3jlOhUKozc1Yuk52fBzHNBEcBykUQq2sLCQ9joORTBKda0p8HgTczpKVzYJto1ZW+t9L2yNZfgK5IPjZG5MRqKhAUlVSg4OEampce2aPfMizfN6O46B3d2MePQrZLPKKFYTvuWfq+XUc0vE4wtAQclubn08jz5N8ZEdHsTUN++RJqKggdNttZH/0Izc4M/9tLQujsxMqK/m9++7jnb//+4AbvhqPx4nH43R1dfm6ilxBnv+Z27bNwYMHyWazbNmyZcHJRzHMJGSfaVRrps5DOBwmHA7T3t6OaZq+kP3w4cM4jkNNTY2fOXKpx7jQbo7pdBpZli+561TG/z2UCUgZ/ythmiYHDx4kkUiwfft2Kioq6OnpWRSdBizcWJNpmhw4cIB0Os2OHTs4evToix4aOBek02nf6UoQhAUlHzl8+ROfYNW99zKmKGj33UfYSymPXHEFgij6xXzkjjuQKytJPvkk3HILyq//OkLe/qhVVe441unTRFaunLEItjQNwTT9Tku+bkQzTbcAl2XCd99Ndv16Ak1NcPw42b//exzbRlq3DvX666eQET8t3LP0TXd2IldXE8gVX4JApKODVFcXiCLKDGMLYnMz5vHjM588QSDU2kq6p2fOehDHstBGRtATCQRJQqmsxEmniZYwAuNnaIgiiqJcFPDKMtlEAtWz8Z3zNTFLByRHPqZzY9LHxpCKnVPbdnUigQB4o06OZaGlUqSHhsCyEBUFJRrFSKUuOVARwDIMsqOjBOrq3DEmj5wVG9VyvG5ZsfMlBwKEGxtJDw5iGQaR+voZyYcxNIR+5AiMjiLW1RG68cYp7l4+HIfU4CByNIqTTuMsXYqWTBKuqprX9zkVj2N1diL09hK87Takigoyhw8jL1065bWZw4exZJkbW1v5i8ce83+uqiotLS20tLRg2zajo6PE43FOnjyJpmlUV1dTX19PTU0NJ06cwDAMtmzZUuDC92JhLkL2UhPZZVmmoaGBhoYGNzslkSAej9PT08OxY8eorKz0R7UikcicP6eF7oCkUinCc+wWllEGlAlIGZcpZrqZpdNp9u7di6qq7Ny5018RWqzE8ty2L7Woz7et3bFjB4qiLKpe41IxOjrKvn37aG5uZsmSJfzkJz/xi6SFIh+5/f3Gk09y5+OPo6VShB55hEBHB6lTpwgsX+52CzxNQWDnTtINDSgrV5J6/HHk228ncMst/vurlZUIgkDy1Ckiy5dPCVXLQR8ZKRApF+xPLIYwMoLkuVZJy5aRPncOecUK1KuvBsDav/8iGVm7FnXXLsTq6ouhbEDq7FkCTU0ok8SZQh4JEQQBeRrxptjYiFNCR09SFFcP0tdHeBbLaVvX0UZHsbNZHFFECIUIt7Uhe8Vb6sIFLF0vzCOZBQWjR9EoZiKBHQq53YjJLlGzXCczJaGXkkliaRqRYin2eSJ2f78liWBlpd8lMTUNfXwcLZEgEA4jyjLyPFd1HdsmNTBAoLb2IvkA8Kx7800SHNvGNgxXlzSNq1ZOiJ8L0ys8NAejvx/z7FnsoSGkYJDANdcgz9KpcyyL1OAggVgMORhEz2YJVFaij4zM6/s8ceoU9vHjhK64AnPXLqSKCvc+0dND6KabCl5rZbOkT56kTlX5ztNPT7tNURSpra2ltraWK664gnQ6zdDQEP39/Rw/fhxRFGlrayOVSlE1T9K0kJhOyJ7NZkmn0wiCMOdE9srKSl87ommaP6rV1dWFLMt+Z6i6urokYrHQIvR0Ol0WoJcxL5QJSBn/qzAyMuIXxatXry64kS42AbmUbeeK+aampoL9Xgy9Ro7UTLeiWgpyuporrriCJUuWoHn5GE7eCu5C2jlu2rSJX926la/095N46ikq/uRPEOvq0M6dI3rFFQWvlXfuxBwbI/zEExjf/CapRx8l8PrXo3g6GqWiAmHJElJnzxLq6EAqsvprp1LI0+RoSOvXY5w4gdTQAIKArKpUrFxJqrsby7Zd/cPGjUgbN7pC7UOHyH7+827h7pGR7Pi4O941TQEriCKRJUtInTtHUBD8Tkw+RFWddjRnMtSKCsxkEmN8HGWyvsRx0MbGMCcmEBQFubKSQG0tppdrk/8dCtbXo/X1ES5VCDypGFa8RHTZ05Hku0Tljjtni1yUjHj2upNhWRaWZc3oxuTYtjsCNs12Z0MuTLGirQ0B0CYm0EZGEFWVYCxWNNF+OiT7+lBiMdRgcMbvhyAIOIaBpKqoinLxfHnhmoIogm27Dlq1tciKQrK/H1uWsXt7sc+fB01DrK5GXb0aeefOkvbPNk1SQ0PuNlUVbWQEFAVVUTBFEcs0Sxa327rOxE9+gmhZVN51F6KiYA4NAaD39hYdWUz88pfIqRQnDx0quRgWBIFIJEIgECAej1NZWUlbW5v/TBAEgbq6Ourr66mtrX3RXKWmQ45g6LrO4cOHqaqqorGxseD+mXtdLpR2tnMRCASmdIeGh4c5efIkuq5TXV3tE5LpXMAWWoSeTqfL+o8y5oUyASnjfw16eno4fvw4q1evpr29fcrvJUnyC52FxqUQkAsXLnDkyBG/mM/HYljm5h4u8yEgjuNw9uxZzp49y9VXX0291yXIPRjzw7QW2kv+0+99L8/91m/RFQqR/PznibzlLZhA+swZwitW+K9TH3yQzHvfi3j//QRe+UqUu+8m87nPoX/3uwTf9CakujrkYJDw8uWkOzsJNjcj543l2N5K83RQduwg84//CNdf7/9MEEWiS5eSPn8ec3CQYEuLX0gIGzYgbtiA7Dg4R46Q+MQnUCIRtMZGzI0bUdesQSwyFuSTkK4uQk1NRYkSc7jmwk1NJLu6kEIhRFXFNgyyQ0NugRuNEm5rc3UJluW6GxUp5iVFAVmedxZKQZcjL2+kYPTINDGZZFmbs6MtQkAsy8IuwY1JHxubtptUCgExkkmXoHndn3BdnbvddJr0yAhYFkokMqM1LrjkQ4pGCZY4HmONjyOGQoXnC6+zkc2SGR5GiUTQz54l29WFk0qR1jSCGzcSuvPOOa9mm5pGdmSEiOdWZpomxvnzKJ7mRa2qQpuYIFyskzQJWmcnqT17XCetZcsA7/vl3YOMEycI5wWKAqT7+zE6O/nWP/7jnHUDpmmyb98+RFFk69atSJJEa2srtm0zPj7O0NAQZ86c4dChQ/6oVl1d3UtWIOu6zu7du6moqGDdunUF3ZH8Ua3cM2Aurlr53aGckD0ejzMwMMDJkyeJRCL+qFal1xmGhe+AlEewypgvygSkjMsSk7Mljh8/Tl9fH1u2bKFmmgfjYrk/wfw0II7jcOrUKbq7u9m0aRN1XkGTj8Xo2uQ/5ObyoLFtm8OHDzMyMsL27dupLDIHnwucWoxEX1EU+fCrXsUb/vVfESoq0P75nwn/xm+gCYJLQrysDzUSIROJoJ8+jbpyJWI4TOQP/gDz/Hmyn/oUwpVXEnrVqxADASIrV5Lq7CSg6yjedaN5eRzT7kdlJXg5BpMRbm0lOzTkppt3dAD4YnPHcUjHYgT/6I9Qo1GcsTHMX/yCzI9+5BbYVVVIV12Fsn49knduBUnyx7FCzc1TSchcrg1PD5Ls7PSJhFpdjZJn6ZmzBZ6pmA/MpQtSbLRJll2Rd/4KdJHRI9/iNy9ZfPLWfEF0CVawZiZDeDrb3NkIiNclihQZYVPDYdRwGMe20SYm3O5GOFw0sTw1NASqSriysmQ9jjUxgTCJ1DiWRaa7G+3wYeRcxkhrK+rOnaCqqLaNNjyMalkXAx9LgJFOo01MEGlsdPVVuU7LhQuoW7YAuB2RWRZyrGSSzPPPY1oWkXvuIZBH/CzTRJAkzLExRFxb3hyy8TipH/+YazZt4vbbby95v8Fd/Ni3bx+yLLNx48aCVXxRFKmurqa6utof1YrH4wwNDXHy5EnC4bDfHVloV6npoGkae/bsmUI+cvs7HyH7dMh1hyKRCEuWLMEwDEZGRojH4xw8eBDAF7IbhrHgHZDyCFYZ80GZgJRxWUPXdfbv34+u6+zcuXPGlazLSQNimiaHDh1iYmKCHTt2TOuRvlgaEGBO+6vrOvv27cOyLHbs2DFFbA5QW1vL888/71tkNjQ0LFiar+M47qpdMMgrGhv5t7o65GSS9Je+RPgNb0DjYidEEEWkV7wC47vfRX3nO/1tyK2tyO9/P/ovf+nqQ+66i8ANNxBdvpxUdze2rhNoasJOJAgVEcUWwDBwLKvo2E2wvh5NVUmcPk2gowNFVREEgWxfH0o0SrC62i2uq6uR7rwT+a673M8kmcR4/nm0v/s7HMuCigrEdetQN2wgvGQJ6e5ugo2NBenmzhyuDTOZRBsacoX5jjOlmC61mJcUBRQFM5tFniXMzWFqp00Kh9EnJgjMsII+XT6Lbdtul83TGTng639m3hHXeWtaAfssBCQ7PIwyi4ZAEEWCsRhUVZHNEZFQyDcYyIyNYds2FXV1c3MBGxtDrKnBHBnB6OzEvnABK53GCoWIbtvmupBNgm3bUFNDcnCQoJfUPluhqo2PY+q6Sz4EwScfkiRBKlXgoiYqCoamuaL9PJgTE2gHDuBkMtjLlxNtb59yjdiGgSCKaHv3Ety40f955vx5Uj/9KWFR5Bv/+I+lnx9c8pHTz1111VWzFtDhcJiOjg46OjowTZPh4WGGhoY4cOAAjuNQV1fn/1sM8fpM5GMyJo/jLkTmiKIoNDY2+iNfExMTvm4kmUyiqipdXV1+d+hS7uGpVGpRc0vKePmiTEDKuGyRTCbZu3cv0WiUzZs3zzrTe7mMYGWzWfbu3YskSQUi+WIQPZenhcRcCUgqlWLPnj1Eo1G2bNlScJ7zMz42bdqEaZrE43EGBwfp6upCURQaGhqor68nFovNa2XRsiwOHTpEKpVi27Zt3HDDDex+wxs4/5rXIJ84QforXyH8utdd7ISsWIFYU4OTSGBNTPjdhBzU7duRr7kG/etfJ/XYYwR+/deJrFxJpq+P9LlzYNuzFohiaytGZyfqypVFfy+Fw8jNzWg9PchLlmCkUlimScTTlRQTozrhMNJNNyHffDOSKOJoGsYLL6B98Ys42SyEwyTr6wnu2EFg6VJ3LlxRsDMZd0RnGpiZDNrAAIKqEm5vR5AkMkNDaPE4Aa/rliMfJRXzQLCujkxfH/IsXRBBksAwIO8aVyIRsn19s77HxY1czGfJidktb9UfwPRGRmYsrsfGkGYas5nhu2AbBqauE62tLXl/g1VVUFWFlkiQ7Ovzcz8qWlpKOr92NovZ34/Z24t24ICrxamqQlm1CnHlSpxUioqGhmkLQ1EUCYRCSPX1ZMfGkGtrL462Tbb4zdnsqioRj8zkgjhlRcGIxxEmXV+iqmLpuk9AjNFR9IMHESwLZf16dNsmUltb1KwgF1gpeKN/AOkTJ8iePImkKPzuG99YtBs8HXRdZ8+ePYTDYTZs2DDne4wsywXF+Pj4OPF4nHPnznHkyBFisZjfHVmIUaJ88rF+/fq5hThO46o118yRfAiCQFVVFVVVVaxYsYKjR4+iaRpjY2N0dnaiqqqvG4nFYnPujpQ7IGXMF2UCUsZlCdM0eeGFF2hra2PlypUl3cSlvDTihW6xl0oUxsfH2bt3L3V1dbOufIG7z7quL9RuAviCxlIIU07A2draOiWJvZjTlaIoNDc309zcjGVZjIyMMDQ0xKFDh3Acxw8Pm+zXPx00TWP//v2Iosi2bdv81cgfPPUUV7/97TjvehfCL35B6qMfJfT2t0NtLenTp91Z/fvvR/vOdwi/7nVTtiuKIsHXvAY7lSL7d3+HDqgPPIBWUYGVSMzotgSg3HIL+nPPTSUgjoNhmghAqKICKxgk1dmJ4zhU5ulUJu9L/ly/nywuSUjXXouya5erBdJ1jD17SH/pS+iWhRSLYcbjZI8cIbhu3RQSYuu6W+jLMqGWloJwvVBdHanz5xGTSTc80PvsSoWoKAiKgpnJFHRkJkPwUsaF/NVzL4hvvrAsy9/fKZa1ucJrkv7ITKenH7+CGQlIxhNjzweBaBREkfTgILKiYKbTha5njoM1MYHR34/d04MzNuYSNtyQTWXpUuwLFwjfeqsrWE4kMNJpIjOQj3zIgQCSp9lRw+HC0TbLwrFt1/EtFiMQDl+8fgXBX2gwzpxBmXSdK4EA2UTCtfQ9dAhBFAldcw2m46Dn9m+a77el6zhHjhDessUdS9y9GyOVQq6ooAF4/JFHSj6/uWI+Go2yfv36S76vC4JALBYjFouxcuVKMpmMnzly5swZAoGArxuprq6e8/vl9reyspJ169ZdMplZ6FEtuEhIli9fjmVZvpD9+PHjmKZZIGQvRaOTyWTKBKSMeaFMQMq4LCHL8pTQu9mQv2q00AREkiTfCWo69Pf3c+jQIVauXMlSbwW7lO0uxthYKSNj58+f5+jRo1NE/aU6XeUCwurr6/2VxcHBQd+vv7a2loaGBurq6op2gZLJJPv27SMWi00ha42NjfzzO97Br33+80T+7M+wTp8m9dhjBH/3d6Gujkx3N6Hly7H/7d9m7BCIkQjhP/5j7GQS7UtfwuzuRti5k4QsE+7omLa4lleuRPvqVwt+5md8iKJfvEmq6hbfloU2POx3HKZDgWVtkeJa3raNqu3bSff2IkUi2F/+MuZPfkLmpz91N6AoOOEwdiyG09BAePVqX9sy6Y0INzczce4coaamAh1IqQjW15M5fx65iOGDD0/vMQWiOO0I23TwRf15xfHk85ULjLQ9kiKKIsJs41fuxov+WE8kEFV1TrbD+furZ7Now8NUeZ2i1NmzpPv6kMfHIZMBw0AIBBCbm1E3bEAuMk6l//KXiKJIdmQEy7KINjTMaT9CtbXuOFgw6I4neqNtRjqNNj6OWlODIIoYuu5qSfLOL4AzOIiyZk3BNs14HO2FFxBiMULXXosYDJIdGcEGd/+mu7c5DtboKIq3D6mf/AQzGkVpbcU5doxPPfVUyffmbDbLnj17qKqqYu3atYui2wiFQrS3t9Pe3o5lWb7F7eHDh7Ft2xdxT3cPy8dCk4/JmEvmyEzdkfwcEEmS/OO74oorSKVSxONx+vr6OHHiBNFo1D8H0yXSX0oH5DOf+Qx//Md/zIEDB1jtuRgWw+HDh3nPe97DT3/6UxRF4Y477uDJJ58sakbz05/+lEcffdTvQr3iFa/giSeemFY7WsZLhzIBKeOyRTgcnpOOIXdTzWUFLCRmKujznaM2btxIwxwKiMVwwZptu/kJ8pPF8dNZRM6G/JXFVatWkUqlGBoaoqenh6NHjxKLxXzdSCgUYmRkhAMHDtDe3s6KFSuKvsdtN9zAW3/+c77w9NNE3/hGpEceIfPUU0jXXkvgmmvI9PQQftWryP7rvxJ+wxtmPh/RKKHf+R3s8+cRfvYzrH/6J5ItLQTvv5+gJyafAsvC0TSEQADHE0uLk9K3jVQKURAIL1tGZmCAdE8P4ZkK9knnLD/NO3feLcsi0NxMtq8PccMGxPFxQrfe6r5G00ieOYM4MoLU24u+eze6ZbkjUMEgYlsb4pIlyM3N2KEQoZYW9L4+1I6OOYmVwRUPC6EQRiKBMp3zkyzjeCv6+ZAiEfRE4mIA4ywoCHCc5rsrCAKCJCFOOl+ZkRGEYNDPYClq8VuEgDi2jT4+XlR4PhtsXSfT04N24gRKOk3GNME0kSsrsRsbsZqbCdTVFRWqT4FhkB4cRFQUInMYTcpHMBYjMzpK2Ovk5PQe0aYmP7cnd34dx/GzKDAM//NzHAf9/HmMo0eRKiqQt2wh1NICtu2GFYZCrrh+BmiJBM6pU0ibNpH67//G7uhwjRuee46ta9dyx223lXQ8ucyk6upq1q5d+6I4LEmSNCUAMP8eVllZ6XdHJmvfNE1j9+7dVFVVLQr5KIbpMkfmm8guCALRaJRoNMrSpUvRdd0Xsue61DnXrZqaGv97mnPBmgsmJib4zd/8Tf7lX/5l1tfu27ePm266iTVr1vDRj34UTdP45Cc/ya5du/jZz35GW96Y6H/+53/ywAMPcOutt/KpT32KeDzOJz7xCZ577jl+8pOfFDVWKeOlQ5mAlPGyQa5YXqyOQrHtWpbF4cOHGR0dZceOHVTMYtE5GYshQs9ttxgByektxsfHp4jj8/UeuW3MB/kPsmXLlpHNZhkaGmJoaIhTp06hqiqaprFs2bJpyUcOf/nww/z0DW/gzO7dhLZuJfL+95P50pew//mf4eab0SIRhFOnsBMJxBLOvWDbBB98EPFVr0Lbs4fMX/0V2bo6om96E3Jra8FrpXXr0A4fRvW0L3Je8ZuD1tdHxCMwocZG9ESC5JkzhDs6CkaiSsHkIiHU0kIqmcTZvRvlxhsxhoexMhkiK1YgFVkttHUd8/RpzCNH0P7rvxBNEyEQwJYkxiorCV11FXJLixu0WGKBFKqrI9XdPS0BERSlKAFRIxGyAwNQAgHJpZtLkjRzF2MS/MA+XSdUU+Nev9NZ/Bb5LmQGBwnU1Ew5F47jYCeTWGNj2OPjOCMj2GNjoGlg2ziG4Y44KQqhq64isHx5gYA7h+zYGKm+PsIzjSulUu5IUziMegljLHIohJ5MomcymMlkgd4jRz7yyXNuoUHr6sLxxhrNU6eQa2oI33ILoiyTGhjANk3S8TiBWKykLprW1YUIaLt346xZQ6S5mezPf06NqvKlT3+6pGPJZDLs3r2b2tpa1qxZ85LYu+YHAK5YsYJsNuuPap09exZVVX0yEolE2Lt374tKPiZjulGtYgtKpSayq6pKU1MTTU1Nvs3x8PAwnZ2dPPfcc/z1X/81t956K+fPn2ft2rVz2t8HHniAI0eO8PDDD/ORj3xk2tc5jsPb3vY2rrrqKp555hl/jPR1r3sd11xzDX/yJ3/C016QZSaT4Td/8zd56KGH+NrXvuZv41WvehVbtmzhQx/60IzvVcaLjzIBKeNlhcUaaSpGFDRNY+/evQiCwM6dO+fsaQ+LZx1cjIDous7evXtxHIcdO3YU7O9ihAvmEAwGaW9vp62tjVOnTtHT00MsFqO7u5u+vj6/MzKdiP2Zz32OK171Kszly5Fragi94Q0YBw5gfOELCL/+61i7dpH+6leJ/tZvzbovjmn6tqCBLVsIbNlC9sQJEk89hRyLod5/P+pVVyEIAuqtt5L+p39yMz6KpG9ro6PI4XBBcalWVCAFAqR7e90U7HmuuOUKiqq1axn9+tdJnDyJUlOD2tSEIwju5zRppV9UVeTVq2HlSoJ5+2vrOukDB9D27cP66U+xUyl3n/P/BYOI1dVQU4MQiyFVVSFWVSFGo8hVVWijowSKWRd7GpAp+y/LbjDgLMiRj2LkrhQ4lgV5f1vM4hdBwM4L5rSzWbT+fozBQQTTRB8ddcelLMv/JwQCCJWViLW1yMuWIdbXI6qqu7+GgTY0REVtLcoMI6LBWAwzHCY1MECwpqaoW1Ti9GmUxsZLIh85BKqqGO/tJdrYiOqtSBcjH+CN6TgOxpEjCJoGzc0EvS6bZds4poltWaSGhgjX17vOaLPAtiyMI0dQo1HsDRuINDRgnDsHfX189zvfKakznE6n2bNnD/X19VM0aS8lgsEgbW1ttLW1+bqJoaEhX9AdDAaJxWLouj6v58BCYqZRLV3XyWQyCILgZzqVmjmSszleuXIlHR0dnDp1ih/+8Ie88MIL/M///A+6rnPvvfdy/fXXzzqu9oEPfIBly5Zx+vTpGUnBL3/5S/bs2cPPfvazAg1bLBbj/e9/P29+85sZHBykoaGBf//3f6evr4+PfexjBdtYsmQJf/AHf8BTTz3Fhz70oZc8oLKMiyh/EmW8rLCYmor87U5MTLB3716qq6tZv379vH3VX6wOSDKZ9OepN2zYULC/xcTmCw3btjl69Cijo6Ns376daDSKbduMjIwwODjIoUOHsG3b15TUedai4D78v/2hD3Hz+99P9BOfQAwEUDZupGL5cibe8x6CDz1E9tgxtO5uAtONU1082CnjOcErr0R54glSJ09i/PjHGP/6r0i7dqFcfz328HDRwD7HtjHicaLLl095C0lViSxbRvrCBaxUiqAX8Dav86brkM2iVlcj6DqKLGN7n5fpOAWi7FyhMXl/RVUles01pL1kdrUIkbDTaezBQayhIZyzZzHHx3EmJrCzWQRJQk8kMGtqQJYvkpXqaszRUZzz593xKFkGWfbJjW0YmKmUq92wLGzTBC9UkLxxEVEUMbzRICOTQejrc/ffOy5EEVGWEVUV0bZxdB1H07CzWfThYRzbJnvhAo6mQTaL4/1D18ErpPW+PhJf/rJLLiQJ07YJLluG1NREYN26okGRk5EjH3o8TqC6ekbykYOsqkSam0kNDqLqOqpHSI10Gm1sDNUwkOYxAjYZ+sQEejpNsKKiINQxl/mQ3/kwzp/HOHYMJ5nEGR+n4qGHCgpQxxtrM3SdUH29S3hz4XXT3BusdJqJZ55xP/9164jW1WEnEui7d/Nvn/88V1555azHkEql2L17N83NzaxateqyIR+TkdNNRKNRhoeHqa+vp7KykgsXLnD8+HEqKip8V63pdBMvJnKLGYZhcPToUSoqKvyA2fkK2Zubm3nkkUd45JFHeOUrX0lrayuJRII3vvGNJJNJ7rjjDn7v936PW265pejfX++FvJ4+fXrG93nmmWeorq5m586dU3537733Yts2zzzzDK95zWt45pln2LBhQ8FIVg733Xcfjz32GLt372bHjh2zHl8ZLw7KBKSMyxbzuXG/GKLuwcFBDhw4wPLly1m+fPklPWAWqwOSfx6Gh4fZt28fHR0dUx7sLwb5MAyDAwcOYJom27Zt81cIRVH0BZA5EfvQ0BCnT5/m8OHD1NTU+Ba/Gzdu5PHbb+fRP/1TKj/xCURFQaqoIPCud2F/73tIsRjpr3wF3vxmAp4VbjFMd3RSIEDFunWkq6rcXIrDh0l/4AOYFy5g9PSgTkqw14aHUWcYLxIEgUhrK9rICKlz5wh3dMxpvAhcZ6dMXx9KJEKkuRl9YsLXmEiKcjE/wxNl587pdEViuKmJ1PnzCLI8ZaRKDIcRly5FniYfRU4ksJNJQo2N2KmUT1as0VGc/fuxTp/GyWaxdd3tiNg2tq6jOw6SLLvXVc69Ks8lS8yNXXl2sUImg+2F/jleN8LJIyyCILgkSFFAVTGBQG0tTk0NUjSKUFeHEA4jRiIQCiHKMlYigfSv/0r4oYdwbJvUwACBcBgpGHTPlygWJab5yHVTjJERlMpKv8NQCgRRJNrURDoex4rHkVTVHbtqaiJz6BDKunUlb2syHMdx9SOBANGmJhzLIj08jBIIFHSWzLEx9MOHsYeGkGprCe3ciTE4iNzbW0g+LIv00BBSNErAsggEg+49wnPVEj2xvyiKCN77aydOYJw+jT02hrxzJ+H6erAsUj/6ER/+sz/j5htvnPU4cgskra2ts45lXg7ICeTzNSrLly9H13U/ALGrqwtZln0yUlNTs6ABgHNBLkFeVVU2btzoL1AtROaIruts376d3/md38G2bfbv3893vvMdksnkJe/3+fPnaW9vL3o91NbWUlFRQW9vr//aJZPu0zks9e5rudeWcXmgTEDKeFlBluVFIyCmadLZ2cnp06fZsGEDTTPZfpaIxRah9/b2cuzYMdasWVOwMlSq09WlIpPJsG/fPkKhEFdfffWMAuPJIvbBwUHOnz/PsWPHqKqq4oF77qF/eJi/+dM/perjH0eQZQJNTWi33UZwdJTkJz6BdvYstqYRmqYTktO3FN0HUSTS3k56eBhzxQrCN9+M8e1vk/7Yx9BbW5HWrEG9/nqkmhqsRILgNA+7fARqapBCIVLnzhGor59ezD0JxsQE2vAw0SVLSAcC2Ok0amUloqKQ6uoi3NrqdgQkCdtxEBzHJbPeqrfgHY+U6yK4J5lwayup7m4EWZ7RXnfKcVRUkBwdxTFNHEnCjEaxZBmWL8epqEBdu9YdAQsG/XEoyzDQBgcJT1rht7wuiDypU2Nls+iJBKEShdi2J96WIxFsTcMwTZfECAKSbaPmrI8zGd8m2MxmEUWRcGVloQvZpG5S/nfBtixMy8IYGUEOh13r3XkgXFfHRE8PWipFzLs+nWSypO5LMRiZDNrYGIGaGj+vQ5AkHMtC13Uk20Y7dgyrqwtRUVA3bUK+9lr/783jxwlt23Zxe6kUWiJBsLYWWVVJpVIFo235hNewLKzxcYw9e1CamnDCYWhupqK5GUEUGf+v/+LX7riD333rW2c9jkQiwZ49e2hvb7/kBZ0XAznyEYvFpgjkVVWlpaWFlpYWbNtmdHSUeDzOiRMn0DTNTyOvr6+fk8PjpSBHPmRZ5qqrrvIJRamZI7nXTEdG8m14RVFk8+bNtLa24jgO/f39U15fU1Mz64jWXDCX6+Vyv7b+r6FMQMp4WWGxRprA1XycO3eObdu2UVWKu00JWKyOjSAIXLhwgfHxcTZv3kxtXs7BfJ2u5orx8XH2799PY2PjnOe5I5EIy5Yt80XsufDDW3bu5PSZM/zXu99N1Uc/iqSqblr2pk1UfOADJB59FGfzZqzbbiOyfv3UroNXoBUTBedWANWqKoJVVWR6exF27UI5dYrQH/0R5oEDaJ//PLZpYjY0YD3wAFIJ1o5yKERk2TIyfX2Y4+OEZgn300dHMSYmiHR0uA/9hgbMwUHUpUtdJ6KODtK9vQTr6iB3/IriBvrljiVPA+GQN14hCETa2kh1d7skpoTZfsey0D3yMXb2LIFYzC3Ea2rQW1txDINgkbEuycvxyIdpmji2XTSN3basOXWJtJERdxQqn0g5DpZhYGQypAcHXdH48LD7eTsO2sgIEW8krhSLX7zVf2N42D3meWp6HMtyOy/V1WDbZOJxl2jNMwMoMzyM7ThEPJerHCzTxB4aIvM//4MsSSirVxO4554phaNtGJDJuOJ5xyE9PAxepybXCZryfRXcwEgB0Pftwx4ZIXjddWR7e9HGx6nYtAkEgcQvfsHamhr+7lOfmvU4cqOsS5YsYdmyZfM6Fy8mstksu3fvLsmdK9816oorriCdTjM0NER/fz8nTpwgEon4I6eVlZWLcg+2LIt9+/YhiiIbN26csQMz38yRYja8ra2t0z7Xnn32WW666aaS9r+1tZWenh5fv5WP4eFhEokErZ55SGtrK88//3zR7Zw7d85/TRmXD8oEpIyXFRajoNd1nRMnTuA4zpyzSWbDYnRALMsimUziOI6vt8hhoZyuZsPg4CCHDx/2BYuXgnwBqGmarF+/nrf+8R/z3J/9GZEPfhCxpobshQuEli8ndPPN2JEI1le+wvjy5URe85oCIbgYDmMmkyiTCKRvsyuKSF6XJrJsGdl4nMzYGMrQEOqmTaibNpEZHkbYvx/tH/8R2zQvdkZmGskSRcKtra5L1tmzBJubi3YgzHQafXycaN45Ezs6sPv6wBsjEBWFSEcHie5ulEikaMcg1/3IF2Xnr/QHmptJ9fYS7egoSsZsw0AfGcHKZkGSkKNRtxvT348ajfr7LoRC2DOMWgh5hM80jAKyNBmOZc3JKtgyDEKTz6EgIOVyPbxxutToKCYwevYskqJg6foUQXiBxa/j+Dob27bR43GkSAR1vp0KT+8RrKtD9lZ+s7btEqQ53qtswyAdj6NUVhLKK/r0gQH0Q4fcMaiODsxt24jOoC3RT59GamvD0nUyIyOoVVUljZUZfX1k9+0jsHo16pYtpIeGMA8fJrh9O0ogQPrMGdTOTp76ylc4d+6c7xJVrLjOhbYuW7bMH5G5nJEjHzU1NXN25xIEgUgkQiQSYenSpRiG4btq7d27t2Actba2dkGE0jnyIQgCV1999ZzGv+aSOZJIJAqeMeCSg+m6zZNfOxNuueUW3vve9/Lzn/+ca/O6dwDf/e53EUXR15nccsstfP7zn6e3t3eKDuQ73/kOsViMrVu3lvzeZSw+ygSkjMsW81kRWugRrNxscm6FZ6Hb5gvdsck5czmOw5IlS6aQj8UeuXIch+7ubs6cOcP69evnlIlSCmRZpqmpie9+5Svc9brX8Ys//3Mijz1Gur8fMZNBeuMbMR9/nOj73ofxk5+QeN/7UB98kKjn8COFQljj4wUEJN8GdvJDOlhXB696FanvfQ/nvvsI1NdjJxKEr78e4aab3C7DgQNon/sctuMgrV49IxlRKyqQw2Ey589jKgrBvDE+xzTJ9PURnTTaJa9bh/btb4MnxHS8efxwWxt6PE62v79gO5NRdKUfkOvrSXR1Ee7o8Ee19PFxjLExkCSUqir3+POuk1BDA+nz54l6WSdCKDTjKr4UiaCNjyN7o2eKLE+rtZgLATFSKaRS3IYEAcmyoKICobKSQFUV2vg42ZER5ECAQCw2lYAJAo5H0s2REZRoFCUSKewmed2A2ZAdHsayLCLNzQXft2AsxsSRIwhzcEzSxsYwslnC9fWuMcDgIOaZM9j9/QgVFcgbN7q2wqJIemDAFY5PZ/975gzixo1udkh9ve8Mlw8nfwxN08i88AKCbRO5/XZESSI1OIh18iRiRwfRujqM0VHEvXs5tnu3nwOUny5eX1/vO92Njo6yf/9+VqxYcckLFC8GLoV8FIOiKDQ3N9Pc3Oxb3ObO16FDh6iurvbNOOaasQEu+di/fz+O47Bp06ZL1p5Mlzly6NAhuru76enpKXj9pUwIXLhwgRaPPG/fvp0tW7bwyCOP8Mwzz/jEbHx8nA9+8IP86q/+qv+MefDBB2lububd7343X/nKV/zt9fT08KlPfYrf/u3fLjtgXWYofxplvKywkB2QoaEhDhw4wJIlS2hra+PHP/5x0VbwpSAnQl+I7eZmqaurqwmHwy+62NxxHE6cOMHAwABbtmxZsDG16fCfX/kK1z7wAMf+4i8I/8mfoPf0EFy+HPmhh0h++cuEf/3XqbzxRtKf+QyjP/gB0Xe8A6WpiczAgL+N3JhSMZvdHNRt27B+8ANsxyF15kzBCJcoin5npICM2DbS2rWou3ZNISOiJBHp6HAF6mfPEmpv97UdoZaWKWNIUn09ztgYMKlTI0nIzc1kh4fdkaq2tllHmPJX+mVZRgQyPT2una6uI0UiBJub/S7QZIiShFxR4Y4/1dS4BETTpn0/JRIh1duLXFGBPMu4l2NZCCVmpxjj4wSLpIoXg51OY9o2lXV1CILgiqQBPZUiHY8j2Lar1fHIgGmars5heBg5GvU1H/np9XYxUXb+9822SQ8MIIfDRPLGH/OhJBLo9fUY6TTKDEWmpetkhocRBQFpaIjMvn2gaYiVlairVyNecw3mJPczUVUxdR21SJfNmJhwz58kEW1sLN6NyuvKZk+fxjx5kuDWrcj19dimSXJgAAmwxsYIbt+O0d+PsHs3u3/4Q9+uNWdZm0sXzzndVVRUMDY2xqpVq/5Pko/JyLe4zY1q5YTsJ0+eJBwO+2Skqqpq1q61ZVkcOHAAy7LYvHnzghfdOTJy9OhRHnroIR5++GHe+MY3Lsi2v/zlL/OGN7yBJ598kj/7sz9DEAQ++9nPctNNN3HjjTfylre8BV3X+dSnPoWu63z84x/3/zYUCvG5z32OBx54gImJCV796lcTj8d56qmn6Ojo4L3vfe+C7GMZC4cyASnjZYWFICC5VfyTJ0+ybt06Wlpa0L1VXssTzy4U8lvcl7JKlSNLS5cuZcWKFRw5csQf7XoxyIdpmhw6dIhMJsO2bdumjsYsEn76rW9x7QMPcOLjH0d561uxRkYIbd2K/aMfYfX0ILW3E/z938fs6yPx0Y+irF6N4FlAWpZV1LZ2MkRRRFBVVEnCbGggffYs2uAggUndnWJkJPu5z7nC6OZmpKuvRr3iCl8QHaipQY5GSZ8/j63rBBsbkadbETeMaTMzgrW1GKGQS2Cam5FK7NLlAvds20bQdaIdHW53xHGwvKTsYracwepqkt3drgtYJIIzTQckd90hCLOSDwC867OEHcdxnKKr9sWg9/URXLJkynWvRiKokYgrlh8ZwbEsZE/ob8TjyBUVUwTnuW4SuVEt73wZXsq4KIrYmoY2OuqOXM3Q4bD7+4leey2ZeNzVsUzWxBgGKU9ELpkmqCri8uUEbrvNP3bLE8grkzQ1oqK4Oo9J38Ps6CiZ/fsJbdxIcIYFAj2ZxEmnSf7wh8jV1YTvvNMNsctkyI6PE6iuJvujH8GVV+L09eEcPcrPv/vdKYRicrp4T08PJ0+eRFVVTp06xdDQkC/KnqwjuByQS2RfLPJRDOFwmI6ODjo6OjAMg5GREf/+Dq77U319PbW1tQXZGOA+Rw4ePIhhGGzZsmXRVvxPnjzJ/fffz9ve9jY+9KEPLdh5qauro6KiguY86/JNmzbxs5/9jPe85z28613vQpZl7rrrLp588skpmo677rqLZ555hkcffZS3v/3tVFRU8MpXvpInnnhiziHBZSw+BGcmW5gyyngJYXu++3PBsWPHAFizZs283/PYsWMMDAywefNmYt7qtWVZ/OAHP+CWW25ZUAcP0zT54Q9/yK233jrlYVIquru7OXHihE+WAI4ePYooilxxxRUFHZbFeIBqmua7rGzcuHHex3EpuPlVr2JfJIL0+tcTWbUKdJ30X/4lkfe+1w2fs20swyD57LNY3/42wQcfRLnlFlRFKUn4rB84gHnsGMptt2GOjCCGQhgjIwSbmpBLKJzM/n7M//kfrDNnXAvZujqkjRtRV6/GBlJdXciKQqilpWiqdvLDH0Z5y1tQQqFpx2ps0yR9/rxbWM8kjnccsoODmJkMam0tajSKNjqKlUr5jlWT7TnFvFV+QRAwMhn3+GMxMv/yL0QeemjSW3gBeKKINjxMMBYrelz5yPT3o8RiMxbt4AZAIggESuiwacPDaP/934Q3bUKephPhvzabRR8dxUylCNXWzligF4Nt22SHhzENw+2oeF216UhV6mtfI3L33ejpNFYySbC2FnNoCOPsWcy+PqxkEnnJEiKbNhV1yvLdxIoJ+k2T7OgoYe+YzWyW7NgYcjSK+cMfEr399mmPQ+/vJ/WLXxCIxQhu24boEVptfBxT1wnX15P+6U+xIhEYG0Pu6+OZr3+d9evXz3h+hoaGOHToEGvWrKG5uZlMJuOv9I+MjBAKhfxRrVJW+hcbOfJRW1vL6tWrX3IHpZxVee6cpVIpYrGYT+BCoRAHDx4km82yZcuWRbsPnz17lrvuuotXv/rVfOxjH3vJP6cy/vei3AEp42UFWZbRZhgJmQmGYbB//350XWfnzp0Fq/i5m+xCC9zztzvXB4bjOBw/fpwLFy6wdetWqvOciHLi9tz+Lhb5SCQS7N+/33eFeakeRs9+4xu86Q//kG9+9KOkfvM3qbjuOpTt28l++9uEHnjALQQDAarvuouxVavQ/uM/MJ97DvPVrya4fr1vvzod1I0b0b/1Leybb3btf2tqUKuqyPT1ocfjhNraioq5c5CbmpDzinRraAjj5z8n84MfoE9MoLa3I6xfT0rXkSsqCOWtAFqWhdPYCENDiDM4BYmyTLSjg8zgIOneXsKtrVNW1XP2vkp1NdH6ev/3gepqskCmr4+Qp1co0I3kERJBENxUcFHEdJwpI1iTNTVyNIo2NkZoFj2QY9sl6SrMVIpwCeGOZjaLqWmIpok4y+qnYRjuOJVlEWpowEomyZomwVlISw62YZAeGkKORKisr7/YSTJNTJhi8etYFhgGViqFdfYs2RMnMGwbORbDamxE3rWLCk/PUQyWaWI7TlHyAXlJ9I5DemQEB4g0NqKfOYM8TU6O1tuLcfQoYiiEvHkzYU/I61gW6XgcKRwm0tBA9sQJHNvG6uoiaJp88wtfmJV85MJG161b59uXh0Ih2tvbaW9vxzTNOa30LzYuN/IBhVblK1euLCBwZ86c8Ttwa9euXbS8ke7ubu69914efPDBMvko45JRJiBlvKww3xGsVCrFnj17iEajbN++fUrrOleQLQYBya3QzwWmaXLw4EFSqRQ7d+4sECrmuh1DQ0OEQiEaGhoWxXN+eHiYgwcP0tHRcVn493/xr/6KKz/zGT788Y+TGByk4hWvIPWhD2GsX4/iJZYbhkG4tRXt9ttxLAvzP/6D1Le+hXjddSjXXYekqr7IeHLxLjU1YZw6heKNmQiSRLitDSOTIdXdjRKNEihRlyDV1yM98AB6IoE4Pk4gHEb/+c9xfvYz9GyWrKKgXnMN6tVXQzSKumYNdm8vzGZVKgiEGhtdt62uLsK5jorjkD5/Hjz9SbHCNlhdTdZxyPT3E8oTtefI62QRqhyLke3vR7AsHNtGEMWiY2JqOExqZGTWc+LY9owkDtxkeGGWkTl3Yw7ZoSHCzc1kTHP67ovjYJimazUcj7tjU8EgVFaiTUyQvHCBYHX1jJkp2vg4RjpNqL7eDYjEcyGDAuG/qWmYAwPYfX3YPT1Y/f0Izz6LtHw5FffdR6qvD1tRCM6Ssm6aJo7juDkqM3znLF0nOTCAGov5WhDj6FHCN9988fBtG72nB+PYMaSqKjf7Jp12r39cnYyeSPgOXsbICMaxYxjZLKGKCv7+iSe4dpZk6YGBAQ4fPsyGDRumNaWQZblgVCsnyu7s7OTw4cOXLMqeCzKZDLt376auru6yIR/FkCNwra2tHDx4kEQiQSwW49ixY9i2TW1tre+stRBd+76+Pu69917uuOMOPv3pT5fJRxmXjDIBKeOyxYuVhD48PMz+/ftpa2vjiiuumPZ9FytjZK7bzWaz7N27F1mW2bFjR8HqYG6luq2tDUVRGBgY4OTJk1RUVPgP+IWYtT5//jzHjx9nzZo1/tjX5YD3/P7v09LQwDs+8hESvb1E3vlOUk8+ifTww1jeuJWiKBiqSrilBf1Nb0IbGkI8fhzjL/4CY/VqlLvvRohE/FXrXLp44LWvJfHUUwTe9raC91RCIZTly8kOD5M8c8a12C2xSNIHB13XK1EkePfdcPfdAFgTE0z8x3+gPfMMSjQKgQD22BhSeztKc/Os7klqRQVSIED6/HnX+SuVQq2rm9VKNlhTQ3Z4eAoJyUfunMiyjB2LoaVSvkMUgCSKhZ0MLwV9trRx96Uz/z47PIxaJHNkMtIDA6g1Ne5+TPPdytmJ2rqOMTpKqLHRJxAAgcpK1EjEtZrNZqdknTiWRXpwECkUIjqpI2NnMhh9fVi9vTjxOOi6O8pWU4PszfYHli5FWbYMW9PIxuMgim6uSQnkYyY3MdPToNiOQ0VeTojuJaaLHlHUz53DOHECqb6e8K23+roSM512x6y8fYo0NSGIIrauk3rmGaxslnBTE0/+xm/w4L33zvg59PX1cfToUa666irqSyTnk0NJM5kMQ0NDU0TZuVGthSQI/1vIRw6O43DkyBHS6TTbt29HVVUcx2FiYoJ4PE53dzdHjx6lqqqqQGsz1+MaGBjg3nvv5brrruNv//Zvy+SjjAVBmYCU8bLCXAlIT0+PX0hP9g4vtu3FSC2fy3YnJibYs2cPdXV1rFu3ruBBkC82DwQCLFmyhCVLlqDrOkNDQwwODnL27Fm/KzKfACzHcThz5gw9PT1s2rSJmhKC+F5s/Mav/iphReG3P/1pkn19yHffTfLv/o7wO96BnFuVb2gg299PqL0dpbKSTDCItHkz0sgIxqc/DXV1KPffD01NF92OIhGcdBonk3EzJiYhWFuLE4u5Y1mDgwSn0XPkoE1MuESlyMPcCYeJPvQQmCZafz+SLKN/8pNYP/sZxtCQ+zeKAhUViB0dF4lJXvEqqSpqZSWpoSHUUKiknIfccWTjcbIDAwSnGdfJIVRdTdY0wbbBIya+iD1v7EgKh91Rs0txRnMcVyhegkZEUJSLx1vku+WTj0wGI5FwbXKLdF8ESSLS1ERmdJT0wABh73zoExPoySSB2lrETIbs8ePYPT044+NgGCCKSI2NqMuXI+7cOaVgs44cQb32WrLDwyBJqLW1OJZFdnzc7cIV6cDNRj4cyyIzPIwjioTq6xHi8YLvtrFvH6GrryZ78iSmN4oVvuOOwnuIF8SYGhx0s0HyFisSzz7rZq80NvL+176Wt/76r8/4OVy4cIHjx4+zceNG6kpMty+GUCjki7JN02R4eJihoSH2798P4BfWl5qfkSMf9fX1cw5OfSmQIx+JRIItW7b4XQ5BEKiqqqKqqooVK1b4Qa7xeJyzZ8+iqqrfTaqurp51XCsej3P//fdz1VVX8YUvfGHRxrvK+L+HMgEp42WFUglIvn5iy5YtJRXSi5VaXmoHZHBwkAMHDrBixQqWLVtWss2uqqq0trbS2trqP8AHBwfZu3dvgUtNzqN/Oti2zZEjRxgbG+Oaa66ZU6DUi41X/8qvIAC//c//jP6tbyF44lv5rrsA1x5Wv3ABPDelyJIlblGZyRB8+9shmUT/2tfc1O6770ZYu9bVKNx9N5nvfx/p9a8v6iiWG8syNY1Mfz8CuNa6RQojc2ysqJYh56ikKAooCsqyZWSHh7ElCenuuwnlBSvaExMYJ09i/eIXGIOD7g9VFSIR7FgMp7GRqvXrMS2LZHc3wYaGkrozwbo6MkNDZAYGCM1CQqRQiEx/PxV5TlNTksWDQXQvQG+6wm62gk/zRNQzwcxkMDMZP+0cmEJAHM+1yk6lsLJZl3zMsqIbqq4mOzrKxOHDOPE4TjyO4jjohoEQCCC2tqJefTVyCfcRx7P4JZEgVFvrhiZ6P9dHRwt0IzmLX8sLfiuqhXAcNxndsghUV/thh/k5HmYyidHXhzM+jtLePoV45LaTHBjAFgQqGhv9LpadyZD48Y+xxscJVlTw6be/nV975StnPMbe3l5OnjzJ1VdfvaCLFLIs09jYSGNjI47jMDY2Rjwe9/MzampqCkTZpeJ/I/k4evQo4+PjbN26lcAMpDw/yNWyLEZGRojH4xw7dgzDMKipqfEJyeTtjI6O8uCDD7Jy5Uq+9KUvlXM0ylhQlK+mMl5WKIUkmKbJ/v37yWQyU/QTl7rt+WC2DojjOHR1dXHq1Ck2bNjgizhzv8uNXeXcimZ6eOY/wG3bZmRkxBeIOo5DXV0dDQ0N1NbWFqx06brOgQMHsG2bbdu2zfjAu1ywffNm/vjUKT6+bx9CMEj66acRr7wS1dNRSNXVaMPDBLzVWbWyEiUaJXPhAo6mEfq933M7EN/4BplvfhN51y7UTZvIfutb2J6Fr8DF1PH8IlYOBJCXLMHMZEifP48oigRbWgpX2U2z4P/nVuUFQZjyoA/W1mKvWoXW2YlRVUWwqQkpGESsrCSwdStMSvhNnT4N586hdHaS+fnPvZ2SSToOYmsrgSuvRKqqQqyu9l2OJiNUX092eJh0X9+0ou9cIrJSVYU+OkrAKzYLksUB27LQc3a1XBzjKsWBzH+vWcTnjmWRjceJTB4J9PYRLgrkrYkJHMch0tTkBw/aiQTW2BjW2BiMjGBPTLh/a5pgWZiahi3LLqm7/XakuRJwxyE7Ooo+PIwUiRCZROwEUUSNRLB1nUAkgu042JaF4d1zJG90yj9njoM2MYGRTqPGYgUFt+OZBeiDgxhHjqB3dhJYtozg5s1FFxnMTIbM2BiWZRFra3PPiW2jnTpFZu9ehHCYgKrytSef5NabbprxMHt6ejh16hSbNm0qMMZYaAiC4OdnrFq1inQ67Xd6T548SSQS8Ue1Zur0/m8kH8eOHWN0dHRW8jEZkiT558RxHJLJJENDQ5w/f55jx44xODjIvn37+JVf+RXWrVvHr/zKr9Dc3MzTTz+9oO6PZZQBZQJSxmWMxdCApNNp9u7dSzAYnKKf+P/ZO/P4uOpy/7/PmT37nrZpmy7pki5plgIFBBHQthRKKyiCF7z3KoqoVa9cFa9WueoPuCgiuIGi4oZAy1qgLELZZGu27kuattlnJslkktnP9vtj5hyztkk7k0503q9XX+gkM3Pm5MzM9/N9nufzORmJnAEZS4CoqsqBAwfo6urirLPOMmyBYahVKkzc6UoURWNIUR/81L+8w+Ew+fn5xszInj17yMjIYNmyZUlfgtc0jUOHDtHZ2cmXPvtZlr/9Nv/58MOIa9fiu/12Mm69Fevcudjy8/EfPmwIEIguAo0KRns7osmE/d/+DQ2IvPwy0j33oAQCKDt3Yj/vPONvICsKWiwgcLD1qtnhwDxnDpLfj7+1FZPVimPaNKRQaEh7lmFbO0oau465qgqhsxPr0qWEnM6oY9Mo1ZWwy4WYlUX6xRePeAw1ECDY0EDgzTexCAJCMBidkRBFMJuj+RYmE0JGBkJeHkJuLqrZzEBPD+kLFw45Zr0lyCQIOHJz8bW1YcnMRBz2ntIUBSUUQpXlaPtY7JyhaWixcy4AUiiE1t4enRUhWk0SLZbocwoCwokskzWNQGcn9sLCIb9jVGJitsFSTw9yWxuC349ZFPErSlRgqGp07ic7GzE/H9PixYj5+YhmM0psRsOWloY9NzdqadvTE52lGuf7TW/ZsmRmYgkEEOfPH/X3rNnZBFwubBkZiIKAEmv/E2ObFLrgk4NBZL8fS0bGiPkTxe8n2NiI3NKCUFiIddEi8HpJGyZSISpUgt3dYDJhMpujcy6CgOz1Enr3XTRBwJSWhkWWeeHBB6msrDzh6zx+/DjNzc1DLMwni7S0NKPtVJIko1Wrrq7O+KzTW7X091ggEKC2tnZKiY8DBw7Q29vLypUrT8tcRBAEMjMzyczMZN68eUQiEXbs2MG+ffv47W9/i6IoFBYW8o1vfCMh33spUqRyQFIkNRO11O3r66O+vp4PDXJ60fF4PNTV1TFjxgwWLVo04UG6999/n+nTp590VmSivP3228yZM2dI+BL8o1ITCoWorq4e4XSlKAr62zeeQ4GapuH3+3G5XHR2dhIIBLDZbMyZMydhjlrxQlEU9u7dS39//5BztuXZZ/nCtm1Eli9H+ctfsJ1/Po5PfpJIMBhNwh7DnUfy+Qh3dWFOT8ce2y3ve/ZZ1EcfxVZejlhZiW3VKsS0tNGzM2KLR51Ifz8RtxtFkkgvKcGcljZmwOBw1EiE4P33k/6f/wlEbWbDTiei2Yw9NigsDQwQ6esjfVhA14jHkiQCXV1YbLYRzl2qqoLXi+J0onZ3o/b2IjmdqG435sxMBJMJRRDAbMZktRI5cADbWWehCgKyz4c5KwtVltF0UWOxINpsqKIIqoq9oADBYkE0mdBMJjRRRBMEQr29OKZPRzSZECQJJbbIVoNBIj09CJqGGA5DJIKgKJggOm8RDiMPDIDJFA081LToP1VFkyQira1YZ81Cs9uRzWbsc+Zgmz0b8WSVT00j4HKhaRqOgoIhwYcRvx/Z6yVtjEF9/f7h/n4kvx9TWhr22MC0/+mncZx//pjzQf7OTtKLipCGV8M0jfDAABGfD9Fuj5oTCEJ0XkRRkI8eRWlqioqiefMwTZ+OPSsL/4svYlu6FPOw+Zuw14sUDGLLy0MUBEJ9faTl5xNsbERzuzEvWkS4rg67qvL6o49SVlZ2wtN17Ngxjh49SnV1NdmnM+sTZ1RVpa+vD7fbTXd3N6FQiNzcXLKzs2lvb6e4uPiE5iPJgr6x4nK5WLlyZcLCXgOBABs3bsTj8XDhhReyfft2Ojs7ueSSS7j88sv56Ec/OqabWYoUEyFVAUmR1AiCwEQ08lgVkPb2dvbt28eiRYtGpPWe7mOfLqM9ru5Db7PZOOecc0Z1ukpUsrkgCGRkZOD3+wmHw8yfPx+z2WxUR+LtqBUv9BwXTdM4++yzh7QMXL1uHZIsc8vrr+O/+mqkHTvQfvxjTDU1SIsWYRkjKM+SkYGlrIywx4OvqQlrQQGWJUsQL7kEYe5chGCQ4M9+Fl1kV1VhO/tsLDExos9AyIpi2NhaMjOxZmXR39REyOVCMJsx5+djibkTnQjRaoVQyPj/Zrsdc2kpEZ8Pf0sLJpsNORgkYxzXt2ixkDFzJiGPx0hQ11+/KIqQm4s4qH3GAUiBAGGXC8u0adhEEbPFEs2auesutOJiNJ8PVRSRie7kmwQBZBlVlsHrBUUh7HKhZmWBoqDE7G+J/VM9HsJpaVHhYDIhWK2Idjui1YoQDOIoKUHIzkaz2VAEAQ3QrNbobIzNRsYoYkByOhFefRXx/PORBwbIGuZ0NRaR/v7o0Hxe3qjD+9b0dFRJItzXh234Tr+mGda85vT0aIVi8HvU7z9xKGPMGtgQH/rjBYOY09PJHBQWKbW3E9q7FzUQQJw9G8vFF2O2Wgl1d2N2OJC6uxEikSHiQw6HCXk8mNPSjOqJv7MTs6bhe+EFbAsWIM6dy8D27dhkmfdffnlE4vRwmpubaWlpoaamhqxBM0rJgCiK5OXlkZeXx6JFi/D7/XR0dHD06FE0TcPj8dDc3ExBQcGETTkmC03TOHz4ME6nM6HiIxQKce2116IoCn//+9/Jysoyqi7PPPMMf/nLX5gzZw5rYrN0KVKcDikBkuKfiuGLeX3XSHdtOh03lkS1YA2fAfF6vdTW1lJcXEx5efmYTleJEB/6c+itFMuXLzfsM2fPnj2qo1ZhYSFFRUVn9Ms7GAxSX19PWloay5cvH7WN6dorryQiSXynro6Bc85BPn4ci9mM9sc/MrBqFdkxC9zRsOXmYs3JIeR0RnMRPvxh5F/9ivT//m9s55+PqqpIb71F4Gc/Q7BYMFVXYz37bCM/QheM+oC5aDJhLykh4vMhud0ogK24GNPJ+rkFATUUGjK3Yc3IwJqRgbepCREId3djHxQyeKLHsufloWRkEIxVUhzFxWPez+xwIOfnE+roIGPWrGi1xeNBEQQsRUWkLV2KAPja27EVFIz6WtSurmgFZPgwq6qiOZ3RmQzjpug5C8VakixpaSPmRuRgkGBPD6LZjL+9HZPdji031/gd2etFAszBIBklJSe9PlVJIuhyITocZIwS5DgYe04OvvZ2rLGq0BDhobdGDXeyijl0jYWmaaixCo7ZbCbk8SCHQlgyMw2xIHu9RHbvRu3uxpSfT9oHPmBUc/RzpsRskUPvvGO0XqmyTKi3F00USSsqMqptod5e5H37oo5fH/kIajiMd8sWsgWBfe+9d0JBobvitbW1UVNTQ+ZJAh+TAUEQ6OzsZNasWcyZM8cIQGxpaUEURWNGIi8vLynaTTVNo6mpia6uLlauXJmwHJRIJML1119PX18fL730kvF3FwSB8vJyysvL+frXv56Q507xr0lKgKT4p0IP/tK/iHft2oXP52PVqlWn7dqUSBcsXYB0dXWxe/duysrKmDNnzridruKFPnPidrtZuXLliMXHeBy1CgsLyc3NnTSv+P7+furr6ykuLj5pH/enrr6asCTxg927CU6fTqC5GcdNNxH561/pe+89Mm66acykaEEQcEybhikzk8DRo5CbS+C110i/6CJEUcR2wQXYLrggOuvw5psE770XbDZMNTVYV64cIkb06oglLQ0hIwNNlqNZEJIUrbKMca2aFi5EOngQ24oVQ26Xg0EsVms0ZLG/H19LC2abDVtR0UkHvU1WK+mzZhn3s+XlYRm2kNRnVKwOB2Rm0tfUhDUri7Tp0xGKi7EMuh7Tpk0j0N4+aiVGT0W3D9sIUIcN5MM/BtVRVRwZGSixGQgt9jMUhWB3d1RYxHJGIn4/fqczmsCek0OotRVzTs6o1ZEhr09RCLrdaIC9qGhcVRKIuoUF3G5MVus/hMIJcnGkAwcwL1o0+jHoc0BmM+HeXsIQfbzcXGSvl2BdHUp7O6LFEnXcOv/8EY8hiiJKKITF4UDt6kIwmZDNZgJdXUBMSA8Sr6GjRwm8/z4ZH/gA1hkzkPr68D7+OOUzZvDujh0nfA/rC+OOjg5WrlyZ1K54OoFAgJ07dw5pu5o+fTrTp09HVVU8Hg/d3d0cPHiQcDhsOEQVFhaeMeONI0eOGOc4UeJDkiT+4z/+g7a2Nl555ZVJn99J8a9JagYkRVIjSdKEsjdkWebll1/m/PPPZ9euXVgsFiorK+Pi4LFv3z5MJhOLxlhAnCqNjY2kp6cjiiJHjhyhoqKC4kGLYN3pShc/Ex02Hy96uno4HKaysnJCZX79y9vlcuFyuVBV1aiMDHfUiifd3d3s2rWLefPmUTrIBvZkPPvSS3zlkUfw2Gyos2djXr48ujv90kuY5szBfvXViCd4/b6mJhyzZjHw7W9j+rd/w5qTM2SYXUeVZSKvv47S0AB2O6aVKzGtWEGoq4uMuXONgWxVVaNBfqqK5PGgBYNYsrMNVynj8fr6CP71r6Rff/2Q2/3Hj0fFwOA5hYEBIr29RmXjZCnjEBtKdrshHMYRezzdtlYLhZB6ezFlZGDLyiLQ2YktOxv55ZcxLVqEdZDgiPh8yAMDI2ckNA1/ezvpw+ao5EAgmiaenz/k9rDHgyaK2Ae1EGmxHX5/Rwe2oiLMFsuQwEiAQG8vwe5uxN27yVy4EPOsWWO8YI1gdzeKJEVDACdyzcsyoZ4ewj4fttxc0saxaPM/9hiOUSxwNVUl5POh+HzIkUjUvKCvD+XYMQgEwG7HsnAh5tmzTyrsA7H08+C2bYgVFSCKWLKzMcVa5lRVRenoQDl4EMVsxnHuudjS0wl2dOB/7jn+46Mf5b4f/eiEz6FXlp1OJzU1NUnVijkWfr+f2tpapk2bxoIFC074WaHPwekBiP39/WRmZhqD7JmZmZNS7R1cXUqUwJNlmRtvvJHdu3ezY8eO1HxHikkjVQFJ8U+FvtB9//33KSoqYsmSJXHbiU9kBcTpdBKJRDj77LOHDHCertPVeAmFQtTX12O1Wlm5cuWE3MEg+hry8/PJz89n8eLFeL1e3G43hw8fZvfu3YajVmFh4YQfeyz0NPYlS5aMGOA/Ges+/GFWVlSw4Vvf4uA776BlZSGUlKBefjk2VSVwxx2YP/hBbB/60Kjn25yXh+zx4DjnHDS3Gy0vD9+RI9Fh9UFtTKLZjP3ii+Hii1EjEQKvvkrk3ntRwmGCS5ZgrqjAMm8epliCsaqqCAUF0cF0r5fI0aOYTCZsRUVR292cnOg8xSCkYDDqJDWsrcmamYk1MxPJ7yfQ0YEgCNiLi0e4VA1GEEXSiouRQyH8HR3R58zORna7EUSR9JkzjYpKxsyZ+Lu6UAAhEBj63BkZ0ewJn29oNSeWij7ETpaoTe9oAkny+6OtUIOPURAIxdq1TDab8f7QZ22kvj7kUIicuXPx1dYSiERIC4UwDzZP0DTCHg9SMBi1sJ3AAlry+Yj094MoYs3JwZqVRcTnO+n91EgEJGlE8F/I4yHs9yP4fJjcbujsRLNYYM4cHB/4wJg2yaMSu4YC776LmpGBLScnWrUiVmFpaUE6cAAxLw8qKjDb7YgWC/0HDxLZsYOH7rmHqzZuPMlTRGcCuru7E7orH08mIj7gH3NwGRkZzJ07l0gkQnd3N263m+PHj2M2m43KyHjC/E6Fo0eP0tramtDqkqIofPGLX6S+vp7XXnstJT5STCqpCkiKpGaiFZDOzk4aGxuZN2/euL5oJsLhw4cJhUIsX748bo8pSRJvvfUWiqJw3nnnDfXyT6DT1WAGBgaor68nPz9/xMzJ6TLYUcvlcuHz+cjNzTWqI6fiqKVpmjH0umLFitMKOlNVlc/fdhuPvvYa1quuQi4vR/F4yJg/H+Vvf0PaswfzqlVRITJ44a5p+JqaSJs7F/9tt5Hxta8hWCzRGYCeHkxWa9SZapAo0Oc/zGYz/mPHsKkq0nvvoba1gc2GMG1aVJAsWABms9GmJYVCyB4PSBKW9HSUhx/G/rGPYYrtuAe6urBmZJw0YFAOBgn39CAoCtb8fMwnWXSrioLf7Ubq6cGel0faGIuTgZdeQvX7yb744iEzD5qm4W9tJX1Y/knI6406jw0acg/39qKZTNgHtfxJPh9yKIRjWGUp0NGBeVhKt3G8HR0INhvWmONU6NFHSVu7lqDLFZ2Vycwk4vUSGRjAkpWFbZwD05qqEo7NY5jsdmw5OUMcy/zt7UPDD0chtG8fdHdjr6qKWvm2tyO3taH19GCGqBnBkiVEJAlHUdGEP7s0VcXndCJ5vZgbG8laty56u6YRPnIE+fBhzMXFWCsrkQYGosGFWVl4GxvR3nuPX95xByUlJcbCerTKpZ5B0dvbS01NTcKGoePJRMXHydCrvXp15GRhfqfCsWPHOHbsWELnalRV5Stf+Qqvvvoqr7766imbs6RIcaqkBEiKpGa8AkTvRz5+/DiapnHOOefE3Y2lubmZ/v7+k3rhjxfdg15VVfLz81m2bJnxM303XFGUhM17wD9amObOnTti5iQRBINBY4i9r6/PcNQqLCwc1y6fqqrGAqiqqipuO4Nbnn2Wm++4A9atQ/jABwi1t2PLysJWUoL85pvI776LUFaG7fLLMcWuq0BnZ9QNad8+5EOHSLv6auPxIj5fNO1aljHn5CBkZCCKomGp6m9tJa24eIhAkdvbkd5+G7WlBaxWhKIiTBUVWBYuBLMZVVUJ9/cTfvVVxECAtEsvxZqVhf/YMdInsHhQJSk6jBwMYk5Lw5qfP2JORFUUIoEAktuNY9o0Il4vWjiMrbBwaCUBiBw4QHjfPoRFi0gvKRkiNuRwmLDLNaTlStM0AsPasELd3Yh2+xBR4W9rI23GjCHHFnS5EKxW7MPanSS/n2B3N9b8fOyxfA5NVfH98Y/Y161Dg2jApCxjy8nBEcu7OBlKOBxtA9M0zJmZ2Ma43oIuF+aMDCwnENS+xx9Hzc1FaW1FCIUwZWQglpVhmz8/ah+sv+6OjiHD+CdDDoeJ9PVFs2rCYSwNDaSdfTZCejrhQ4eQm5sxl5RgXbYMURSR/H4igQBmiwXf3r1kHDrE4ZiBg165dLvdhEKhEQvrvXv34vV6qampSWo7bh2/38/OnTuZMWMGZWVlcf98Gxzm193dTX9/P1lZWUarVkZGxoSfUzcASaSjmKqqfOMb32Dbtm3s2LGDubFw1hQpJpOUAEmR1MiyfNK2J0VR2L17N16vl+rqampra1mxYkXcU3iPHz9OT08P1dXVp/1YHo+H+vp6pk2bhtlsJhwOG5WVyRg2B2hra+PgwYOn1MIUD/S2BpfLRU9PD3a73bD3Hc1Ra/CMSlVVVdwXQC0tLVzymc/QV1ODeNll0URsQcBkt+MoKUE6cIDwtm0IOTlYr7gC0/TpBI8eJX3+fPx33ontYx/DPGwAWZEkgj09aD5ftCpSXIxotRLq6UGAIVWA4chOJ/Lbb6McPQoWC+TnY6qowDx3LoHf/AZh/XpUvx81HCajtBTLRFthYjkVstcbPZbCQkx2O0os9TvS1UX6zJlG/oUqy4TcbjRZxjGolUt2uYi8+irWSy4h5HTiiLWL6YT7+1EDgajDVgx/R0dUgMXEStDpxJKVZYgbORAg4veTNiijJNTdjSYIQ+dENI2gy4WsKNgLCrAMm/Xy/+53mC++GMnnQ3A4UGNhj7bs7BFzI8ZDyjKhvj6UcBjRasWanY35JDNk4f5+NFU1KjhqKITc1YXc2orU1oYaCCC7XNhWrCCjqgocDuQxsl/8nZ0jUtJHoGlRkev3I1gs2HJyiHi9yEePYgkEwGZDPnYMS2kplkFVTTkUil6PsoyyezcrcnJ49ZlnRm0hGjwD4fV6DfG8fPly8vLyktKudjCJFh+jEQ6HjVatnp4erFbrkFatk1WXW1paOHLkSEKzVFRVZfPmzTzyyCPs2LGDBQsWJOR5UqQ4GSkBkiKpOZkA0WcXRFGkqqoKq9XKG2+8weLFiw372HjR1tZGZ2cnZ5111mk9TmdnJ3v27GHhwoWUlpbS3NzMwMAAK1asmDSb3aamJtrb2xMi1E4F3VFLX/CYTCajTSs3NxdJkqivr8disbBixYp/hLMl4Diu/Oxnec/hQLjmGoRwGDEjA8ntxpKbi62gAMXtJvzYY6iShHbWWVgWLcJqsxH4xS9I/8pXjB17TVGQFMVYZEqBAFJPD1o4jGC3I6gqjpPkKwxGcbuR3n0X5cgRwkeOYF28GAoKkNLTEWfMAIsFk9mMJS8vulM/gWtHiUQI9/SgBIOIaWmofj9pM2ZgGmXhLYfDhLu7EQDHtGnRwfU//IH0j38cVZajAYcOx5AB+oDTidluxxpboIcHBkCSjN8JdHZGrXv1ClFbmxFKCESPTdNIG9SOpYRCBN1uxFhr1ZBrQlUJ9fYSfOghHB/7WHSIPXY+fB0dWDIyovMjmoYoCNEk9oEBlGAQzOZoXss4BZ3i8xFpaSFy5AjmcBgtEkEJh9GysxFnzcJSVobQ3g5dXdhXrkRVFGRFwWw2j1iQ6tWptDE+u/SZEUWSMKelYcvKQhBFVEnC19qK8re/YcnKwjJvHtZh4XqqLNPf2grd3Zibmrj9v/6LG//jP076+lRVpbGxkYGBATIzM/F4PFgslgktrCebMyE+hqMoypBWLVmWyc/PNypKw41RWltbaWpqSqj40DSNH/7whzz44IPs2LGD8vLyhDxPihTjISVAUiQ1JxIg/f391NbWGu1L+pfg3//+d+bPnz/ESSoedHR00NLSwqpVq07p/vrsQnNzMytWrDAG/o4dO0Zvby+VlZUJd7oanBReVVWVlO41wx219DmYrKwsKisr4zbEfiI233knv/r731GuvhrL9OnYZ8yIuiV5vdFwurw81FCI0JNPEm5sxHbJJYg+H2RmYv/gB/+xyBxlh1ufJwh0dGBzODBnZUUrIRNYxAUfeQRh3ryoQ9WuXZgDAdRAAFUUUVQV8vIQZszAOn8+9lmzTpiwriNLUlRMtLejqSoWiwVzLDhxNDEjBQKEe3qi7kpPPkn6Jz8Ze4FadJc9FIo6acUscn3t7Thi+SDD27CMditBQA4GiQwMGDMnYY8HRZb/sSiPVT1UVcWck4M5JrwgKvpCPT0okQgmqxV12zbSB7XG6eff395O+owZRPr7kXy+qLVvWhqWtDRMJtOIvJHo02oofX3I7e0o7e0QE1GC2QzFxYQdDsxFRYhmM+b0dKzp6cZj+B9/HMcHPwgmE7KiYDGbR7VHDsYCBIe4cWkaYZ8P2e+POlrp4ijWZiZ1deF/5x00l4u0igrsg1o5dSJ+PwOtrYgHD1Kgabz48MPMnz//pNeEbmUeCoWorq7GarWOWFgrijJkYT0Z788TkQziYziapjEwMGC0ag0MDJCdnW20ank8Hg4fPkx1dXXCLHA1TeNHP/oR9913H6+88goVFRUJeZ4UKcZLygUrRVIz1peH0+lk165dzJ8/n7lz5w75vUQmlk9kIH4wqqqyZ88eent7R8yn6AGHiRYfkUiEhoYGgBFJ4cnEYEet4uJiGhoayMzMJBKJ8PrrrxuOWqPtIsaL//3GN/j4nj2s++IX6ZszB3XjRtIWLkTLzyfc04OvqQlzRgZp11yDZeNG/Fu2YD5+HKmjA2HBAoSCgjEXmYIoYs/PRw0GsWZlIYfD+FtbQVWjC9f8/JNa5tpWryb06KOYN2xAyMuLOm/FUBUF9dgxwgcOEH7iCUL9/dGk9sxMLKWlmObOxTJzJmJ2tiEOZFkGMHblM0pLUWWZcH8//rY2BEHAkpMzxNHKEluwR3w+Qn19CJ2dOAoLEcxmHAUFSIEA/rY27IWFmB0OIx/EcNIymdAGuV/p13y4pwdHbAYi0teHEokYYkTy+Qh7PFhycjDbbIgmU/T9Hg5HB9k1DUtODo60NKSODuRhPfSaqhLxelEkif6WFmw5OaTrIoloy5zc14fs9aL19YHHAz4fgiRFxUZaGmJJCfaVK5FNJhS/P2oSYTIhRiJkDJtZAVADAbRw+KTiA6JOWZa8vGiLVSCA7POhEg2BHNyypvT3E967F9XpRLPbQRTJOPtsrGVlQx5PDocJuFxIR44gtrXxoZUrefQ3vxnX+0ZRFBobG5EkiZqaGkNYmEwmCgoKKCgoYPHixcbC+vjx4+zdu5ecnByjOjLZDlm6+CgpKWH+/PlJIT4gem1nZWWRlZXF/PnzCYVCRqvWkSNH0DSNoqKiIdXveKJpGvfddx8//elPeemll1LiI0VSkKqApEhqFEUxFkcwtIowPC9DZ+fOnRQVFcXd1aO7u5v9+/dzwQUXTOh+kUiE+vp6FEWhurp6yOyCpml0dXWxZ88eiouLKS4uJi8vL+5fQH6/n/r6erKysli6dGlSJPyeDKfTyZ49e1i0aBEzZ84c1VErJyfHGGJPhCNPKBRi/ec/z9sHD2K58EIyr7vOcMMK9/VFHa8sFoS0NAiHUQ8eJPCnP2FbtAjzkiVYzzsP0xjtFEo4TLi9nbTSUiC2OB4YQO7vB1nG5HBgzc8f0zbXf+edWP7jP1D6+nCcaIZH01BkmWB/P8rhwyhHjiA4nQiKgjkzE9VsBrMZc2YmstmMUFCAbdo0xKwsxOxsRJsNRZKIeL2oMctfa27uENct/89/jvVjHyPS24ugadiLihCtVjRFIdDVFQ1FzM9HCgYJdnZicTiIBINomobVbiccCGBzOIz5k7TYnIccDpNeXBytzDidYDZjz89HVhRMoog8MIAcm4OwxkSJ8bfbswetqwtLRQWS14sciSAoCoIsI4RCRI4fx6JpEAqBqoKigKoiOByI2dnRKlJBAeTmIggCaiSCEgiALIMoIjocWDMyMJnN0dapvr4hLWI6wfffj84SzZ17QvGhhMMEenowxWyKRbsdW2am8ffXIhHChw6hHD2KIIpYVqzAVFhIf20tNq8Xx6BgQlWWCfb0EOnuRt23D4em8e2bb2bTZz879nUy+FgUhYaGBhRFoaqqatxVjWAwaCyse3t7SUtLM8RIdsyZLFH4fD5qa2uTTnyciI6ODvbv38/cuXMJhUK43W7DlCReFSVN03jggQe47bbb2L59+ylX8FOkiDcpAZIiqRksQAZXEaqrq8d0CKmvrycnJyfuzh4ej4fGxkYuuuiicd9Ht4DMyMigoqJiSJ+67nQlyzL9/f2GO5QsyxQUFBi7/KcrFvTjLikpSZqWhJNx/Phxjhw5wvLly8ec5QmFQoYY6evrIyMjwxhiT09Pj+vrvONXv+KOv/4VNS2NtGuvxb5ypfGziM+H5HYT9nqxz5iBWFuLMjCAZeZMpLfeQgNMS5diXbXKcNDS8R89Stow5ygg2nbj96N4vWiShACI6elYc3KMBWnwkUcQy8qQbTbSYyJmPGiqiixJRHw+FL8/uvDWNCyahtTSgtVkgr4+VK8XzeeLLs5Npug/sxkVUCwWSE9HyMnBXFiI+uKLpF13HYLZjKIohPv6EFUVa0EBZrudYE8P4d5eTDYbmM0IqkpGSQm+tjYyZs0i0N5OWkkJ/tZWbEVFhLq7kUIhrFYrgsWCGg5jKyhAtFoJe70oPT1okQgmiwWzyYQmSRAKRSsNwSBSXx/SkSMQiUTdpszm6KyHxYKQmYmQm4sEpC9ejGmUNkRNVZH8fpRgEFWWoy1oFguiw4EpFnwoCILx34jPhypJI9y5AAYefhjrpZditdlGXJO66FSCQcKBANbMTOzZ2cbsjaaqSO3tSPv2QTCIed48LLFsI01V6T9wAHHvXtJXr47epigEe3qiLYB796K0t7Nk0SL+8pOfjKvlCqJtrw0NDWiaRlVV1SnPWw2f6xJF0Wg5inc46VQUH52dnezfv58VK1aQHxPcmqbR399viDifz0d2drYh4ibaMqtpGg899BDf/OY3efbZZye8eZYiRSJJCZAUSY2qqkiSRDgcpr6+3vhSPJED0q5du0hLS6NsWDvC6eL1etm5cyeXXHLJuH6/t7eX+vp6SkpKWLRo0ZAvxbGGzfUvILfbjdPpJBQKnVaIX2dnJ/v27TOqCMmOnrDc2dlJVVXVuIcxx3LUiufO6zvvv88n7riDHlXFkp1N2g03YI5VHmRJQgqHCR0/jtlkQn30UeyXX46tvDx6De/cifzeeyAIiMuWYVu1CjEjI7r47OvDMcw9a8R5UZSoYPD5DEGCLKO+9BLChRdOyIYXYqF0khQNMCS6WJT8fiIuF1aHA0HTEMxmTA4HloyMIVUYVVVRe3pQ3e6oU1dnJ+F338Uca2UyWa0IsedQgkFUSQLAlJGBGg4bMyAIQtTe1m5HDgYR7XZUWY7eV1UxWSzR+Qx9UFwQos5UdjvmrCxMdjuCzYZmNqMAmiii2e0Idjvm3Fzkd98l/SMfwTRGZcxw3rJakQIB5EAgeqyxsESTzRZNJB8l10EPP1RVNRp+6PFgcjhG2PSGOzqIvPUWGatXG9egHAwixQQLJhMmhwNBFFGCQWPORe7rI7J7N2p3N6aCAmxVVYjD2pkGjh9HffttMj/yETSiFTlFURC6uogcPIhFUfj+V7/KzZ/5zLivC1mWDVOPysrKuIkEVVXp6+szxEg4HDYsfgsLC08rO2Mqig+9urtixQoKRqma6ehVEbfbjcfjwW63G5WRnJycE1bKNU3j4Ycf5qtf/SpPPfUUF198cSJeSooUp0xKgKRIalRVpbe3l7q6OrKzs1m+fPlJvxT37t2L2Wxm0aJFcT0Wn8/H22+/zYc//OGT/m57e7ux8B/eCjZ48XIypyufzzcixE/f5T/Rl7amaRw7doyjR49SUVFxwi+5ZEFRFPbs2YPP56OqquqU+8cVRTF2EEdz1Dqd9jafz8d/fOc7vNTVhSBJmBcswLJhA2JaGmazGVWW8Tc3I2ZmEr7rLizXXIN1+nRs+fkgilEx8t57UTFiMiFWVCBPn07a7NlDrGtPhqaqRHw+AnfdhXb55VgdDkxWK6IuGE7Q46+pKpIsY4rNTxi3axr+48exTZuGpmlRq9ZwOFpVkGXQNARRRLTZMKenRy1zY9du4MEHsa1di2qxIA0MRJ2+AGJD8WaHAyUQwGSxoAkCWiSCZjJF/38kAkRnV0xWK6qmIchytOJgsaAEAkiyjCbLZJWWokUiSDH7YQQBwWTCFJtHEQft1vv/8hfSr7hiyOtWQiHkUAgtEiHi90fva7VGX5Pdjtlun/ACVtU0/G1t2AoLo/NboogoCKiaRuDpp7FXVqLG5lQQBESrFXN6OhabLXr+NI2B1lasqopy9CjawACC2Yy1shLzGEYavrY2lPfew7xoEdhsaIIAbW1oXV3IgQAr589n629+M6GBZt1pzmw2s2LFioS1aeqtlPr7U8/OGLzLP96/gS4+Zs6cybx586aU+KioqJiQU6Msy/T29hqD7KqqDqkoDd+c2rJlCzfffDNbtmxhzZo18X4ZKVKcNikBkiKp6e7u5t1332XOnDnj3t06cOAAqqqyZMmSuB5LMBjktddeY/Wg3czhDA5ErKysHLLw1zTNqHzAxIfNg8GgIUa8Xi9ZWVmGGBm8WNfD+np6eqiqqkpYkm48iUQiNDY2omkalZWVcRsuH+yopTv2xKO97e/vvst13/8+vXPmYPZ4MM+ejW3dOkz5+VEr2uZmrBYLkUcewfTJT6IODETbnHJzsebkgCBExcjbbyO99x5SIID9gguwLl2KaQKLktD27SiAOGcOloIC5GAQNRhEk+XoPIMgINpsmNLTjZkNaYz8CQD/8eOGM9XwXX5RFEFVkUMh1FAouoOvqqBpSC+8gLhoEdaSkmiFwm5HMJnwHjsWdXRSVVBVNKLzCcT+q2kaosmEFnscXdCYLBYEUUQzmRAFASUSQYlEMFssmNPTo4LD4Rj6/tE0lEgEVZJQIxFCf/kL5ksvjf6OIKDFFv+i1YrJakXq68OcmRkVAqeBKkmEPB7SCgqi+Sk+H0oohBIIoO7Yge0jH8HscEQrS4PErxxrEws3N0fT6UtKsCxZgvkkosHf2Unotdcwz5qFZeZMtOPH0Vwu1OxsHF1d3HPrrXzsox+d0GuQJIna2lpsNhsVFRWTOiMWiUQMMdLT04PNZjPEyIl2+X0+Hzt37mTWrFnjbi8707hcLnbv3j1h8TGcwZVyt9uN3+/nmWeeIT8/n6uuuoojR47w6U9/mocffpj169fH8RWkSBE/UgIkRVKj9/lPxFL38OHDhEIhI9gvXkQiEV555RU+/OEPj/oFre/gezweampqhiz89XkP3UXrdJ2uwuGwMTPS29tLeno6RUVF5OXlceTIESRJSkhYXyIIBoPU1dWRkZHBsmXLErrz2t/fb4g4PelZb9WaiOjp6+ujrq6OB594ghddLsTVq1HfegscDiyXXYZ55kz8R49iaW9HOXCAtBtuQJNlwl4vamzuQrTbsebnY7LbCXk8RN54A3NHR7Ti4HAgLlqEZelSzDEHqNFQVZXA3XfD2rVkzJo1MlRPVZGCQZTYP1VRMMVyL4DoTITFgslmw2S3E+zqIn2UbBJDjGhadB4lFuKnX8PB115DM5sxl5WhRiLRf5KEFAhgS0sDXXxLUtSlS1HQVBVVUUCSouLDYkE0mRBiNrgIQtTi1mTCYrWiyjJKKITFbo8KlkHvIS32X8FsNu4jPfwwWddeO2YeSqC9HUdx8ZhD4SdCiUSiQiwSIdzfH50L0Z/basVksyG/9hrmuXMRCwqiLWeShNzainr8OEIohGCzIc6bR8RuJ2sceTCRgQEC3d0o772Hbd48RL8ftbsbbeZMhI4OLpg9m7/++tcTbmeKRCLU1taSlpbG8uXLz2imh6Ioxi6/PpA92i7/VBQfbrebXbt2sXz5csOCPV4Eg0F+9atf8dRTT1FbW4umaaxfv55bbrmFc889d0qYjqT41yMlQFIkNZqmEYm1aIyX5uZm+vv7qaysjOuxyLLMyy+/zMUXXzxisRqJRKirq0PTNKqrq4csAvSqh/5Wi/cXvCRJdHd309nZSU9PD6IoMnPmTKZNmzZqongy0d/fT319PcXFxSPmZBKNz+czRNzAwMC4HbVcLhd79uxhwYIFzJo1i0OHDrH285+nd9ky0q+4AumZZ1AGBjBdcAFSbi6WpiY0t5u0j3/8Hw+iaUT8fuT+fqNdSQqHSZs2DUtWFmokgrRrF8quXWh+f1SQLFiAZdkyTMXFQ85T4P770c4+G1NWFvYxFja62cFgFyZNVaOVBUlCiwmGiM+HqGmYbDaE2PVqfEXEWrD0aoKmadHbBCHaOtTWhrWm5h/3ieVXWGPnUhAENECOVTM0TUNTVTTdMjsmKIyFvKYZLVImmy06H2Iy4cjNPWmuidzbS+SFF0i7/PIxf8ff1kb6KLM3mqKgxFq+FElCk6R/zKbox2k2I1qt0fkPn4+MmG2wHKvqmFSVwJYtWM8+G/nIEbTeXjRVRSgpwbRgQXTug+gcSlpREaYxZrsiMZcvVdOIhEIIjY2IoRBmiwVt/nxUr5fC7m62/vznLBsl/+NkhMNhwyRjcJZSMjDaLn9ubi5ZWVm0tbUxe/bsKSM+uru7aWxsZNmyZXHPpxrMK6+8wjXXXMN//ud/0t/fz7PPPgvAZZddxhVXXMHGjRsTFuKaIsVESQmQFEnNqQiQ48eP093dTU1sMRTPY3nhhRe46KKLhlQW9D7k0WZU9MqHoigJSzaHfyzkdfvGwfMPepvWyYYWJ5vu7m527drFvHnzKC0tPaNCSa+06cOeYzlqtbW1cejQIZYuXTpiIfGD//s/fvrssyiXXUb6hRcivfQS0oEDKKWlWDQNwWYjbYx2CFWWifT3E+zqimZxxBa4powMLBkZUeeqXbuQGxvRBgaigqSsDPPSpQgWC+GnnkI77zzSpk0bMf+hxCoOZovlpOdYU1UCLS1jDrVrg6oXELu+NQ3F40F66SXsl102pDri7+yMOjrJslG1UCQJLfYYGkSFTiwTRBchqiwjmkyY7XZEux1BFAl1d2PJyECAaAVn0FeXLnggmrMiHTuG1tqKdcUKRvuCUyIRVE3Dqm8UxMSR/vxCrBKD2RwNOrRaR62U+NvbsRcWYjKbCff1IXd2InR2Ej56FDEcxjp7NpbycszD2m1UVcXX3m7kmQiCgCkm7qRY6KAGmBwOzGlpBJqakHftwhSJYK6oQBFFzPv2semjH+VbX/3qKb2vQ6GQ8bm1JOaslcwEg0FaW1tpaWlB0zQyMjKMVq1k3mjp6emhsbGR8vJypp/ILvs0eeONN7j66qu59957+fd///foxoCi8M477/DMM8/wzjvv8Morr5zS3zkYDLJp0ya2bdtGZ2fnmL/3zDPP8MMf/pA9e/ZQWFjIv/3bv/Gtb31r1A2d3/3ud9xzzz00NTUxc+ZMbrrpJr785S8n/XWYIn6kBEiKpOZUBEhbWxsdHR2cffbZcT+eF198kfPPP9+wQ+zp6aG+vp7Zs2ezYMGCcTldxRu3283u3btHLOSHJ4prmmYMY+fl5Z3Rsnx7ezsHDhxg6dKlTIvtHicLkiQZlRHdUauwsBBZlunq6qKqqorc3NxR7yvLMjd8+ctsb2lB/OhHSV++nPB77xHcvh3V48Gxdi1pq1eP+dyqouA/ehTHjBnRCkUggBIMGla5os0WXZBbrXD4MMquXah9fYSPHsV6zjnI6elkVFZiig1E6zvyZrN53NdfoKsLi92OZQyb6+HolrXB3/4W80c+Ep3tiA1jC2Yzst+PPZYcr8byTZRAANHhiOaKCAKiwxEVM8EgWmzWxORwIPt80WqJqmKy2aLD9mlpWNLTRw9rjFVVgq+8gmXmTMyxCofx2mPp4f62NtJLSk7pPalpGkpvL6EjR1Da2jArCko4jGC1Yp45E9OMGURef52ME/Te+zs7sWRlYbHbozbOgUC0HU0Qom5amZmIikKwsZHwoUNofX2IS5ZgKS1FaG1lucXCn++555QXtMFgkNraWnJzc1myZEnSLt4HMzAwQG1tLbNnz2bWrFmGxW93dzeiKBpi5Ex/tg2mt7eXhoaGhIuPd955h40bN3LHHXdw0003xfXveejQIT72sY+xa9cuiouL6erqGvX3HnzwQW688UauvfZa1q5dS3NzMz/5yU8466yzeO6554ZUXr7zne9w++2389nPfpbzzz+fxsZG7rvvPq699lp++9vfxu3YUyQ3KQGSIukJh8MT+v3Ozk6OHTvGueeeG/dj+dvf/sZZZ51ltAHs37+f8vLyERa3E3G6Oh1aW1s5fPjwqDvyg9E0Da/Xa4iRSCQyZBh7ssryepBkS0sLK1asIC8vb1Ke91TRHbWampoIBAJYLBaKi4uNhc5Yu3Uul4uNmzax127HvGYN9lmzCB88SPA3v8FcUoL9oouwVleP6lalyjKBY8dwlJREczN0NC06zxEOR1umIpFo9UDTiBw8iNrQEA3OczoRFQUsFrBaMU+bhmnOnOjiuKDg5FUQTcN/7Bhp06dH5zVi7VnIcrT6MahlCoiG8tlsRP7yFzKuvz7aThSz+Q339CAHAiiahkkQsGZmogQC2IuLCTmdOKZNI+RyYS8qIux2g92OGgphzc4m0tODYLFEF/c2G2JMzBPL9NAH4EWrFXPMBYvY38P/l7/gWLdu1L9PoKMDc1YW1nG4rGmKgtzTg9zWhtrREQ0tlCRUqxU5K4us6mrUtDQEQTDeQ/4XXsBWVjaqg5UqSfidzmhFymqN2v3a7VjS0jBZLKiKQri5GengQRS/HzkrC6GzE/tZZ2FOSyP74EG+8+//zr9dc81Jj30sgsEgO3fuJD8/n/Ly8iknPubNmzfkZ6NZ/A4O8jsdi9/TwePxUF9fz+LFi5lxEpvt06G2tpYrrriC2267jU2bNsX179nX18ecOXOYM2cOy5Yt4+WXXx5VgHR2drJgwQK++MUvcscddxi319XVce6553LPPffw+c9/HoDGxkaqq6v5+c9/zk033WT87rZt27jiiit47rnnWLt2bdxeQ4rkJSVAUiQ9ExUgLpeLQ4cO8YEPfCDux/Lqq6+yYsUK3G43bW1tVFZWGiFScPpOV+NlcF5GZWXlhOw2NU0bYu/r9/uHZI3Ey4FqOLo7V29vL1VVVWQMy0xIRhRFYffu3QQCASorKwkGg0Z1ZLCjVn5+/qgi7p133+XGu++mfeFCxIoKMJuJPPssQnMz1unTIS0NU00NtspKI2EdTiBCToDvrruwfOIThP1+tHAYc0ZGtDWpqwu5uRk6O6PzJLFBaSEvD6GkBLGoCGFYVoqqaUg+H/bcXESLJTrzEBu0NpnNow52+3/xC9Kuu45wTw9KKAQWS3Shn56OEongb2tDBUyCgCpJmBwO7NnZhL1eHEVF+NrasObkEPF4ADDbbKiCgKiq0TYnux0lEiEyMIAaDIKmYUpLiya1h8Oo4TBCrAISefzxaDuY1Yop5sqFIBByu0EUsQ+qYGmyjNLXh+z1ovX1Rec1fL6o9bAsR9PgZ8/GMm8eYuwYAk4nGdOnIyvKEPEhd3cTfuUVbJdcghwMRoVirLKhAVIggCUzE0dubvQ8xpBcLiJ796J5PKh5eSgzZ6J1dyMePYq1qgrboUNUT5vG/95yC6WlpaecbRMIBKitraWwsHDSZ65OlROJj+HE0+L3dNBNKhYuXJjQ/KVdu3Zx2WWX8c1vfpP//u//Tshre+KJJ1i7di133HEHv/rVr0YVIHfccQd33nknbW1tI8IS//M//5P33nuPPXv2AHDTTTexY8cO9u/fP+J4L774YtLS0ti2bVvcX0eK5CMlQFIkPZHYwOp46enpYc+ePXzwgx+M+7G89tpr2O12wuEw1dXVQxbR8Xa6Got45WXo6F/YLpeL/v5+Yxi7qKgobi5asiyza9cuwuHwlHHnkiRpSCL0YJ/9wY5abrebYDA4pqOWqqr88g9/4N4dO/DU1KCUlBB++21MTU1k3XQT0nvvoRw4AOnpUTGyYkU0/VuWCRw/jq2gAMs4rJSlAweQ6uqwrFtHyOnEarFgG8PqU1VV1I4OpCNH0NraogvumHsUJhNYrWjp6ciCgH3ePEw5OYhZWYgZGSOuaTkYRPJ6CT34IJaNG7Hk5Q0J5At2dUVTwouLMVmt0ZTzSATRZkPq7wfAZLUiB4PYMjOxZGQQ8Xqx2O1Yc3JQZZmg242gqjiKigyhpmehyD4fKEo0BNHhwJyeTvAPf8C+cSNSKITq9SJ7PChuN5rXixgIRJ23FCX6TxQR09MRcnMxFxQgFhVBRka0yhL9YxtzJJqiEOrtxZqREd1k0CucRJ24Ii+9hLmyElN2drQyY7NhtlrRFAV/ZyfWvDxjKF8JBgnv3Yvc0oImiojl5WgOB4qiYD5+HJxOcrOyWF1Rwfe//nUkScLlcp1yy5Hf76e2tpZp06aNaBdNVnTxUVpayty5cyd8f90t0O1209vbO26L39PB6/VSV1dHWVkZs2bNivvj6+zbt4+1a9fypS99ie985zsJ/3t+73vfG1OAfOQjHyEtLY0nn3xyxM8ef/xxrrrqKjo7O5k2bRoLFy7ksssu45577hnxu3fffTff/va38fv9U+L6THF6pOwQUvzTYTabjQpEPAmHw4TDYURRZNWqVUMWmYl2uhp8DA0NDYiiyFlnnRWXakV6ejrp6enMmTNnyDD2oUOHyMzMHDKMfarHXF9fj8Vi4ayzzpoSLiyhUIi6ujrDmnT4Ak8QBLKzs8nOzmbBggX4/X5cLpfRlpeTk2PM2zgcDr7w7//Ojdddx08ffJA/Pv00PUuW4C8txXPnnVg2bsT60Y9iTk9HffddAq+9BllZmM8+m7TycoJOJ4rPh/0kPeTmRYsIPvMMZr+fzJISAp2dhLu7sY0SQimKIuLMmZjH2J1VQyHU7m4ibW0E6+qwAGI4jBoKRbM8JAk1Zp0rZGRgKiyMzqd0dUEoRMRkQo4FBlpyc7FlZYHPRygUQgoGSZ85E8Fsxu/3Y87Pj1ZWwmFUrxeTzUbatGn4OzpQw2Esdjs2sxlpYID++noEWcZisyFEIqihEGIohBoOowaDSJEI6sAAitOJ9NBDUcvgzEw0kwlLURGOlSsRCwsRrdZotTI2VK//Y9DnhqpvesQWQko4jOTzYS0oAFHEZrFEjyP28/CBA4hFRTiGOTPJwSCh2N9B6+tj4P33Ubq6QJYRFi7EetFFmB0OIl4vqteL+P77OBSFj69dyw9uvXXIBkNxcbHRcuRyuThw4ACSJA1pORrtM0E3ypgxYwZlZWVTYnF3uuIDwGazMXPmTGbOnImiKMbcyO7du4dY/MarDVUXH/Pnz0+o+Dh06BBXXHEFN95446SIj5PR3t7OpZdeOurP5syZA0RnM6dNm0Z7ezulpaVj/m4wGKSnp2dKhOemOD2SfyWQIsUEMZlMcRcg+pehyWRi3rx5I8THZMx7+Hw+6uvrycnJYcmSJQkZtLTb7cyePZvZs2cbAWEul4vm5mYcDochRjIzM8f1OvVj1oddp4LDic/no66ujoKCAhYvXjyuY05PT2fu3LnMnTuXUChknLfDhw8PcdS65aab+O/Pf56nn3+e27ds4fjSpfifeYbgsmVYzzkHYcGC6D+zGaW+HvnllyE7G2nOHKTeXjIWLx51+FrTNGRZxrZhA9ILL2C95hrSZswg6HIRaG0lbebMMfMwRkO02xFnzsQ0bRqmhQsJOp0gCFgcDkSrFVtGRnSGQhBQfT4Ul4tQayvSoUNoBQVIPT0IohgNC2xtJSLLqOEwkteLNSuLoKKgyTIRjwctOzsaRgjRRXhmZnS+AwiEw1jS0zFnZYHNhtVqRRYEwl4vpvR07CUlCFlZiGlpUWcwUST4979HB9YXLiTY00PI44m6aQkCYU1DcLsRLJZohcLhiM5inOTcRLxeZEkia9YslNj7fPD7T/H7kd5/n7QNG0DTopklkQght5tIczNidzdSOIyQmYl58WIyVq3CHEtCD3s8hLq70fbvx9rSwqeuuorbvv71MauEoiiSl5dHXl4eixYtMtopW1pa2LdvH9nZ2UYlLi0tzfjsmjVr1pRJC+/v76euru60xMdwBjsC6jNxbreb5uZm9uzZQ15eniFGTmTDfbJjnjdvHrPHcJGLB83NzVx++eVcd911/OAHP5gSf09gQsc5VV5TitMjJUBS/NMhiqJRjYjHB5nb7aaxsZE5c+bQ09MzpB1sspyuent7aWxsNIK3JuMD2mq1UlJSQklJCbIs093djcvlYufOnVgsFoqKiiguLh6zH93j8dDQ0DCpx3y69PX1Ga5mp7pYs9vtzJo1i1mzZhmOWm63m6NHj2Kz2SgqKuLCc8/lijVr2LNnD9/41a949513CB88iP1jH8M+fz4Rnw9t5UpYsQI1EEDdvRv17bfpDYWwlJRgrazEsngxppycqAuVLGMymbAsWID82mtITU1YyspwFBUh+Xz4jh3DMX06ptEWtZqGGomghMPRsMJYlcPIu7DbSS8tjWaT9PZGW6MGVcPEjAzEWEtS6O9/R1i2jMyCgiHZFpos42trI2fWLASTCU3TkCIRcLnIGFSFCTid2LKzo7kfmoaqKAQ6O9HS07FlZw95j0nBIJHeXoRIBFtWVtTGFlDb2rBcdBGB9nawWMgZ9nfUVNXIIgn396PFMj50G9/B729BFKOBg6qKNS0Nv9P5j2OIGQCoqor08stYli8n0NmJ0t2N2tKC0tuLaLViLy/Hcf75iMNmeZRwmEBnJ2pbG7YjR/jkpZdy+9atE6pqCoJAZmYmmZmZzJ8/3xC/brebw4cPG+2iM2bM+JcWH8MRBIGcnBxycnJYsGABgUAAt9uN0+nk4MGDQyx+x7PZMjAwQF1dHXPnzh1zdz8etLS0sG7dOq688kruuuuupNnQKSkp4fjx46P+7NixY8bvjOd3HQ5H0puTpIgPKQGSIukR9NCzcaKX0lVVPe0qQUtLCwcPHmTp0qXMmDEDr9drzHhMltNVR0cH+/fvZ/HixcaH+GRjNpuZNm0a06ZNM9KKXS4XDQ0NCIJAYWEhxcXF5ObmIooiXV1d7Nu3L+FDmPFEDxiM5zFbLBZmzJjBjBkzjBaQ4eftD7fdhizLfP1HP+Lpn/+c8KpVpK9ZQ9og5xxt0SLkUAg5GCTY2Umkvh7Tyy+DqqKlpyPOn48pNquhXXIJ/t/8Bst11xnVEkEU6W9uRjSbMccC9Ij903ShYbEgpqdjy88f3eLW4cCalUWouxvf8eNYMjOx5eYih8OEXS40hwOzLJM2rFVMk2X8bW2kzZgRFR8xwaQGApiHtfVZsrMJ9/aSNmMGoiAgiiKZs2bh7+wk3NuLOScnmgMiipjtdiwlJSiSRLi3Fy0SwZSeTsTphL4+bAUF0erGMARRjNoMn2QOSfL7CXZ3Y8nNxWSzoSgKNpMJk8lknD9N0wi9+y4mTUNoakKTJESHA2HBAjLnzRv1+aVgkOChQ8gHDpDm83Hd6tXc8dBDcWmnHCx+e3p6aGhoIC0tja6uLlwu1xAb7mRZvA6mv7+f2tpa5s6da7TuTAZpaWmUlpZSWlpqBLu63W5aWlowmUyGGMnNzR3xnaK3t5WWlib0mDs7O1m3bh0f+chHuO+++5Lq73fxxRdz5513EggERswkbtu2bYjd+sUXX8z27dtH3SDctm0bF1988ZQQyilOn9QQeoqkR5IkY9E/HhRF4aWXXho1sXy8aJrGgQMH6OjooKqqytiRaWhoICsrizlz5kyK05VuWVtRUTHEbStZGNyPrjtDORwO/H5/wlN/44keMLhs2TKKxkgTjyejnbeCggKysrL41u2382xdHeqcOdgvuQTHsmUjQvCkYJBQRweC1Yo9JwelsRF53z7UUAjS01FFEdFqJX3Dhn/cSRCirUR9fdgKC7Gc4kwPxJzU2tqiA+BAekkJ1sxM/A88QPonP/mP34uJD8eMGZisViOR3WwyEerqwlZYOCIF3NfSQsasWUPbojSNYHc3yDL22ByEqqrRRQwg9fWhBoPIkQjqc89hX7MGa25u1P1qoq9NVaMtZ6KIo6AgGg4oSZhEEa2vD6mzE7W9HQIB5N5eVL+f9A99CKZPJ9LTgzkzE3tW1oi2rrDLRXDnTpS2NjI0jf/6zGf42he/mJCFpF59nD9/PrNnzzYygfTqiD43ottwW8ZIYp9MzpT4OBFjnTe9VSsSiVBbW8vMmTMTmsrudDpZu3YtZ599Nr/73e/OSM7J4CF03Z5c/3zXbXi/9KUvcfvttxv3aWho4JxzzuGnP/2pYbmr2/D+4he/4HOf+5zxu8899xzr1q3j+eefZ82aNZP74lKcEVICJEXSM1EBoieWf/CDHzylXl7dscnn81FTUzNk+HrXrl3Y7XajNSBR4kNVVfbt24fH45kylrWqqrJnzx7cbjcWiwVJkoZkjSTDImc4g0VeZWXlmAGDiT6G/v5+Y24kGAySk5PDHx9/nN8/9RRydjbWxYuxX3opltmzEUQRVVGQFQXV50Pu7Y06ZcWCA9VIBKmujuBTTyGkpWEuKACbDXH69Ohcx/TpRIJBCIWwT5+OOIG/iypJhN1uVElCzMiIih99liMcRvrLX7D/279hy86GWOCfIT5ix2w2mxFFEX9LC+mjDOoGe3owWSxYRwlCDPf1IQ8MYMvPR+rvj2aiiCKm9HTMaWlI+/Yh9vRgqawk0t+PFg4jmM3YcnOjiewn/kMQ7O5GCYexZmfDwAByeztyeztiLAfFlJWFOHMmlnnzUPr7Cf/tb9jXrSPS24sGOAoKEAcNM6uRCMHduwnv3o3a28uM6dPZ9KlPcfOnP52wHWw9/G6sSp6maQwMDBiLap/PN8I0YbJJRvExHN2+fLDFr97KVV5efsomHSeju7ubyy67jKVLl/LnP//5jJl4DBYgN954I7/97W95/fXXOf/884F/BBF+8pOfZPXq1Rw7doy7776bc845h23btg0RTZs3b+b222/nc5/7HOeddx67du3i3nvv5ZOf/CS//vWvz8jrSzH5pARIiqRHluUJD5W/9NJLnHvuuRNeuOvuR2azmcrKyhHD5roomD17NkVFRQlZVEuSRGNjI7IsU1lZOSUsa4dbA+tVEH2H3+fzDbGpPVPhYINRVZUDBw7Q3d09wlL5TKKfN7fbTV9fH8+99hp/2bGDQCiEqaAgOvuxahX2WOq9vmOvBYPRtqPY61BVlcDdd2O/5hrErCyUlhaUI0dQOzvRJAlVFJFlGaGwEOuiRdjmzsU0yjnQFIWIx4Ps9yOYzVjy8rCMsUj1/+EPaJWVaGYzUjCIJTbojdWKYLVidTiiA+eyTNDlGtGuBdEKRKC9nfRZs1AlKTqbEgpFZ1NiMxdyOIyjqChaadDvB/gfeQTrRRdF3bliLVxqJIKkz3poGqLdjjUrC9FiQZNl5L4+Qq2tKF1dCD5ftC9ZUSAnB2bMwDZ//ohKiuzxEHj6acRVqwyBo/+OGg4TaWkhvGsXSkcHdkHgmg0b+OYXv5jwFsqenh4aGxtZtGjRuJ9Lz7Zxu914PB7S09ONlqOsrKyEt8PozlHJLD6GEwgEeP/99435kN7eXux2u3HesmPzSqeLx+Ph8ssvZ86cOTz66KNndBNnsAD53ve+x3333cdrr73GsmXLjN955pln+OEPf8iePXsoLCzk+uuv51vf+tao32G/+93v+MlPfkJTUxOzZs3i85//PJs2bUqq1rIUiSUlQFIkPaciQF555RVqamrIzs4e9330XbiCggKWLl065INQX/gEg0E6OjqMnUN9UV1UVBSXHu5gMEh9fT0Oh4Ply5dPCcvaSCRCQ0MDwAjRphMMBg0x4vV6DaeeM7XjOjhgsLq6OmlF3mBHrbf+/nd+8+yztPT0IAsC1pISzGVlWM46C3NJCZqqEnK7UQMBrNnZWHNzUf1+/L/6Fen/+Z+Io5xnNRIh0tREeNcu1M5OTGYzpsxMFE1DNZkgMxMhNxdTYSG24mLMublDAhOHE37vPSSPB2bNIq2kBEEUiQQCSMEgoiyjKUq0ZSoQQDCZMOuZHsP6wcPBIBabDdFqjQYhWq1Y7HajuqDKMoGuLixpadhiVStN0wj8/vekf+xjQPRvrPj9yH19aF4veDyoXi9qLKhRC4VQZTnqnlVQgGP+fKzz5iFaLEarmMVsHtH+Funqwv/kk5gvuADHjBmIFguRjg4i+/ejuFyovb1YZJmK8nLu/eEPqaioOK1rYLx0d3eza9cuysvLmX4Sy+axGDz/0NPTM2T+IRFzI7r4mDdvXkKHt+NJIBBg586dQ/JUBlv8ut1uAMPid6yQ0pPR39/PFVdcQWFhIU888URSbNqkSBFPUgIkRdJzKgLktddeY/ny5eN203C5XDQ2NjJv3rwRbjFjOV0FAgFjUR2PAD+v10tDQwPFxcVTJqU4GAxSV1dHRkYGy5YtG1dvsh4O5nK56O3tHWJTOxlJxZIkUV9fjyAIVFZWJmVr2HBUVaWxsZGBgQHS0tLY8vjjPPzyywRsNsKqipCZiZiTg6WsDPPSpcjp6aj9/ZjtdkzhMKGnniL9hhsQh12Xmqoi+/0ogQBKMIgUqzJoqkpaeno0Y6O7O5oQ3t8fDSyEfwQWmkxgNkeT1HNzkcJh5IYGMi6/HNFiQSEa0Gex2xEsluhi3mw2rIHH+ltLoRBSby+O4uKoWIhEUMPh6P+O/SMcJtLTg+rzYbHbo4GDTU1YZ80CWUZT1Wh7WVYWQk4OQn4+Wn5+1FUsHEa0WLBmZ0edriKR6HNEImiqiqooUVetQWGEqqoiHT+O2tCAZdWqqKBpb4dwGE1RsAkCKxYs4H9uvJEPXnjhpO7kulwudu/ePWTY93TR5x/0apwsy0NyM073fTMVxUcwGGTnzp0UFRWxcOHCUa/fwRa/brebQCBgWPwWFhaO67vB5/OxYcMG0tLSeOaZZ87IJk2KFIkmJUBSJD2nIkDefPNNFi1aROEYSdA6mqZx/PhxDh8+zLJly0bsHI7X6UoP8HO5XPT19ZGVlWUsqseTVK47MOlDo1NBfMRDMOk2tS6Xi56eHux2u3HeEtH+cbKAwWRElmWjJa+qqgqr1WrsuDqdTrY9/zxb3n6bllCIcHY2oqJEhYLNhlpUBHPmREPvduzAumEDYqxXXRMEEEVMNhui3Y451h4FMQHQ14cWCkUX6vn5mMbYgVUjERSnk8DBgwjBIPK77+JYvhxFktBkGVHTEFQVTVUhlv8h+XzRGQ/djQv+8b9VFTSNSF8flowMhFj7lmC1olmtCDYbgsOBYLcjOByoZjMRvx911y7Szj8f67D3vKYo0eH7QAAEAVNGBua0tKjQIhbKGGvXUlQVRVGMyocaiRDq7UUJBJAPHULbswfr9OkIZjPk5OCQJKYD13/4w3zmhhvOSCXN6XSyZ88eli9fnjADBX1uRBcjfr+f3NxcY1E90QXyVBQfoVCInTt3UlBQMKHPO7/fb1SV+vr6TmrxGwgEuOqqqwB49tlnk6Y1NEWKeJMSICmSHkVRkGV5Qvd5++23mTt37gl3A/UZgK6uLqqrq8nJyTF+pmmaUfmAiQ2bRyIRQ4wM3+Ef7cukpaWFpqamSXNgigd6mnA8BZPurOJyueju7sZsNhuDsTk5Oae9ozw4YLC8vHxKiLxIJEJdXR1Wq5WKiopRWzl0R62uri6efOYZnqytxWW1ElqyBDE3F2XvXuSuLiS/H7W3F/Pq1aQtWYJ1nK5qUjAYFSOSBJqGyeHAmp2NGGu1C/f2IvX3Yy8uxmy343/wQSyXXYaQlobFbB7pBtXdDWZzdFD9RK/d70fp78cxjh19TVHo//WvMV14YXSAXBSRfT40RQGTCXN6OtaMjKHtVDEBoioKauz9DiCEQoSam1FaW9G83mjiuseDuagoOivj8ZAdCvGBhQu59QtfSGji9cno7Oxk3759VFRUnHSzJZ6MNjeiz3edLDdjcFp4IgP74okuPvLy8k7rsyMSiRitWvpnnMfjQZZlLrvsMgRB4JprrsHv97N9+3ayRjFiSJHin4WUAEmR9JyKAHnvvfeMEL3RkGWZhoYGQqEQ1dXVQ6oUg5PN4fScrobv8A9OE8/IyODQoUM4nU4qKysnNK9yJtEta5csWRK3do/hqKpqZI243W40TTPESH5+/oTFiG5LqoebTQXxobe3ZWZmsmzZsnG9Zn2nuqOjg8eeeIKn6urosdmIlJSgLloEoRDBv/4VeWAAU34+gsOBKT8fS2kp4owZmEtKRgTmDXl8VY0Kg4GBaFUgEkE0mbDHbH1Fsxn/66+DKJJeXT1qwrj/+HHSZs0a19/A19pK+rRp0YrD6C8YKRAgtHs3anMz5poaJFkGRcHicJBWVDR6pkkMxedDam9HOn4c2emEUAjNZEKcMQPLzJlIBw9CaysFM2cyPT2dy1at4t+uuuqMig6djo4ODhw4QEVFBQUFBWfsOAbPjXR3d2OxWIbkZgy+bqei+AiHw+zcuZOcnByWLFkSt88OvcXtD3/4Az/96U8ZGBggMzOTjIwMXn75ZebNmxeX50mRIllJCZAUSc+pCJDa2loKCwtH/ZILBoPU1tZis9lGzADoVQ/9bRHPPm5Zlo22me7ubjRNQxRFlixZQlFRUdIvijVN48iRI7S2tk6qZa2maUMyM3R73+Li4nENeCYiYDDR6NWawsJCFi9efMrXht/vx+l08u6777LtjTfY39NDv81GfyxF3HrRRagFBSjNzWitrQgDA4g2W3RgPS0NsaQE04wZmAoLEWPzORGvF8njQbDbseXlocpy1KUqGESRJNRQCPX557GtW4dgMkUDDq1WIwck4vGQNh7hqmlIwSBhtxtrTk50BkSWUWX5H0GAgGC1Ij31FBlXXTXEajfi80XtgQcGECQJMRQCnw/N50OTJBSfDw3Q8vMR58zBPns2JiBYV4eyfz/WgQGWLVjAlR/6EFVVVUybNo3CwkJycnLO+Hu1vb2dgwcPUllZmVSp0frGgV4dURTFyM2wWCxDqqZTgXA4TG1tLVlZWSxdujRhf/dwOMz69es5dOgQ06ZNY+/evZx//vmsX7+e9evXs2DBgoQ873BCoRChUGjUn4miaFRkwuEwwWBwxO84HI7UsHyKcZMSICmSHlVVkSRpQvdpaGggOzvbyOvQ0XfgCgsLWbJkyahOV4qiJDTZPBwOU1dXh6ZpZGRkGG4zemUkHu1G8SZZckkG96LrmRl5eXkUFxdTUFAwwoGrtbXVmO+ZKu1tfX191NfXM3v27BGGCKeD7qjldDppbGzk9cZGXnvnHQY0DWXGDMxnn404fXp0YR+JoAYCCC4XdHejdnejDAyAKCLY7VgyM6MD6A4HYk4OQk4Oano6YlYW1rw8Ag89hG39ejSLBTWWoaFKEmGPB8sgowEBYPhXUExYIAhRF61QCJPJhDUnB5PVGn1vSBJaOBy1vD1yBGXfPixz5qB6PBCJRG10YxsJYno6ktmMarGgZmUhZGZGn0dRELxe6OjA5PFgDoexRyJc8cEP8oPvfc8Q2KM5HA1OFJ/sOSL9mq6qqjojuTXjZXC+TVdXF8FgkLS0NGbNmnXKRh2TSSQSYefOnUYFMlHfB7Is85nPfIa9e/fy6quvUlRURFtbG8888wxPP/00r7zyCk888QSXXXbZhB9bURTuueceHnjgAdra2igrK+NrX/saN9xww6i//73vfY/bbrtt1J+VlpZy7NgxAG699VbuuOOOEb/zk5/8hK985SsTPs4U/5qkBEiKpOdUBMju3btxOByUlZUZtzmdTnbt2kVZWRlz5swZl9NVvPH5fNTX15Obm2sIIL0U73Q6jXYjXYwkwvpyouhD0JIkJV0uyeCskYGBAXJzc43gw/b2dlpbW6mqqhoy35PM6FaqCxYsSGibj942o8/b7Nu3j63PPUezy0XEYkF2OFAyMlCLi9GmTUMsKMBssyFAtKJht2PJyIBIBMXtJuJ0ovX1IcYqDHJvL2oohLW42GjDUmUZJRiMBiYOHz4H0K/z2BC68S9WNRkiXCwWsFrRNI3wgQM4LrgAc1ERpsJCVED2+43cEEQRTZLQvF7svb2kB4NkiSKZmsbiadO4/uMfZ9WqVeNucdOrcW63m3A4bDhD6bv8iaSlpYUjR45MqWt6sKA2m80jhrH1dtQzXVUajJ5wnp6ePu72x1NBURS+8IUv8M477/Daa6+Nap88MDCA1Wo9pcrC9ddfz9atW/nSl75ERUUFb7zxBr/5zW/YvHkzmzdvHvH7x44dM0TGYG688UaKi4t58803Abj22mvp7Ozke9/73pDfKysrmzJV5hRnnpQASZH0nIoA2bdvHyaTiUWLFqFpGseOHaOpqYmKigqKi4tHPP54nK5Ol56eHnbt2nXCne3h7UayLA+ZfZjs3dZQKER9fT02m23MIehkQR+MdTqd9PX1IQgCs2bNYtasWeNyIjvT6APF8bRSHQ+KogyZtxEEwXA2am1t5a36et4+cABnMEi/puHVNCJpaSgOB1p6erQKkp6O2eFAMJujbVdWK6E//Ym0q67CnJMDqorv+HHSZs4ckhQ+XlRZJtDWhi0vD0EUUcJh5P5+Is8+i7mmBux21IEBtP5+xIEBLJEIWXY7GVYr6YLA9KwsPnLWWXzoggsoLS1l9+7dSJJkuIqdCoOTsfWwTd2K+1ScoU7GsWPHOHr0KNXV1VNmXkwXH2VlZUMEdSQSGZI3cqK5kclGkiRqa2uNLKZEHYuqqnzlK1/h1Vdf5dVXX417W9rTTz/NlVdeyXPPPcfatWuN23/+85/z5S9/mYaGhiEhgmOxfft21q5dy4svvsiHP/xhAFatWsX555/Pj3/847gec4p/LVICJEXSo2kakUhkQvc5ePAgiqKwePFi9u3bh9vtHvHFfTpOVxOlvb2dAwcOUF5ezowZM8Z1H72FweVy4XQ6jd1Wvd0o0WJAr9bozi9nuhIzHhRFYdeuXQSDQWbMmIHH46Gnp8dw6UnG3Vb4hxPaihUryB+nO1Ui0B219EW1Pm+jV5XMZjM+n48jR45w6NAhXn/vPfokCW84jLu/n/5wGJ8kEVYUwoEAUl8fwpw5IIqIDkc0C8RsRovlh2AyRdu6RDH6vzUt6rYlSQihUDTvIxSCSARBklBCIQiHQVWxhMNMKy6muKCAkoICls2dy/KyMsrKypg3b96o7w/dfELTtLhnwAx3hornDn9zczMtLS1UV1dPGWekscTHcHQBrJ87VVWH5I1M5qaHLj7sdjsVFRUJFR/f+MY32LZtGzt27BjRKhwP1qxZg6qqvPjiiyOee9GiRaxevZqf/exnJ3wMTdOorq4mLy+Pv/3tb8btxcXFbN68mS984QtEIpG4hPCm+NcjJUBSJD2nIkCamprw+/1EIhEikQjV1dVDdiTj6XR1IgYPbq9YseKUB0b13VZdjAyefUhE60dvby+NjY1xn0NIJHoi+/CAQVmWh7QbWa1WQ4xkZ2ef0demXx9tbW1UVVUl1c72aNkPeXl5FBUVYbVa2bt3L3PnzmXOnDmj3l9VVQ4ePMirr77K4sWLsdvthMNhwuEwkUiEcDiMLxgkEA4TDIUISBICUJSTQ0F2NpmZmWTH/pubm0t2djZ2u92oVE50cagHUJpMJiorKxNaTRzc4qbv8OuVkYnMeA2+PmpqasjU51eSnL6+Purq6ibcSjh4bsTlcp1SiN+pIkmSYXm9YsWKhIqP73znOzz66KPs2LEjIQPmqqqSnp7O7bffPupMxqZNm3jxxRc5cODACR/nT3/6E9dffz3vvvsuZ599NhDNKUlPT+e6667jrbfe4vjx45SWlnLbbbfxqU99Ku6vJcU/LykBkiLpOdUKSEtLC7m5uVRWVg7ZRUuk09VgVFVl79699PX1xX1wW599cDqd+Hw+Y/ahqKjotF1Iurq62Lt3L4sXLx7TxjjZCAaD1NfXGz3bYy0u9YFifVEtiqJx3ia79UPTNPbv3093dzfV1dVJHzjm9/txu910dHTg9/txOBzMnDlz3GGbZxI9T0VvJZzMVsbhO/y6pXRhYeEJ2yo1TaOpqYmOjg5qamqS/vrQ8Xg81NcCbdMjAACRw0lEQVTXx8V1LhAIGGLE6/UamUqFhYVxrWTKskxdXR1ms5nKysqEfQ5omsYPf/hDHnzwQXbs2EF5eXlCnsftdlNUVMTjjz/Oxo0bR/z87rvvZvPmzfh8vjEfIxKJsHjxYiorK3n88ceN29vb2ykvL8dkMnH77bczffp0HnnkER5++GF+//vfp0RIinGTvA3dKVKcIh6Ph5aWFiwWC9XV1SOcriZj2FySJBoaGlBVlbPPPjvu1oTp6enMnTuXuXPnEgwGcblcdHV1cfDgQbKzs43KyET60PVU+ObmZlasWHFGswUmwsDAAPX19eOyrB3sNqYP/7tcLvbu3YuiKJM2b6OqKrt378bn83HWWWfFfV4gEaSnpzMwMEAwGDTOs8vloqmpKalb3EKhEHV1dWRkZCR0oHgsTCaTITg0TcPr9eJyuTh06BDhcJj8/HyjxU1vZdE0zcgIWrlyJemx9PpkJ57iAyAtLY3S0lJKS0uHzI0cPXrUqGROtKo0HFmWjcpYIisfmqbxox/9iAceeIBXXnklYeJjvJzsPfrLX/6SlpYWnn322SG3l5SUcPz4cdxuNwsXLgTgyiuvJBKJsHnzZm644Yakev+nSF5SFZAUU4JwODyu3+vs7GTPnj0UFRURDoeNsjFMnvgIBALGbvzy5csndbc1HA4bA+wej4fMzEyKioooLi4+4S61pmkcPHgQp9NJVVXVlOkz11vFTjdgcPDC0OVyEYlEhiwM49nipruKybJ8WkPQk40eQDk8+G54u5HVah2SYH8mFyN65o/uOpdMCyNN04yqku7ilpOTQ0FBAQMDA/T19VFTU5P01SWdeIuPEzHW3Ii+eTDeuRFFUaivrwegqqoqYZ/VmqZx7733ctddd/HSSy9RU1OTkOfROd0WrIGBAebPn8+6dev43e9+N67nfOyxx/j4xz9Oe3v7uOccU/xrkxIgKaYEJxMgmqbR3Nxs7N6rqsrRo0c599xzgclzuurr66OhoYHp06ezcOHCM7rgiUQiQ1LY9V3q4uJi0gdZmiqKwp49e/D5fCNmZZIZp9PJ3r17WbRoUVxbxQbP27hcriGzD/r8w6kSiUSor6/HbDazYsWKpHYVG4zuwHSyAMrhjlpw5jIz/H4/tbW1FBUVsWjRoqQSH6MRCoVwuVwcO3aMcDhMWlqaEX6YmZmZ1Mc/meJjOPrmgS5Gxjs3oiiKUaWurq5OqPi4//77+d///V+2b9/OqlWrEvI8wzmdIfTNmzfzf//3fxw6dGiEO9eePXt45JFH+P73vz/k9kcffZRrrrkGp9M5ZTKXUpxZUgIkxZQgEokw1qWqqip79uyht7fXcIlxu90cPHiQ888/f9KcrvQFcVlZWdIl/Q7PfbDb7caisKmpCVEUWbFixZTZjdfD2JYvX05hYWFCnysQCBhipL+//5Rb3ILBIHV1dUaw2VRwFRs8BD1RByZVVYdUlQY7auXn5yc0M2NgYIC6ujpmzJhBWVlZUi/edTRNY+/evXi9XlasWMHAwABut5vu7m7DpjYZg0rPpPgYDb2q5Ha78Xq9ZGZmGudO33hRFIXGxkYURaGqqiphGwGapvHQQw/xzW9+k2effZYLLrggIc8zGs888wzr169n+/btrF692rj9F7/4BZs2bTJseLu7u8nKyjI++51OJ/Pnz+fGG2/kJz/5yYjHffLJJ9m4cSOvvfYaF154oXH7+vXrOXLkCHv37k38i0vxT0FKgKSYEowlQPQdZUVRqK6uNna7ent72bVrFxdccMGkOF3psxOTsSA+XRRFobu7m46ODrq7uxFFkZKSEoqLi894y8zJGLwgrqysnPQwNj1NfHiLm764GQufz0ddXd245lSSBU3TOHDgAG63m5qamtOaQziRo1ZhYWFcZ6S8Xq8RfHc6bXmTiW5YMTAwQE1NzZDzoarqkKqSqqrG7n5BQcGkZwMNpre3l4aGhrhXIeOFXgXW80ZsNhsFBQV4vV4AampqEio+Hn74Yb761a/y1FNPcfHFFyfkeU7EDTfcwNatW9m0aRPLly/nrbfe4v777+e2227jf/7nf2hubqa8vJyLLrqIF154AYCbb76ZP/3pTxw5cmTU7zJN01i9ejXvv/8+X//615kxYwaPPfYY27dvZ9u2baxZs2ayX2aKKUpKgKSYEowmQPQWi4yMjBEheX19fezcuZMPfOADmEymhDpdHTx4EJfLNaVmJ7xeLw0NDRQXF5Ofnz8khO5MuUKdDFVV2b9/v1HpOtODufpQrN7i5nA4jHM3uGVGb8ubNWvWlLE01hfE/f39CWnLG15VysrKMs7d6cw8eDweGhoamDdvHqWlpXE84sShGxIEAgGqq6tPKMYGtxu5XC5CodAQITeZFcxkFx/D0TdeDh48SCQSGWIOMJG5kfGyZcsWbr75ZrZs2XLGFuWKonDPPffwwAMP0NrayoIFC7jlllu4/vrrgWi1o7q6mjVr1vDggw8C0eHzcDg86uyITiAQ4Lvf/S5//vOfDZfH2267jUsvvXQyXlaKfxJSAiTFlECSJKOSAdEvv/r6ekpKSkb0d2uaRigUYufOnQSDQaPto7CwMK5fMrIss3v3boLBIFVVVVNmdsLtdrN7927mz58/ZJE22BXK5XIZdqF6y8yZFCN6wGAoFKKqqiqheQCngizLQ+x99dwHm83GkSNHWLBgQdK15Y3F4HN9sgVxPAiHw8aCure315hVmujsQ09PD42NjUnTCjQeVFUdcq4nKiB0O2632220B+rv2UQOr0818QH/EHrBYJDq6uohFr+6kNMFyele808//TSf/vSnefjhh1m/fn2cXkGKFP9cpARIiinBYAHS0dFhDB8PX9QNdroSBIFAIIDT6RwSahWP8L5QKERDQwMWi4WKioqE9rPHE93JaOnSpRQXF4/5e/pOq37uJEkyFjaT3fahBwzqcyrJfq5VVaWnp4fjx4/j8XgwmUxMmzbNmLlJpqrScPSkcFVVqaqqmvRzrc8qDZ590CsjJ2oP1EV1eXk506dPn9RjPlV0oacHpZ7uuR5NyOnv2XgOseviY/HixVPG7UifE/T7/axcuXLEuR7sRqZX5HQxMtiwYzw8//zz3HDDDTz00ENcffXV8X4pKVL805ASICmmBJIkoSgKTU1NHD9+nMrKyhE5FSdzuhoe3jdYjExk51HPncjPz6e8vDypF5Q6gxPZT+ZkNNp9BwYGDDESCoWMqlK8LWqHow9u6xkOZ7LffSK0tLTQ1NRk2DDru9SyLA85d8n0evR5KovFwooVK874sY3XUUsPzly2bNkJRXUyoTsw6UPQ8X4PybI8RMjp+TeFhYWn1Vo51cVHTU3NST/rw+Gw0VrZ29uLzWYbkjdyIjHyyiuv8IlPfIL777+fT37yk/F+KSlS/FOREiAppgShUIhdu3bh8XioqakhMzPT+JmmaRN2utJ70J1OJwMDA+Tm5hpi5ETl9+7ubnbv3n3auROTiaqq7Nu3D4/Hc9qJ7Hp2gS5G/H6/kZcR7x503cmouLh4Stiowj/soFtbW6mqqiI7O3vIz/r7+40Wt1AoNOTcncnKjh7Wp2fXJJuo1jSNvr6+EY5aZrOZzs5OKioqkt78QUevMmmallAHJp3BrZVutxtFUU4pM0NvcZtK4kN3Fuvv72flypUT/nxSFIWenh5jkB0Ycu4Gi/Q33niDq6++mnvvvZd///d/nxKfVylSnElSAiTFlOD999/H7/eP6EnXNM2oesCpOV3pSeIulwuv10tOTo7R9jF41qCtrY2DBw+yZMmSKdPmoYfeSZJEVVVV3Pv5B7e46UJOP3en81x6wOCcOXOYM2fOlPgyH+waVV1dfVKhNzhrxOfzxe3cTZRAIEBdXR25ublToqKn57QcPnyYnp4eBEFImKNWvNFTt0VRpLKyctKrTLoI1tuNAoEA+fn5J519mKriY9++ffT19bFy5crTvi50EayLkUceeYQDBw6wdu1a5s+fz2c/+1nuvPNObrrppinxeZUixZkmJUBSTAn6+/sxm81DvrD1qod+Ccdj4aSHgblcLvr6+oyhzmAwiNPpZMWKFRNqXzqThEIh6uvrsdlsI1zCEvV8elXJ6/WSlZVFcXExRUVFExrQdzqd7Nmzh/Ly8imz2NHbPAYGBk7JNWq4CI6XK9TJ8Pl81NbWMm3atDMenDkR9GBEPUle392fzHM3USRJGhJCeaZb3GD02QddyOkuc1NVfOzfv9+omMfbtEKvrPz1r3/lqaeeorm5mTlz5vC5z32ODRs2sHjx4rg+X4oU/4ykBEiKKYEsy0aLFQwdNk9Usnk4HMbpdHL06FEikQgZGRlMnz496RY2o+Hz+aivrycvL++M7GoPH4jNyMgwxMiJ7HMHz05MpZaaxsZGZFk2FsSnw1iuUMMT7E+XqZiXMbjFbbRgxMkaxJ4okiRRW1trbAYkg/gYjn7u3G43vb29OBwOMjIycLvdU2ozQK9E9vT0sHLlyoQ65jU2NrJu3TpuvvlmSktLefrpp3nppZcoLS3lyiuv5KabbmLevHkJe34dSZLw+/0jbrfZbFPGnTHFvx4pAZJiSqAoCrIsA5MjPuAf7ksAS5cupa+vD6fTOaEF9ZlAb1+aPXt2UuROSJKE2+02zp2el1FcXExGRgaCIKBpGk1NTbS3t4+YnUhm9MFtfVc73lWmsRLsi4qKyMrKOuW/rT5MXFZWNmXsgTVN49ChQ3R1dVFTU3PSFjd9EFs/d7qjlj5MPFmiPBKJUFtbS1paWlLO14yGLMscO3aMY8eOIQjCkCT2ZMsHGoymaRw8eBC3283KlSsTuvjet28fa9euZdOmTXz729823ot+v58XX3yRp556ii996UvU1NRM6HEHZ3e0tbVRVlbG1772NW644YYx73P//fdz0003jbj9y1/+Mvfcc8+Q2373u99xzz330NTUxMyZM7npppv48pe/nLR/0xT/vKQESIopgS5ATuZ0FS/8fj/19fVkZmaOcF8avqBOS0tLyA71qdDZ2cm+fftYvHhxUvrzD18UWq1WCgsL8fv9+Hy+007cnkx0hy79Gkn0F7g+EKu3G+nORrpF7Xif3+VysWfPninZUtPT00NNTc2EK5C6NbJeHYHRHbXiTTgcNsJSJ+MaiRd621V5eTnFxcV4PB7j3CmKYpgn6EYAyYAuUF0uV8LFx6FDh1izZg2f/vSn+cEPfhDXz/zrr7+erVu38qUvfYmKigreeOMNfvOb37B582Y2b9486n1uvfVWnnjiCX71q18NuX3mzJmUlZUZ//873/kOt99+O5/97Gc5//zzaWxs5L777uPaa6/lt7/9bdxeQ4oU4yElQFJMCWRZNqx44dSGzceLx+OhsbGRkpISysrKTvg8siwbX8zd3d2j7u5PBpqmcfz4cZqbm6moqBhhUZyMKIqC2+02komtVqtRVcrNzT3jlZsT4fP5qKuro7CwkMWLF0/6sZ4oNPJEC+qOjg4OHDjAsmXLKCoqmtRjPlV0Fzev1xuXVPbBjlput5tIJDJkQR0vN7JQKERtbS1ZWVksXbp0yoiP7u5udu3aNWqmim7JrZ87v9+fFAYAmqZx+PBhurq6WLlyZUJbZJubm1mzZg3XXHMNd911V1z/rk8//TRXXnklzz33HGvXrjVu//nPf86Xv/xlGhoaWLZs2Yj7feITn0CSJLZu3TrmYzc2NlJdXc3Pf/7zIdWSbdu2ccUVV4x4zhQpEk1KgKSYEvzsZz9j9uzZXHDBBVit1oQt+PRMgYULFzJr1qwJ3VdRFLq7u3E6ncbuvr6gPp12mZOhtx04nU6qqqpG9MUnK3r7kslkYvny5cbCxuVyIQgChYWFFBcXJ13LR19fHw0NDcyaNSspWtz00Ej93EUikSFZI/oOtT5fs2LFCvLz88/oMY8XPb06EAgkJJVdd9TSz52+oNbF3Kk+XygUYufOneTm5rJkyZIzfo2MlxOJj9EYnCauGwDo526yKpl6+2ZHRwcrV65M6PMeP36cNWvWcMUVV3DvvffG/XNpzZo1qKrKiy++OOR2VVVZtGgRq1ev5mc/+9mI+51zzjlceOGF3HXXXcZmznBuuukmduzYwf79+0dcjxdffDFpaWls27Ytrq8nRYoTkRIgKaYEX/va1/jzn/+MLMtcfvnlbNy4kQ9+8INxy53QNM1w1olHBWF4u4zZbDYqI9nZ2XFbkCiKYizQqqqqpszA4Ynal1RVHZL5oCiKsagZ7r0/2egLtGSdndAX1E6nE7fbTSAQIC8vD0EQ6O3tpaamZsrM1+hJ4eFwmOrq6rhmzIzFaAvq4a5QJyMYDLJz504jqHSqiY8lS5Ywbdq0Cd8/EokMMQDQ55UKCwvj+pk3nCNHjtDW1pZw8dHR0cHq1au55JJL+NWvfhV38aGqKunp6dx+++185StfGfHzTZs28eKLL3LgwIERPysuLubcc8/l0KFDHDhwgMLCQm655RZuueUW47wvXLiQyy67bMRMCMDdd9/Nt7/9bfx+/5S5XlNMfZKjeTNFipPw4x//mDvvvJM333yTRx99lM9//vOEQiEuv/xyNmzYwIc+9KFT3q1UVdXoLz/rrLOGhByeKoP78/X+c5fLZez462LkZMm6J0IfkhcEgbPOOuuMBtlNhJMFDIqiSF5eHnl5eSxatMjY3T906NCYu/uTgV4dS+YcGEEQyMzMJDMzk7KyMnw+H/v378fr9QJw+PDhUTNukg09rE9VVWpqaibt2k5LS6O0tJTS0lIikYixgdDU1GTMep3IUSsQCFBbW0thYeGUCc+E0xcfAFarlZKSEkpKSoZswOi5J4NbBOO1eNcd0RItPpxOJ+vWreP888/nl7/8ZUIqsj09PYRCIUpLS0f9+Zw5c2hraxtxuyzLaJrG888/z/e//32WLFnCCy+8wDe+8Q0CgQDf/e53AWhvbz/hYweDQXp6eqZE+26Kfw5SAiTFlMFsNnPRRRdx0UUXcd999/HWW2/x2GOPsWnTJnw+H+vWrePKK6/k0ksvHffiSrdQjUQinH322QlZlOlfvoWFhZSXl+PxeHA6nTQ2NiIIgrGomUirUSAQMIbkly5dmpS2nqMx0YBBQRDIyckhJyeHBQsWGLv7zc3N7N27d9KSxFtbWzl8+DArVqyYMl/Q+lxQKBTivPPOQxRFo6p06NAhMjMzjWsvmQb/9bwMk8lETU3NGbu2rVYrM2fOZObMmUPME3bu3DnEFUo3APD7/UamyoIFC6aM+HC73ezatYulS5eesvgYzvANGL2iuX//fiPFvrCw8LRmbo4ePUpLS8u4HNFOh+7ubq644goqKyv57W9/e0Y/a0e7psxmM8eOHaOpqYmKigoALr/8cmw2G//3f//HV7/61XG35U6VazbFPwepFqwUUx5FUXjnnXd47LHHeOKJJ+jr62Pt2rVs2LCBD3/4w2O2JU12UN9w9C9mPUlc0zTjS/tEu4R6fsP06dOnVHicXkGIV6bA8CRxfRi2qKgorq15+i5rZWUlOTk5cXncRKPPTvj9fqqrq0cI68HtMj09PePa3Z8MIpEIdXV1SZ2Xoaoqvb29RnVE0zRycnLweDzMmDFjSr0ndfGxbNkyiouLE/58+hC7fu35/X5yc3ONTYTxbgDp7bIrV66MS8V6LDweD5dffjlz5szh0UcfTegmx+m0YI3G+++/z9lnn81bb73Feeedl2rBSpF0pARIin8qVFXlvffeM8SI2+1mzZo1bNiwgdWrVxvuKG+++Sa//OUv+da3vnVGgvqGM9iZx+l0GnMPxcXF5OfnG8fndrvZvXs38+fPH7OcnozoA9CJcugKBAKGGOnv7ycnJ+e0W430QDO32011dXVCd1njiaIoNDY2IknSuIIRx8rLiPe80smYipa1mqbR2dnJ/v37EUURTdMS4qiVCCZbfIxGMBg0hFxfXx+ZmZlDhthHu/Z0t7+ampqEGm54vV7Wr19PUVERjz/++KQ4fJ3KEPrx48f56U9/yo9+9KMh75n33nuPc845h3fffZezzz47NYSeIulICZAU/7SoqkptbS2PPfYYjz/+OF1dXXzkIx+hqKiIhx56iJtvvpnbbrst6RY6g12NnE4nkiRRWFiIyWSis7PzjC4YJsqZCBgMhUKGGOnr6zMGiSeSYK+qKnv27GFgYCAu1q+ThSRJxlxQZWXlhKt6iqIM2d2fLDeyYDBIbW0tOTk5LFmyJOnek2PR399PXV0dpaWlzJkzx6jKud1ufD7fKe3uTwbJID6GE4lEDCHc09ODzWYz3re6EG5tbaWpqYnq6uqEfpb4fD42bNhAeno6zzzzzKT97Z555hnWr1/P9u3bWb16tXH7L37xCzZt2mTY8HZ3d5OVlYXVaqWhoYGqqir+8Ic/cP311xv32bRpE3/605/o6OjAbrcbNry/+MUv+NznPmf83nPPPce6det4/vnnWbNmzaS8zhQpICVAUvyLoKoqDQ0N3Hrrrbz00kuYzWbWrl3Lxo0bWbt2bULL+KeDpmn09/dz8OBBvF7vkGHOZAoBGw09v8Hj8VBdXX1G5gz0QWLdmScjI8NY1IxV0dDngmRZHlcFIVkIh8NDWgpPt31pstzI/H4/dXV1FBQUnJFMlVPF6/VSV1fH3LlzmTNnzoif67v7Z9KidjSSUXwMRx9id7vdhhB2OBwMDAxQVVVFXl5ewp47EAhw1VVXAfDss89OeuXzhhtuYOvWrWzatInly5fz1ltvcf/993PbbbfxP//zPzQ3N1NeXs5FF13ECy+8AMCNN97In/70J7761a+yZMkSXnzxRf74xz/ywAMPcOONNxqPvXnzZm6//XY+97nPcd5557Fr1y7uvfdePvnJT/LrX/96Ul9nihQpAZLiXwJVVfn617/O73//e5588kkyMzONysjRo0e59NJL2bBhA5dddllCMzsmyuBFfFVVFZqmGTMjwWDQcIQqLCxMKjEiyzK7du0iEolQVVV1xgLKBiNJkpHT0tPTY4RGDp570LNJzGYzK1asSKpzeiJ0W+NEhd7pQlivyoXD4SFuZKfaauTz+aitrWX69OlTanC7r6+P+vp65s+fPy475uEWtfq1V1hYOKmfNy6Xi927dye1+BiOqqo0NTXR0tKC1WpFluWEtbmFQiGuueYa/H4/27dvPyOZSoqicM899/DAAw/Q2trKggULuOWWW4zqhtPppLq6mjVr1vDggw8a97nzzjv59a9/TVdXF4sXL+ab3/wm11xzzYjH/93vfsdPfvITmpqamDVrFp///OfZtGnTlKk6pvjnISVAUvzTEwgEuP7669m9ezfPPfccZWVlxs80TWPv3r2GGDl8+DAXX3wxGzZsYN26dadlk3u6SJLErl27jF7+4Yt43RFKH+bMz8+nuLg44Y5QJ2MqLOJlWaanp8cIjbRYLOTl5dHb20tmZiYVFRVT5gt5sisImqbh9/tHNQCYSBq23r6ULIGO46W3t5eGhgYWLlzIzJkzJ3x//drTZ27MZvMIR61EoIuP5cuXU1RUlJDnSAQdHR0cOHCAqqoqcnJyRm1z010GT6dVMhwO88lPfhK3281LL700ZQwnUqSYqqQESIp/enp6evjqV7/KT37ykxMmQOtDx4899hhbt25l//79fOhDH2Ljxo2sW7fOCHSbDCbq0KUvCJ1OZ8IcocZDIBAwduKnyiCxoii0t7dz+PBhNE3DarUa5y6RC8J4oC/iS0pKKCsrOyOLeN0AwO124/V6yc7ONs7fWAtCvYIwVvtSstLT00NjYyOLFi2ipKTktB9vNEctvbIUzza3qSo+9AH/ysrKUduugsGg0abl8XiMFsvCwkIyMjLG/X6QJIlPfepTHDt2jL/97W8n/J5IkSJFfEgJkBQpRkHTNA4dOsTWrVvZsmULe/bs4cILL2Tjxo1cfvnlFBQUJGyx5/P5huxoT3QBHAwGjcpIf3+/MQhbVFSU0Fao/v5+6uvrmTZt2pSyItVtjWfOnMncuXMNa2R9QagPYcczQC0eeDweGhoakmoRHw6HjcrI4AXhYFcjfRG/YMECZs2adaYPedzoYX3l5eUJCaIcbD7hcrmMNjd9d/9Uq5pTVXx0dXWxb98+VqxYMS5BIEmSIUa6u7ux2WxDKktjfR7JssxnPvMZ9u7dy6uvvjqlzlGKFFOZlABJkeIkaJrGkSNH2LJlC1u3bqWhoYELLriADRs2cMUVV1BUVBS3xbYe1FdaWsrcuXNP+3F1Ryin02nsThcXF8c9Cbunp4ddu3Yxd+5cSktLp4z40BfDZWVlI3r5B1sju1wuZFmmoKDAsEY+kxkV+mL4VNuAJgN9Qai7GtntdjIyMuju7mbx4sVxqSBMFvoiPp5hfSditDa3U3HUmqriw+l0smfPnlMO/hzu5gYYQi43N9cQc4qicPPNN/Pee++xY8eOhAjLFClSjE5KgKRIMQE0TePo0aNs3bqVrVu3Ultby3nnnceGDRtYv34906ZNO+XFd2dnJ/v27YtbUN9wQqEQbrcbp9Np2NPqYuR0eqcTfdyJQg9GXLJkyUkXHicawp5sAwB9cTZZi+F4oCgKR44c4fjx44iiiNVqnZS5h3ign+8zuYgfLS/jZCn2yXDcp4IumioqKigsLDztx9M3EvTPvs997nOUlpZy2WWX0dDQYIiPqVSNS5Hin4GUAEmR4hTRNI2WlhZDjLz77ruce+65XHnllVx55ZXMmDFjXGJE0zSOHTvGsWPHqKiomJT+Y92e1ul04vF4jAVNcXHxuLMyIBqCdeTIkYQFDCaK1tZWDh8+fErHrWnakBR23QBAFyOJnLlpa2vj0KFDLF++PC6Ls8lCHyRevnw5+fn5I+YeBtv7JpMY0UVqvBbD8WA0Ry39/OmOWrr4SKbjHg+6RXCiRJOqqtTV1fHYY4/xpz/9ib6+PlatWsUnPvEJrrzyyqRpZUyR4l+BlABJkSIOaJpGW1sbjz/+OFu3buXvf/87Z599NldeeSUbNmxg5syZo4oRffDd5XJRXV19RvJIBi9oenp6jL794uLiMXdXNU3j8OHDdHR0TFrAYDzQNI3m5mZaW1uprKyMi9PN4FaZgYGBhM3cHDt2jKNHj1JZWUlubm7cHjfR6GJvtEHi4W1ukiQNaXM7kw5qumhKZnE93FHLZDKRkZFBb28vFRUVU6ry0d3dTWNjY8ItglVV5Tvf+Q6PPvooDz/8MLt37+bJJ59kx44dLFu2jA0bNvCNb3wjqYIjw+EwwWBwxO0OhyMpLM5TpDgVUgIkRYo4o2kaHR0dPPHEE2zZsoW33nqL6upqNmzYwIYNG5g9ezaCIDAwMMBnPvMZrrnmGtauXZsUadujZWUUFxcbYkQQBFRVZe/evXi9XqqrqydUMTmT6GLP7XZTXV2dkICx4eFz43GEOhn6DFJbWxvV1dVnJJvgVNFFk26heiI0TWNgYMA4f8FgcEjew2S6ubW3t3Pw4MFxD0AnA6qq0tzczNGjRw3hlojgyESgz2ItWbIkoW2Fmqbxgx/8gN/97ne8+uqrlJeXGz/r6+vjueeeY8eOHdx///2n1Eo7OMOjra2NsrIyvva1r3HDDTeMeZ/W1la+9rWv8cILLyCKIqtXr+buu+8e0s566623cscdd4y4709+8hO+8pWvTPg4U6RIBlICJEWKBKIHB+pi5PXXX2fFihVcfPHFPP7442RkZPDUU08lZZuELMuGGOnu7sZut1NYWEhfXx+KolBdXT1ldt9UVWXPnj0MDAxQXV09KWJvuCPUePr2h6NpGgcPHsTlclFTU3NGE7QnwuBK06mKprEqSxMZwj4V9IpNVVXVlKo0DW67KigoGOGoNbhN8EzmBA1Hz1VJlLuYjqZp3HXXXfzsZz/j1VdfZfny5XF/juuvv56tW7fypS99iYqKCt544w1+85vfsHnzZjZv3jzi971eLytWrMBisfDf//3fANx+++1YLBYaGhqMzZ1rr72Wzs5Ovve97w25f1lZWdKaUKRIcTJSAiRFiklC0zS6u7v51a9+xe23304oFGL58uV89KMfZcOGDWcsx2E8KIpCZ2cnhw8fRpZl7Ha7URlJpuT40ZBlmcbGRiRJorq6elJ30nWGt7mlp6cbYmSsvAJVVdm3bx99fX3U1NQkRYVsPOjteZ2dndTU1MSl0qTnPbhcLsNAQT9/8azAtbS0cOTIkXFVbJKJE82qxMtRKxHo4mPx4sUJNbDQNI17772Xu+66i5deeomampq4P8fTTz/NlVdeyXPPPcfatWuN23/+85/z5S9/mYaGBpYtWzbkPq+//jqf+tSneOONNwwh0dTUxIIFC/j973/Ppz71KQBWrVrF+eefz49//OO4H3eKFGeKlABJkWISeffdd7n88su54YYb+MY3vsEzzzzDli1beOWVV1i0aBEbNmxg48aNSZejoQcMZmdns3jxYjwejzFEbDabjZmR7OzspDruZExll2XZWEzrlSV9Ma2LOUVR2L17N8FgcEpVmvQ2t+7ubmpqahLSnqcbKLjd7nGLufGgt4tVV1dPmZkmmPig/HAxdyqVuXjg8Xior6+PW6jjWGiaxv3338///u//sn37dlatWpWQ51mzZg2qqvLiiy8OuV1VVRYtWsTq1av52c9+NurxDb9mi4uL+cIXvmBUTYqLi9m8eTNf+MIXiEQiZ2QTJUWKeJMSIClSTBJPP/001113HT/84Q/58pe/bNyuaRoej4ennnqKrVu38vLLL1NWVsaVV17Jxo0bKS8vP6OLej1gcPr06SxYsGDIsaiqagzBut1uRFE0FjO5ubln9LhDoRB1dXWkp6ezfPnypHJX0lEUhe7ubkOMmM1mo31GEASqq6uTql3mRJyJio0+s6RXlgan2E9EDDc3N9PS0jLlZmz0sL5THZQf7qg1mhhOBH19fdTV1SU8x0bTNH7/+99z66238uyzz3LBBRck5HlUVSU9PZ3bb7991JmMTZs28eKLL3LgwIGTPtbhw4dZtGgRjz76KFdffTWBQID09HSuu+463nrrLY4fP05paSm33XabUSFJkWIqkhIgKVJMEps3b2bFihVcddVVY/6Onob89NNPs3XrVl588UXmzJnDlVdeyUc/+lGWLFkyqQtpfTh03rx5J7WoVFUVj8djpLALgmCkiOfm5k7qcfv9furq6sjPzz/jAm68qKqK0+nk4MGDyLKMxWIZIuaSUUDp6DM2Pp+PmpqaM1KxURTlhGJ4tPM3eMC/pqbmjLjQnSqnKz6GM5qjlt6mFc/rz+v1UldXR1lZWUKzNzRN4y9/+Qv/9V//xdNPP82HPvShhD2X2+2mqKiIxx9/nI0bN474+d13383mzZvx+XwnfJxIJMLFF19Me3s7+/fvx263097eTnl5OSaTidtvv53p06fzyCOP8PDDDw9p00qRYqqREiApUiQxXq+Xbdu2sXXrVrZv387MmTONNq1E7+rrAYPjCeobjl7V0bNG9KyH4uJi8vLyEnrcXq+X+vp6Zs6cyfz586eE+IChFZulS5fS399viLlkzspQFIVdu3YRDofP2IzNcHQxrM89qKo6whFK0zSampro6OiI26zKZNHZ2cn+/fsTZhE8nvN3KvT391NbW8v8+fOZPXt2nI96KFu2bOHmm29my5YtrFmzJqHPNR4B8t3vfpeBgYExH0PTNK6//noeffRRXnzxRS666CLjZx6PB7fbzcKFC43brr76at5//32OHTs2ZT7jUqQYTEqApEgxRRgYGODZZ59l69atPP/88xQXFxtipLKyMq6L0mPHjtHc3BwXG1K9quN0OnE6nSiKkjB7UL1iU1ZWlvAFTjzRZ2xyc3MpLy8f8rccfP6GZ2UUFBScUXtVfcBfURSqqqqSsl1MP3/6YjoSiZCfn4+iKAwMDLBy5cop4y4GiRcfw9HPn96qFQqFTslRa2BggJ07dzJ37tyEB/49/fTTfPrTn+bhhx9m/fr1CX0uiE8L1le/+lV++tOf8tBDD3H99def9Dkfe+wxPv7xj9Pe3p7QAf4UKRJFSoCkSDEF8fl8PP/882zdupVnn32WgoICY2akpqbmlMWIpmkcOnSIrq4uqqqq4t4Pr2nakJ39SCRiiJHTXUzrw7inUrE5k/h8Pmpra5k2bdpJzQcGZ2U4nU5CoRAFBQXG+ZtMASBJEvX19YiiSGVlZVIM+J8M/fzt37/f2I3Oy8szWrWSoXpzInTxcabyScZy1NLfw2M5ag0MDFBbW0tpaSlz585N6DE+//zz3HDDDTz00ENcffXVCX2uwZzqEDrA//7v//Ld736XX/7yl9x0001DfrZnzx4eeeQRvv/97w+5/dFHH+Waa67B6XROqcDJFCl0UgIkRYopTiAQYPv27WzZsoVnn32WnJwc1q9fz8aNGznrrLPGvaif7IDBsRbT+s7+RBa0enZDMqdWj4beLjZ79mzmzp07oVYKfTGoizm/309eXh7FxcUUFhYmdDEdiUSoq6vDZrNRUVGR1CF3g9E0jf3799Pb20tNTQ2aphmL6f7+fnJycoyd/WSzPT7T4mM0xnLUKiwsNFrafD4fO3fuZPbs2cybNy+hx/PKK6/wiU98ggceeIDrrrsuoc81nGeeeYb169ezfft2Vq9ebdz+i1/8gk2bNhk2vN3d3WRlZRnvz5/+9Kd85Stf4cc//jH/9V//NeJxn3zySTZu3Mhrr73GhRdeaNy+fv16jhw5wt69exP/4lKkSAApAZIixT8RwWCQF198kS1btrBt2zbS09O58sor2bBhA6tWrRpzoXimszI0TcPn8xliRE/B1sXIWDv7euBdS0vLlMtu0DMQ4tUuFggEjPM3MDBATk6OIUbimfUQDoepra1Nanex0dA0zRDYNTU1I85JKBQyFtOnGhyZKJJRfAwnEokMcSSz2+3k5ubidDqZNWsWZWVlCX3+119/nY997GPcd999fOpTnzojcxE33HADW7duZdOmTSxfvpy33nqL+++/n9tuu43/+Z//obm5mfLyci666CJeeOEFnnjiCa666iouvPDCEa1bBQUFfOADH0DTNFavXs3777/P17/+dWbMmMFjjz3G9u3b2bZtW8LnW1KkSBQpAZIixT8poVCIl19+mS1btvD0009jt9tZv349GzZs4LzzzjMqDC0tLfy///f/+MxnPpM0rTSDxYjf7zfEyOCe88Ep4dXV1VNqiNjlcrFnz56EBbCFQiHj/Hm9XiO4r7i4+LR29oPBILW1teTk5Ey6I9vpoFf3BgYGxuXSNXwx7XA4DDGSmZk5qYvbjo4ODhw4kNTiYziKotDe3s7hw4cBsFgsRptWIhzd3nnnHTZs2MCdd97JTTfddMaGshVF4Z577uGBBx6gtbWVBQsWcMsttxgzHU6nk+rqatasWcODDz7I9773PW677bZRH+uDH/wgO3bsAKKbC9/97nf585//TF9fH1VVVdx2221ceumlk/XSUqSIOykBkiLFvwCRSISXX36ZrVu38tRTT2E2m7niiitYsWIFP/zhD6msrOQvf/lLUgbeBQIBo81oYGCAvLw8CgsL6enpwe/3U11dnXTtMidC381etmzZpPRuh8PhIVkPGRkZhhiZyM5+IBCgtraWgoICFi9ePGWcd1RVZffu3QQCgVMKdRxsT+t2u4fYI+fk5CT0PExF8QHRa2Xnzp1Mnz6defPm0dfXZ5w/3YSisLAwLiYKtbW1XHHFFdx2221s2rRpylyXKVL8q5MSIClS/IshSRKvvvoqv/zlL3nqqaew2Wx84hOf4KMf/SgXXnhhUjoZ6QSDQTo7Ozl+/DiyLJOTk8O0adMoKipKSvE0HH1W5UwtKCVJMsTI4J394uLiE6aI64Pyo4VRJjOqqrJr1y5CoVBcWguHB2/qWTdFRUVxt5fWxUdlZSV5eXlxe9xEEwwG2blzJ0VFRSNMFXQTCn3uZrCjVkFBwYT/Po2Njaxbt45bb72VW265ZcpclylSpEgJkBQp/iV54YUX+NjHPsZ3vvMdqqureeyxx3jyySeRJInLL7+cjRs3ctFFFyWdK1AkEqGhoQGTycSiRYvo7e012oyys7MpLi4+oRvPmULTNI4ePcrx48eTZlZFluUhKex6inhxcfGQFOz+/n7q6uqYNWsW8+bNmzKLPD2fJBKJJCRRXlVVY2ff5XKhKMoQR7LT2dmf6uKjsLCQRYsWnfRa8fl8hiDW55bGawKwb98+1q5dy6ZNm/j2t789Za7LFClSREkJkBRThp///Of813/9F42NjSxevHjM39uzZw/f+ta3ePPNN7FYLHzkIx/h//2//zdq6u6bb77J5s2bqa2tJTMzk40bN3LbbbdNqS/9ifLHP/6Rm266id/85jdce+21xu2yLPPmm28aYiQQCBhi5EMf+tAZrzAMDupbtmzZkAVeOBw2FoIejyduMw/xQNM0Dh8+TGdnJ9XV1UmZtj08RVxPwU5LS6OpqYl58+YlPLshniiKQkNDw6Tlk5xoZ38iWRkA7e3tHDx4cMqJj1AoxM6dO8nPzz+lFj19bsntduPxeIxWQd0EYPDjHTp0iDVr1vDpT3+aH/zgBynxkSLFFCQlQFIkPf39/XzmM5/hscceA2D//v1jCpD6+nouuugiysvLufHGGwmHw/z0pz8lFArx1ltvMXPmTON3t2/fzvr167nkkkv4xCc+QXd3N3fffTeFhYW8/vrrcc/ASAYikQgf/OAH+f73v///27vzuJrT/n/gr9NG+17IUhSKosVeJEulqJhhMJYx1iHGzNy4M5qxTRpLGAyGYSxzMypLTRLKvqQSyi6tck57ScvpnOv3h9/5fB0VUedUvJ+PR4/79tnO9flMy/X+XNf1fr91AaNIJMLly5cRHByMo0ePoqSkBCNGjIC3tzeGDh0q9xGG0tJSJCQkQF9fH5aWlm/tcFRWVnIdQcmaB8nIiLyzGTHGcPfuXS7tq6xTGzcEsViM/Px8ZGRkIDc3F4qKitw0N1lXsW8IVVVVSExMBGMMtra2ck+qUFutDEln+m2BfHMPPvT09N7581kXbyYBiImJQUFBAUaPHo327dvDw8MD48aNw9q1a5v89yMhpGYUgJAmz9nZGcnJyfj6668RGBhYawDCGEOvXr2gqqqK6Oho7q1jYWEhevXqBTs7Oxw+fBjAq6kCFhYWcHR0xKFDh7hrpKWlwd7envusjxFj7L06CGKxGFevXkVwcDBCQ0NRWFgINzc3+Pj4YOjQoTLvVEtqZbRt2xadOnV6r7ZL1jzw+Xzk5eVBXV2dC0ZknTVLLBYjKSkJL168gJ2dXZObFvY2OTk5uHPnDrp06QJVVVWpaUayqmLfEKqqqnDz5k3weDzY2to2ifaVlZVxz+/1jGSSESaJ5hp8VFRUIC4ujsuM1tCjESKRCP/++y/27duH8+fPo7y8HFZWVli7di1cXFya3DRRQkjdUABCmryLFy/CzMwMjx8/xuDBg2sNQK5du4Z+/frh8uXL6N+/v9S+ffv24auvvkJ2djaMjIxw6NAhTJw4EWlpaVKjIsCrqrRBQUHIyclpEilpmxKxWIzY2FguGMnJyYGrqyt8fHwwfPjwBh9hyMvLw61btxqkVoZQKERubi4XjKiqqkoFIw3ZcRKJRFxdFVtb22bVSeLz+UhKSkK3bt3QqlUrbntNVexfX/PQ2D8rksrsSkpK6NGjR5MIPt5UU0YyQ0NDMMa49UHNKfiorKxEXFwctLS00K1bN5lnBBs+fDg6d+6MTp064fjx43jx4gU3TdTV1bVZpeIm5FNHY5ekyXNycqoWJNQkOjoaurq66NevX7V9Hh4eEIvFiI6O5o61trau8bqenp4oLCxEXFxc/Rv/kVFQUEDfvn2xbt06PH78GNHR0ejUqRN+/vlnmJqaYuLEiQgODsaLFy/q/VnPnz9HYmIiLC0tG6RQn7KyMlq3bo2ePXti0KBB6NixI0pLSxEbG4srV67g0aNHKC4uRn3fyQiFQiQkJEAsFsPe3r5ZBR/Pnj1DcnIybGxspIIPAODxeNDW1kbnzp0xYMAA9OrVC2pqakhJScH58+eRmJiIZ8+eQSgUyr3dQqEQ8fHxUFZWbrLBBwC0aNECbdu2hZ2dHQYNGoQOHTogJycHT58+hbKyMvLy8lBUVFTv70F5qKys5NbOyTr44PP58PDwgKOjI/79919s3boV6enpiIqKQrt27bB06VJERER80LVFIhHWr1+PLl26QF1dHT169MC+ffveeV5eXh7mzp2Ltm3bQltbG0OGDMHVq1drPDYtLQ1ffvkljI2NoaenBy8vL9y9e/eD2kvIx4Je75KPRlZWFtq1a1fjH0J9fX1oamoiMzOTO7ZDhw41Xkey2FZyLKmZgoICevXqhV69eiEgIACJiYkIDg7G6tWrMXv2bAwdOhQ+Pj5wd3d/7/U0knS1NjY2MDQ0bPC2KykpoVWrVmjVqhW3AJvP5yMuLg7KysowNjaulg2qLiorK5GQkIAWLVrAxsamyXaEa5KZmYmHDx/WKUUwj8eDpqYmNDU1YW5ujtLSUvD5fKSnp+Pu3bvQ09PjFmDLOnmBpCOspqbWrCqzKysrQyQS4eXLl7C1tYVYLIZAIEBCQgKXBEBSa6Sp3ZPkmaurq8s8+MjNzcXIkSNha2uLP//8k/uZUlBQQO/evdG7d28EBARALBZ/0PWnTp2KkJAQ+Pr6wsbGBhcvXsS0adOQmpoKf3//Gs8pLCyEs7MzCgoKsHDhQhgYGODvv/+Gs7MzwsPDMWzYMO7Y9PR0DBgwAJqamvjpp5/QokUL7NixAwMGDMC5c+fQo0ePD2o3Ic0dBSCk0fH5/Frf+Onp6TXoG+T3+UNJmVXqTkFBAXZ2drCzs8OqVatw584dHDlyBGvXrsU333yDoUOHwsvLCx4eHm/t1DPGkJKSgvT0dNjZ2cklXe3rnT2RSMSl9k1ISICSklKdi86VlZUhISGBm47S1DqNb5OWloaUlBTY2tpCV1f3vc9XV1dHx44d0bFjR5SVlYHP53OpZGWZHrmiogLx8fHQ0NBA9+7dm9UzlwR8rz9zIyMjiMViFBQUQCAQ4M6dO2CMSdUaaeygVjLCp6amJvNnXlBQgFGjRsHCwgL79+9/6zS/D2nHiRMncODAAURERMDd3R0AMHHiRFhbW2PBggUYPXo0unfvXu28FStW4Pnz51x6agCYPHkyxo0bh+nTp+PBgwfc9/q3334LdXV1XLt2Ddra2gCASZMmYfDgwZg1axauXbv23u0m5GNAa0BIo1NSUoJIJKpxX0xMDJydnQEA586de+sakF9++QXr1q1DXl5etY5iXl4eDAwM8L///Q9ffPEFZs6cidjYWCQmJla7TkJCAuzt7XH16lX07du33vf3KWOMITk5GUeOHEFoaCgePnyIIUOGwMvLC56enlKdepFIhN27d6NLly5NIl2tJBsUn8/nis5JOtK6urpS32OSLF3NrUq4pD5Jeno6bG1tuQ5SQykvL+eSABQWFkJTU5N7hvVNXiBJyyyZAtScgg/JCN+7gmzGGIqKirh1N0KhsFHX3UiCDxUVFfTo0UOmz7yoqAijRo2CkZERQkNDZTKS5ubmBrFYjKioKKntYrEYXbp0gaurK7Zs2SK1TygUQl9fH0uWLIGfn5/UvrS0NJiZmeGff/7BZ599huzsbJiYmODAgQOYMGGC1LEXLlzAoEGDcOPGDTg4ODT4vRHS1NEICGl0eXl5tY6AvM+iQhcXFyxduhRXr16ttgj933//hYKCAlxcXLhjd+/ejczMzGrrQMLDw6Gjo0N/FBoAj8dD9+7d0b17d/z888+4f/8+jhw5gt9//x2+vr4YPHgwl9p37ty5SE5OxuXLlxs9+ABevVE1MDCAgYFBjW+lJXVGFBUVkZiYCBMTE5ibmzer4OPx48d49uwZHBwcZLKAt2XLlmjXrh3atWuHyspKLhh5/Pgx1NXVuWf4Zp2Hd5GkfdXV1ZVJ5iVZysjIwOPHj+s0wsfj8aCjowMdHR107twZL168AJ/PR0pKCpKTk6Wmusl6rZEkw5g8go+SkhKMGTMGOjo6CAkJkUnwIRaLcf78eQQEBFTbp6CgAHd392qBCQDcuHGDS0v+pg4dOqB79+44c+YMPvvsM8TExIAxxo2uvM7R0RHa2to4c+YM/a0hnyQKQEijq89b12fPnqFNmzYAgD59+sDe3h5LlixBdHQ093awqKgIq1atwueffw4jIyMAgJeXF1q3bo1Fixbh77//5q6XkZGBzZs3Y9asWY2e1edjw+PxYGlpCX9/fyxbtgyPHj1CcHAwduzYgblz50JVVRVLliwBj8d771TBsqagoAB9fX2uyNrrwYhQKISWlhZ0dHSaXLtrwxjDgwcPkJOTAwcHB7nUR1FRUYGJiQlMTEy4jGQCgQCpqalo2bIlNzKiqan5zqlu8fHxDVZzQp4kwYetre17Ty+sad2NQCBAZmYm7t27x1URl8VUt6qqKm5Koo2NjUyDj5cvX+Lzzz+HsrIyjh07JrP01Xl5eSgvL3/rWsCa1gFmZWUBQJ3Oy8rKgpaWVo3TGhUUFNC+fXtaa0g+WdTDIs3WwYMH8eWXX+KXX37Bf//7X/B4PPzxxx9wdnbGoEGDMG3aNFRWVmLz5s2orKzE+vXruXNVVVWxa9cujBo1CsXFxRg7dixyc3MRFBSE9u3bY+nSpQ3SxqqqqrdmhNLS0oKCggJEIhFKSkqq7VdWVpZ78Tx54PF46Ny5M2bNmoUTJ06gT58+cHV1RVhYGFasWAFHR0d4e3tzUzCaUieTx+NBT08PYrGYS2bAGMP9+/dRVVXVpOtkAP9XHLGgoAAODg6NUilekpGsdevWEIlEXHpkSRIAyciItra21H/7ly9fIj4+HoaGhujSpUuT+r54l/oEHzVRV1eHmZkZzMzMuCriAoEADx8+hKamplQV8foQiUS4efMmFBUVZZ5hrLy8HF988QVEIhEiIyMb/Xffh35/0VpDQt6t+UyaJeQNBgYG0NTUROvWrblttra2uHz5MvT19fGf//wHP/30E3r16oVLly7BxMRE6nw3NzdER0fj5cuXmDdvHtavXw8fHx+cPXu21ilAYWFh6Nu3LzQ0NGBmZoZly5ahrKys1jZeunQJurq6tX6lp6cDAM6cOVPj/okTJzbAk2qaMjMz4eTkBBMTE8TExODnn3/G9evX8fDhQ4wYMQKHDh1C586d4e7uju3btyM7O7vJpCfl8/m4desWunXrhs6dO6NLly5wdHSEnZ0dWrRogYcPH+L8+fO4ffs2+Hx+rWuc5E0sFuPOnTsoKipqtODjTYqKijA2NoaNjQ0GDRqErl27ctN9Lly4gHv37iE/Px8vXrxAXFwcjIyMPvng400tW7ZE+/bt4eDggIEDB6Jt27YoLCzE1atXceXKFTx+/BglJSXv/fMjCT54PB569uwp0+CjoqICX375JYqKivDvv//KfBqmvr4+WrZsibS0tBr3p6amVvubAYDbVpfzTExMUFxcjIKCgmrHicViZGRk1PgZb/Oh2b4IaWpoETohdbR7927MmDED48ePh7u7O1JSUhAUFIRevXohIiKixilbhYWFNS5037JlCyIjI5GVlQVtbW3s2LEDixcvxrFjx6SOMzAwqDELS3PHGEP//v3RvXt3bN++vcaODWMM6enpCAkJQWhoKK5du4a+ffvCy8sL3t7eaNOmTaN0QiUVq62trWtNEcwY4+br8/l8lJeXw8DAAMbGxo1WtE8kEuH27duoqKiAnZ1dk69P8vq6Gz6fD6FQCA0NDZibm0NfX7/ZLDpPT0/HkydPZBZ8vE1VVRU31S03NxcqKiowNDSscXTpTSKRCImJiRCLxbC1tZXp96xQKMTkyZORlpaGs2fPvjMNdENp6ovQRSIRFBUVIRaLm833OyF1RQEIIXWQnZ0NCwsLzJs3D2vWrOG2JyQkoF+/fti4cSPmzJlTp2vl5OSgU6dO8PX1xerVqwEAS5YswenTpxEfHy+T9jdFz549Q+vWresURDDGkJmZidDQUISGhuLy5cvo1asXF4zUVv+loaWmpuLp06fo2bNnndPVMsa4OhkCgQAvX76Evr4+t3hYWVlZxq3+v86kSCSCra2tXD6zoZSUlCAuLg6GhoZQUlJCTk4OqqqqpLJBNcWpbsD/BR92dnYNnmHsfUlSTAsEAi6rm2Salq6urlQHVyQS4datW6iqqoKdnZ1Mg4+qqipMnz4dd+/eRUxMjEzq/tQmLCwMo0aNQmRkJFxdXbnt27Ztw/z585GYmIju3bsjNzcXWlpaXND+/fffY9++fVzyCYlx48bh+vXruH//Prd2ZcyYMUhOTkZsbCxXD0koFGLw4MEQiUS1Fi+UBB9ZWVn48ccfkZKSgrFjx2Lu3LmyehyEyBUFIITUwZo1axAYGIjMzMxq85KnTZuG2NhYJCUl1ela8+fPx8GDB5GSksJ1SsaNGwexWIwjR45AKBQ2qw6ivDHGkJ2djdDQUISEhODSpUuwtbWFt7c3vL290aFDhwYPRhhjePLkCTIzM2FnZ/fehRVf93ow8uLFC6lgRBajEkKhEImJidw0muaUXKG4uBgJCQno0KEDzMzMALz6b1FcXMyNjFRUVHDBiCRIaQqaUvDxJrFYjMLCQm7diEgk4tYu6erqIikpCUKhUObBh0gkwjfffIPY2FicO3dOajqtvEyePBkhISGYP38+rK2tcfnyZezYsQPLly/H0qVLkZKSAktLSzg7O+PUqVMAXiU2cXJyQmFhIRYuXAh9fX0cOnQI0dHR+PfffzFkyBDu+unp6ejfvz+0tbUxb948qKioYNeuXXjw4AHOnz8Pa2vram2SBB98Ph92dnawtLSEk5MT/vvf/zb5kUtC6ooCEELqYPjw4VBTU6s2RQoAQkNDMWbMGGRnZ6NVq1Zvvc7Tp0/RtWtXrFq1Cv/5z3+47X369IGGhgZKSkoQHx8PTU1NzJo1C6tWraJg5C0YY+Dz+Th69ChCQkJw/vx52NjYcMFIx44d6x2MSDJGCQQC2NvbN+jC2JcvX3Id6ZKSEujq6nLZoBqio1FZWYmbN29CWVlZ5guIG1pRURESEhJgZmYGU1PTGo+RTHWTdKRLS0tlHtDVRVMOPt70ZkBXVlYGJSUlWFhYwNjYWGa/f8RiMRYsWIBz587h3LlzXEE/eROJRNi4cSN27tyJjIwMWFhY4IcffsCkSZMAgAsC3NzcsHv3bu68vLw8+Pv749ixYygpKUHv3r2xatWqGmtHpaWlYenSpYiKikJVVRUGDhyIgIAAWFpacsc8efIEDx8+5FL2isVizJgxAxkZGYiKigJjDPn5+Th69CiysrIwceJEmJubN5vMe4S8iQIQQuqgW7duGDp0KDZt2lRtn6RwYV0KSk2cOBHnz5/Ho0ePpBYA29nZITExEYsXL4aTkxOuXr2KwMBATJw4EXv27Gnw+/kYMcaQm5uLo0ePIjg4GOfOnYOVlRV8fHzg7e39QTU6xGIx7t69i8LCQtjb28t00XZZWRnXCSwuLoaOjg6MjY1haGj4QalIKyoquIrV1tbWzWoOeWFhIW7evIlOnTqhffv2dT5PkppWIBBwAZ1kmpEsaknURFJVvjkEH68Ti8W4ffs2SktLYWRkhLy8PLx48UKq1khDPUOxWIxFixYhIiICMTEx3OjWp+rly5cYMGAAxGIxjh07xj2PyZMnAwD++OMPbNy4EQkJCbh58ya0tLSQm5srNdWLkOaGAhBC8OotV20/Cnp6erC1tX1nABIXFwd7e/taPyMxMRF2dnbYvn07Zs6cKbWvqqoKt27dkjp/y5Yt8PX1xaNHj2Bubv6Bd/ZpkrwtPHbsGIKDgxEdHY0uXbpwIyN1yaIkEolw584dlJWVcdmt5OX1tKqFhYXQ1tbmUtPWpcNRXl6O+Ph4aGtrw8rKqlkFH/n5+UhMTETnzp2rFQl9H5KATiAQoKioiHuGRkZGMgskm3PwkZSUhNLSUtjb23MjR5IROoFAgOLi4gZ5hmKxGD/++CP3koB+t71y/vx53L9/H7NmzcKVK1fQv39/LFiwABERERCJRGjVqhVmzpwJT09PCAQCeHh44PTp0/T8SLNFAQghAJSUlGpNlRoTE4Nffvml3lOwXF1d8fTpU9y9e7dO86pzcnJgZGSEgwcPVsugQuqOMYaCggIcP34cISEhOHPmDDp16gRvb2/4+PjUWMyuqKgIDx8+BGOs0RdtV1RUcJ3AgoICaGlpccFITZ1ASa0MfX39ZleoLy8vD7du3UKXLl3eOz3p27z5DBuyToZEcw0+GGNISkpCSUkJHBwcap229uYz1NDQkHqGdU0msWrVKuzZswcxMTFSU5A+Za+v+1u0aBFOnz6NjRs3YtCgQYiMjERxcTE+++wz7kVCUFAQdu3ahVOnTtUrSCekMVEAQghedThr+1HQ0NDAunXrEBgYiKysLKipqUntr8si9JiYGLi4uODQoUMYN26c1L68vDwEBARg2bJlUh0XSQBy+PBhjB07th53R15XWFiIEydOICQkBFFRUejQoQMXjHTr1g0CgQAjRozAiBEjsHz58ia1bqKyshI5OTng8/nIz8+HhoYGt2ZEXV0dL168QEJCAoyNjdG5c+dmFXzk5ubi9u3bsLS0lOliZMkzFAgEyMvLg7q6OteR1tDQ+KBnJsmOZm9vX68EBfLGGENycjKKi4thb29f51E+oVAo9QxbtmzJPUMtLa0anyFjDGvXrsWWLVsQExNT4+LrT9Hrazj4fD5evHiBb775BiKRCN999x1GjBgB4NUakTNnziAlJQW//fYbfvvtN3z99deN2XRC6oUCEELqQJKG19fXFwEBAdz2xMRE9OnTB5s2bcLs2bMBvJqHXlVVJRVM9O7dG1VVVYiPj6/2x1kgEKBt27ZYtmwZli1bxm3fsGEDFi1ahPT0dLRp00bGd/hpKi4uRlhYGEJCQhAZGYlWrVohPz8f5ubmOHnyZKNXYn4bSSeQz+cjLy8PqqqqKC8vR+vWrZvdyEdOTg7u3LkDKyurdyZyaEhVVVVcRzo3NxctWrTgArraOtJvas7Bh2R9k4ODwwdPMZRUspc8QyUlJS69dIcOHaCkpATGGDZv3oy1a9fi9OnTb52q+qny9PREjx49sHr1aqSlpWHWrFkQiUSYOXMmxowZg82bN2PdunWwtrbG+PHjufUhhDRXFIAQUkeSQoQTJ06Eq6srUlNTsWHDBvTp0wfh4eHcm3ILCwvk5+cjLS0NGhoa+OeffzBu3DicPHkSbm5uNV579erV8Pf3x5w5c9CvXz9cv34d27Ztw+LFi7laIUS2bt++jWHDhqFly5bIzc1Fq1at4OXlBR8fH9ja2jbpdRR5eXlITEyEqqoqysrKoKqqyk3T+tC3+vLC5/ORlJQEa2trGBkZNVo7RCIR8vLywOfzuY605K2+jo5Ojc+wOQcfkgrzDg4ODbaQWSwWc7VGli1bhqtXr8LZ2RlaWlo4fvw4oqKi0KdPnwb5rI/N5MmTUVVVhb///hvAqzpJM2fOxMuXL/Htt99i1KhREAqFYIxRKl7yUaAAhJD3EBYWhtWrVyMpKQmGhoaYNGkS/Pz8pP6Au7i4gM/n4+bNm1BRUUFMTAwOHz6M7du3v/XaO3fuRFBQEJ4+fQpTU1P4+vo2SNEpxhiKioqqbVdUVISmpma9r/8xSEpKwvDhwzF27Fhs2LABZWVliIiIQEhICCIiIqCvr49Ro0bBx8cHDg4OTSoYkSzaNjc3R/v27VFVVSXVkVZRUXnvt/ry8vz5c9y9e/etVeUbg6QjzefzuaJ9kgrikqJ9qampSE1NrXddGHljjOH+/fvIy8tr0ODjTVVVVYiKisK6desQGxsLVVVVLqB3d3eHhoaGTD63oYlEIpSUlFTbrqys/MEjpJI6H68LCAjA33//jTt37nDbBAIBZs2ahezsbMyaNQtTpkwBgCb1+4eQD0UBCCHNyJsB0Jdffgk/P7+3ZqR58OABunbtWm17jx49kJiYKLXt0qVL8Pf352qR+Pj4YPny5dDT02voW2ky4uPjMXz4cMyfPx/+/v7VOugvX75EZGQkQkJCEB4eDm1tba4Ce+/evRt1jYhk3URti7Zff6ufk5MDZWVlLhjR1tZu1GDk2bNnuH//PmxsbGBgYNBo7XiX14v28fl8iMViqKqq4uXLl7Czs4OOjk5jN7HOJDVtcnJy4ODgINO00owx/P333/juu+9w/PhxaGtr4+jRowgNDUVKSgpcXV2xdOlS9O7du0E+70N+N5aXl8Pf3x/79+/n1sEEBgaiX79+3DGnTp2qceTay8urxqQk7+OXX36BiooKBgwYAIFAgA0bNuDPP/9Ep06duGNyc3MxefJkTJo0CePHj6/X5xHSlFAAQkgzIZkCNn78eLi7uyMlJQVBQUHo1asXIiIias2sJfkDevLkSam3nRoaGlJ1SyIjIzFq1CgMGTIEX3zxBXJzc7FhwwYYGhriwoULzeot7/vIzMxEZGQkpk+f/s5jy8rKEBUVhZCQEISFhUFdXR2jRo2Ct7c3+vXrJ9dgRCAQ4M6dO+jWrVud1k2IxWLk5eVxmYwUFRW5aVq1TTGSlaysLDx48AA9evSAvr6+3D63viRTl7Kzs6GsrIyqqioYGBjA2NgY+vr6TaYKe00YY3j48CH4fD4cHByqJdNoaEeOHMHcuXMRHBxcrQN/7949HD16FG5ubrCzs6v3Z33o70Zvb29ER0djyZIl6NChA3bt2oVr164hNjaWWyS/Y8cOLF68uFqwYWBggO7du39wm8+fP4+VK1ciNTUVKioqKCgoAJ/Ph4eHBzQ0NDBs2DAYGRmhc+fOMDc3p1EP8tGhAISQZkCyCH7evHlYs2YNtz0hIQH9+vXDxo0bMWfOnBrP3b59O5YuXYq8vLxar19WVgYLCws4Ojri0KFD3Pa0tDTY29vj66+/RmBgYMPd0EegvLwcZ86cQUhICI4fP44WLVpw07T69+8v085odnY2N3XpQ9ZNvD5XXyAQgMfjSQUjsuzsZGRk4NGjR7C1tYWurq7MPkcWnj59yv1MaGhooKSkhBsZKS8vh76+PoyNjWFgYNCoqZvfxBjD48ePkZ2dLZfg4/jx45g+fToOHTqEkSNHyvSzPvR3Y25uLgYPHozly5dj9OjRAF6lGu7WrRucnJy4ArBLlizB6dOnER8fX692isXiGn+uKioqUFJSgoSEBEybNg2urq4oLy9HWloarl27hqCgIPj6+tbrswlpiigAIaQZWLNmDQIDA5GZmVlt3vG70gAvXrwY0dHRuHHjBqqqqqCoqFjtbfehQ4cwceJEpKWlVcsrv2LFCgQFBSEnJ6dJv+FtTJWVlTh79iyCg4Nx/PhxKCoqYuTIkRg9ejQGDBjQoJ3RzMxMPHz4sMFGDyRTjPh8PgQCARhj3OJrPT29Bg1G0tPT8eTJE9ja2jarqUuAdPBR09qpFy9ecMFIaWkpV0HcyMioURcNM8bw5MkTZGVlwcHBQeaZ3SIiIjBlyhTs27cPY8aMkelnAfX73ViTcePGIScnB9HR0dy/xWIxjhw5IlWv4328vubj5MmTePjwIUxMTGBtbY0uXbpwx02dOhVisRj79u0D8Cq4kmVKakIaE43pEdIMREdHY9CgQTV2Hjw9PZGcnIznz5/XeG5qairEYjGGDBkCNTU1qKurY/r06VILK6Ojo2FtbV1jUStPT08UFhYiLi6u4W7oI6OiogJ3d3fs3r0b2dnZOHDgABQUFDB16lSYm5tj7ty5OHv2LIRCYb0+Jy0tjRs9aKipSwoKCtDT04OlpSUGDhyIHj16QEFBAXfv3sX58+eRnJyMnJwciMXien1Oamoqnjx50uzWTQBASkrKW4MP4NWUxo4dO6Jfv37o378/9PT08OzZM1y4cAFxcXFIT09HeXm5nFv+qu1ZWVmwt7eXefARHR2NqVOn4o8//pBL8CH5zA/93fgmoVCIGzduwMrKituWmpqK/Px89O7dGy1btoSOjg4WL15c559lxhgXfMycORPffPMN1q9fj5UrV2L27Nm4du0ad6yJiQkePnzI/VueKakJkTcKQAhpBrKystChQ4ca95mamgJ49Wa8JkKhEAkJCejYsSOOHTuG5cuX459//oGXlxdXfLE+1yfSlJWVMWzYMOzcuRPPnj3D4cOH0aJFC8yYMQMdO3bEnDlzEBUVhcrKyve6bkpKCp4+fQo7OzuZTV3i8XjQ1dVF165d4eTkxFWBv3//Ps6fP487d+5AIBBAJBK9d9tTU1Nhb2/frKqEA6/anp6e/tbg401qamowNTVF79694ejoCCMjIwgEAly6dAmxsbFITU1FWVmZjFv+qu0ZGRnclDFZunDhAsaPH48tW7bIdbF0Q/7u8vPzQ0ZGBlfTCXj1+zMmJgZDhgxBWFgYfH19ERQUhJkzZ9bpmpLR5sDAQERERGDPnj1IT0/Hl19+CYFAgHnz5uHChQsAXi1sf/DgAR48eCB1LiEfI5pPQUgTwOfza63EXtcMVLX9sQoJCUFsbCyXf3/EiBGwtLTEyJEjER0djSFDhtTr+qR2SkpKcHFxgYuLC7Zu3YqLFy9yi3NfvnwJT09PeHt7w8XFpdZCcJL5+8+ePXuvTnB98Xg86OjoQEdHBxYWFiguLoZAIMDDhw9RWVnJLb42MDCodfE9Y0yqE9zc0j5/SPDxppYtW6J9+/Zo3749KisruXU3jx8/hoaGhlQV9oaUmprKtV3WwcfVq1cxduxYrF27FlOmTGnQ3xWy/N34up07d2LdunVYvXq11OLy2NhY3Lp1iyueOGLECBgbG8PX1xdLly6Fubn5O69dWVmJCxcuYOrUqXB2dsbBgwexd+9e9OzZE/Hx8Vi4cCGCgoJgZmaGKVOmSE3LIuRjRSMghDQBJiYmaN26dY1fV65cgYmJCdLS0mo8NzU1lbtGTXg8XrXiX5JMK9evX+fO/dDrk7pRVFSEs7Mztm7divT0dJw4cQK6urr49ttvYWZmhunTpyM8PFzqzbhIJMKiRYuQnJwMBweHRuvA83g8aGtrw8LCAgMGDECvXr2gpqaGJ0+e4Ny5c7h16xays7NRVVXFnSMJnDIzMxu17R/qyZMn9Q4+3qSiooK2bdvCzs4OgwYNQvv27VFcXIzr16/jypUrePz4MUpKSmrtcNdVWloaN1om6+ceFxeHMWPGYNWqVZg1a1aDv6iQ5e9GidDQUHzzzTeYMWMG/Pz8pPYpKSlVq9w+btw4AK+CkzdFRUVBJBJVm7KooaGB/v374+zZs5g3bx6+++47HDx4EFOnTsWjR48wYcIEVFRUYOPGjW9tKyEfCxoBIaQJyMvLq7XToaGhARcXFwQGBuLly5fVMtiEh4fXmoq1rKwMgYGBmDhxIiwsLKT2Mca4ReUuLi7YvXs3MjMzq60DCQ8Ph46OjlTKXlI/ioqKcHJygpOTEzZu3Ihr167hyJEjWLRoEfLz8+Hu7o6RI0fif//7HxISEvD111/LfP5+XfF4PGhqakJTUxPm5uZ48eIF+Hw+UlNTcffuXW7xdXFxMVdvoqm0va6ePHmCjIwMODg4yGz0QFlZGW3atEGbNm1QVVWF3NxcCAQC3LhxAyoqKtzIyPvWa0lPT0dKSopcCiTeunUL3t7eWLp0KXx9fWUySiqr340SZ86cwfjx4/HFF19UKxabl5eHgIAALFu2rMapg28m5Vi7di22bduGp0+fSm1XUVHBxo0b0bp1a0yZMgWfffYZpk2bBuBVOu0RI0Zg1KhRdRpNIeRjQSMghDQB2tra3HSXN7+UlJQwZcoUCIVCrFy5Uuq8xMREHDx4EPPmzeO2lZaWcpXPlZSUsHXrVqn0lABw9OhRlJaWwtnZGcCrucetW7fGokWLpI7LyMjA5s2bMWvWLMqAJSMKCgro378/goKCkJKSgqioKLRp0wazZ8/GyZMn0bNnT9y9exelpaWN3dQaaWhooFOnTujXrx/69u0LbW1tPHr0CJmZmVBVVUVhYeF7r3dpTPIIPt6kpKSEVq1awcbGBoMGDULnzp1RWVmJmzdv4uLFi7h//z7y8/PfOTKSkZHBLfSX9Vqbu3fvYuTIkVi4cCF++OEHmU3RlNXvRgC4cuUKvL294eHhgb1791bL+CYSibB582Zs3rxZavv+/fuhqKgIR0dHqe1OTk6orKzEw4cPuf9Wkv+VZLPKy8uDmpoaKioqwOfzcfnyZQwZMgQTJkyo55MipHmhHgUhzUDr1q2xadMmzJgxA5mZmXB1dUVqaio2bNgAFxcXzJgxgzu2Z8+eyM/PR1paGjQ0NLBhwwZMmTIFFRUVcHNzw7179xAUFIQJEyZwVYhVVVWxa9cujBo1CsXFxRg7dixyc3MRFBSE9u3bY+nSpXK7V5FIJJWhS0JZWbnZvUl/XwoKCujZsycCAgJgbm6OwMBAREdHY/ny5Zg1axaGDx8Ob29vuLm5NckpTWpqaigvL4eSkhJ69OiBoqIiZGVl4d69e9DV1eXe6te23qWxPXnyhJsyJq/g402SApFGRkZS9Vpu374NALWmSM7MzMSjR4/kEnw8ePAAnp6emD17Nn788cdGXR/2ob8bc3NzMWLECGhpaeGLL75AeHi41HW9vb1hZGSEn376Cf7+/uDz+ejXrx+uX7+Obdu2YfHixWjTpo3UOQYGBnjx4gVu3bqFzp07A6i+/sTS0hJ79+7FgwcPkJqaCl1dXak2EvKpoDoghDQjYWFhWL16NZKSkmBoaIhJkybBz89PqsK5i4sL+Hw+bt68ydUfOHr0KFauXIm7d++iVatWmDZtGvz8/KqNaly6dAn+/v6Ii4uDpqYmxowZg+XLl9eYdenNtnz55Zfw8/ODqqpqre0vLy+Hv78/9u/fj+LiYtjb2yMwMBD9+vXjjpFUbn+Tl5dXtWrEH5uXL1/C29sbxcXFOHnyJPfcxWIxEhMTERwcjJCQEGRkZGDo0KHw9vbmOlGNjTGG5ORkFBUVwd7eXup7sqysjFt8XVRUBB0dHa4j/fpxjUWyWD4zM1Mui7Y/BGMMBQUF3HMUiUQwNDSEkZERKioq5Fbc8cmTJ3Bzc8P48ePx66+/NpkK3e/7u/HKlSsYPHhwrdd7vWu0c+dOBAUF4enTpzA1NYWvry/mzp1b43mff/452rRpg02bNknV/2CMccFIQEAAysvLoaamhsWLFzfE7RPS7FAAQgh5b7t378aMGTMwfvx4uLu7IyUlBUFBQejVqxciIiJqna7l7e2N6OhoLFmyBB06dMCuXbtw7do1xMbGwtraGgCwY8cOLF68uFqwYWBgIJWd5mO0bt06hIWFITw8vNYRDsYY7ty5gyNHjiAkJAQpKSkYOnQovLy84OHh8d5rBhqCWCxGcnIySkpKYG9v/9YRjvLycuTk5IDP56OwsBBaWlowNjaGkZHRW4NXWXm9UF9TDT7exBhDcXEx+Hw+nj17BqFQCF1dXbRt2xYGBgYymy6ZlpYGNzc3jBw5Eps3b24ywUdj+e2337gF8QMGDADwah3I/v37uRGr170ekBDyqaMAhBDyXrKzs2FhYYF58+ZJrS1JSEhAv379sHHjRsyZM6faebm5uRg8eDCWL1+O0aNHAwAqKirQrVs3ODk5Yc+ePQCAJUuW4PTp04iPj5fPDTUhIpEIlZWVde6IS0YdJCMjDx8+hIuLC7y8vDBy5Ejo6OjIPBgRi8VISkpCaWkp7Ozs3mt6lSQtLZ/PR0FBATQ1Nblg5M0FxbLQHIOP12VnZ+Pu3bvo3LkzKioqIBAIUFZWBj09PRgbG8PQ0PCDKnfX5NmzZxg+fDiGDh2K7du3f/LBR0pKCsaPH4/U1FRUVVXBxMQE7du3R6tWrRAVFYWoqCh07dq1sZtJSJNFAQgh5L2sWbMGgYGByMzMrLYmY9q0aYiNjUVSUlKdrzdu3Djk5OQgOjqa+7dYLMaRI0cgFAobrAP1sWOM4f79+1wwcvfuXTg7O8Pb2xsjR46Enp5egwcjYrEYt2/fRnl5Oezs7Lgpfx+isrISOTk5EAgEyMvL42pkGBsby2TtT3MPPp4/f467d++iR48e0NfX57aXlpZyQd2LFy+gq6vLBSMfuvbm+fPncHd3R9++ffHnn3/SW/zXSL5fT506hUePHuHWrVuIi4vD2LFj8eeff1LyDkJqQQEIIeS9DB8+HGpqajWuxwgNDcWYMWOQnZ391tSXEkKhEF26dMGIESOwZcsWAECfPn2goaGBkpISxMfHQ1NTE7NmzcKqVasoGKkjxhgePXrEBSO3b9/GwIED4e3tjVGjRsHAwKDewYhIJMLt27dRWVkJOzu7Bv1vIxQKpYIRNTU1qWCkvm1/PfhojmmC+Xw+kpKSYGNjA0NDw1qPk6y94fP5KC4uhra2NjfCVNe1Nzk5ORgxYgSsra1x4MAB6lC/4fW1HQBQUlKCxMREeHt7Y9iwYdi7d2+TWOdESFNDAQgh5L1069YNQ4cOxaZNm6rtS0hIgL29PW7cuFGnuiH/+c9/sHHjRty8eZNb32FnZ4fExEQsXrwYTk5OuHr1KlfLRDJNi9SdZIG1JBi5efMmBgwYAB8fH4waNQpGRkbv3aEXiURITEyESCSCra2tTANDSY0MPp+P3NxctGzZEsbGxjA2NoaGhsZ7t/31yvLNMfgQCAS4c+fOO4OPN0nW3ggEAm66mySoq226W0FBAUaMGIGOHTvin3/+oRcAbyEWi6WmpV2/fh2enp5cjaXmNsJGiKxRAEIIkcLn82utN6CnpwdbW9t3BiBxcXHVqge/aefOnZg1axZWr14tVX24qqoKt27dkjp/y5Yt8PX1xaNHj6hYVz0wxpCamorg4GCEhobixo0b6N+/Pzcy0rp163d26EUiEW7evAnGGGxtbeX6RlwkEkkFIyoqKtwbfS0trXe2vbkHHzk5Obh9+zasra1hZGT0wdeRTHfj8/nIz8+Huro6jIyMIBQK0blzZygoKKCoqAgjR46EsbExQkNDm2zq5Kbs1q1bsLOzw7Rp0/DHH380dnMIaVIoACGESFFSUoJIJKpxX0xMDH755Zd6T8EKDQ3F2LFjMW3aNOzcufOdbcrJyYGRkREOHjxIBbsaCGMMGRkZXDBy7do19OnTB97e3vDy8oKJiUm1Dn1JSQnu3bsHBQUF2NraNupaAJFIhLy8PAgEAuTk5EBJSYl7o19TJrDmHnzk5ubi1q1b6N69O4yNjRvsukKhELm5ucjIyICnpyd0dXXh4uKC+Ph4tG7dGmFhYTSFqB4ePnzITX0jhPwfCkAIIVKKiopqHQHR0NDAunXrEBgYiKysrGpTN+qyCP3MmTPw8PDA559/jn379klNW8jLy0NAQACWLVsmVUxNEoAcPnwYY8eOrecdkjcxxpCVlYWQkBCEhobi8uXLcHBwgLe3N7y9vdGuXTuucNuoUaPg5+fXpBYii8ViLhgRCARcMT9jY2Po6OgAAB4/fozs7GzY29s3u+AjLy8Pt27dgqWlJVdRWxaKi4tx6NAhrFixAsXFxWjbti3GjBmDMWPGoG/fvo2e+YoxJlXJXEJRUbFJFuYkhNTu086jRwipRltbGzo6OjV+KSkpYcqUKRAKhVi5cqXUeYmJiTh48CDmzZvHbSstLZXqMFy5cgXe3t7w8PDA3r17q3VoRCIRNm/ejM2bN0tt379/PxQVFeHo6CiDOyY8Hg9t27bFggULcO7cOaSnp+PLL7/EqVOnYG1tDUdHR/Tq1QstW7bEwoULm1TwAbyqIG9oaIhu3bph0KBB6NatG8RiMW7duoULFy7g2rVryMrKgp2dXbMLPvLz8+USfACAiooKwsPDYWlpiefPn2Pr1q0oKCjAyJEj0bZtW8ydOxclJSUN8llhYWHo27cvNDQ0YGZmhmXLlqGsrOyt5zx8+BC6urrVvpycnKode+nSJbi4uEBbWxtt27aFr68v8vPzG6TthJD6oxEQQsh7kxQinDhxIlxdXZGamooNGzagT58+CA8P5zqoFhYWyM/PR1paGnJzc9GzZ0+oqalh48aN1VK2ent7AwBWr14Nf39/zJkzB/369cP169exbds2LF68GKtXr5b3rX7SGGO4e/cu3NzcUFZWhsLCQtjY2MDHxwfe3t7o2LGj3Isevg+RSITk5GTk5ORw35OGhoYwNjaGnp5eo7/Rf5eCggLcvHkTXbt2RZs2bWT6WRUVFZg4cSJyc3MRFRXFjRwBr6ZpXbhwAZGRkQgMDKz3c/vQQqanTp2Cm5sbTp48KTUtTENDQyrpRWRkJEaNGoUhQ4bgiy++QG5uLjZs2ABDQ0NcuHABWlpa9Wo/IaT+KAAhhHyQsLAwrF69GklJSTA0NMSkSZPg5+cn1TFwcXEBn8/HzZs3ceXKFQwePLjW673+q2jnzp0ICgrC06dPYWpqCl9fX8ydOxfAq07lxo0bsXPnTmRmZsLc3Bzff/89Jk+e/Nb25uXlwd/fH8ePH0dJSQkcHBywatUq9OvXr9qxaWlpWLp0KU6fPg2hUAgnJycEBATAysrqfR9Ts8bn8zFkyBBYWVnhwIEDKCoqwtGjRxESEoKYmBhYWVlx07QsLCyaVDAiSUX8/PlzODg4QFVVFYWFhVxaWpFIJBWMNLVRncLCQiQkJKBz585o27atTD9LKBRi8uTJSE9Px9mzZ6Gnpyezz/rQQqYAsH37dixduhR5eXm1Xr+srAwWFhZwdHTEoUOHuO1paWmwt7fH119/jcDAwIa7IULIB6EAhBDSrEyaNAkhISHw9fWFjY0NLl68iF27dsHf3x/+/v41nlNYWAgnJycUFBRg4cKFMDAwwN9//41z584hPDwcw4YN445NT09H//79oampCV9fX7Ro0QI7duzAo0ePcO7cOfTo0UNet9qonj17hiFDhsDe3h579+6VeivNGEN+fj6OHTuGkJAQnD17Fl26dIGXlxe8vb3RtWvXRg1GGGN4+PAh+Hw+HBwcqq1VYoyhuLgYfD4ffD4fQqGQC0b09fUbPRgpLCzEzZs3YW5ujnbt2sn0s6qqqjB9+nTcvXsXMTEx75Xa90PUp5Dp4sWLER0djRs3bqCqqgqKiorVvs8OHTqEiRMnIi0trVrgtmLFCgQFBXFJCwghjYcCEEJIs3HixAl4eXkhIiIC7u7u3PatW7diwYIFSExM5OqJvO67777D/v37kZCQwHXoGGMYN24crl+/jgcPHnAjN6NHj0ZycjJiY2O5hfCVlZUYPHgwRCIRrl27Joc7bXxPnjzB9u3bsWbNmrd2yBljKCwsxPHjxxESEoLTp0+jU6dO8PLygo+PD6ysrOQajLwr+Kjp+JKSEi4YqayshIGBAYyMjGBgYCD3jmpRURESEhLQqVMntG/fXqafJRKJ8M033yA2Nhbnzp2T+RoToH6FTMeNG4fHjx9DR0cHFy9ehJKSEiZMmICgoCBuEfrMmTMRGxuLxMTEaudL0oRfvXoVffv2behbI4S8h6Y9AZYQQl6zbds2DBs2TCr4AIA5c+bAzMwM27dvr3aOUCjErl27sHDhQqm3yTweD2vXrkVGRgbCw8MBvJoecuzYMfz0009SWbhUVFQQEBCA69evIy4uTkZ317R06tQJa9eufedoAI/Hg66uLqZOnYqwsDA8f/4cS5YsQXJyMgYOHAh7e3ssX74cd+7cgVgslmmbJcGHQCCoU/Ahab+WlhYsLCwwYMAA9OrVC+rq6khJScH58+dx69YtZGdnQygUyrTtwKssVAkJCejYsaPMgw+xWIxvv/0WV69exZkzZ+QSfABAVlYWOnToUOM+U1NTAEBmZmaN+4VCIfd8jh07huXLl+Off/6Bl5cXN4WzPtcnhMgPjUESQpoFsViM8+fPIyAgoNo+BQUFuLu7Iyoqqtq+GzduoKSkBCNGjKi2r0OHDujevTvOnDmDzz77DDExMWCMVQtwAMDR0RHa2to4c+ZMnaq8f6p0dHQwadIkTJo0CcXFxQgPD0dwcDAGDx4MExMTeHt7w8fHBzY2Ng26CPz14MPe3r5OwcebeDweNDU1oampiU6dOuHFixcQCARITU1FcnIy9PX1YWxsDENDwwavCl5SUoKEhASYmZnV2oFuKGKxGIsWLcLZs2dx7ty5Bp3m9a5CpnVR24hZSEgIYmNj0adPHwDAiBEjYGlpiZEjRyI6OhpDhgyp1/UJIfJDAQghpFnIy8tDeXn5W99u1vRmMysrCwDqdF5WVha0tLSgq6tb7TgFBQW0b9+e3p6+By0tLUyYMAETJkxASUkJIiIiEBwcjOHDh8PIyAheXl4YPXo0bG1t6xWMNETwURMNDQ1oaGigY8eOKC0thUAgQHp6Ou7evQs9PT0YGRnByMioWka39/XixQvEx8ejQ4cO3Ft6WRGLxfjxxx9x4sQJnDt3rsE/z8TE5K2FTE1MTJCWllbj/tTUVO4aNeHxeFzwIeHh4QENDQ1cv34dQ4YMgYmJCWJjYz/o+oQQ+aEAhBDy0fjQN5vvcx69Pf0wmpqaGDduHMaNG4fS0lKcPHkSwcHB8PDwgJ6eHkaNGoXRo0fDwcHhvYIRxhgePHiAnJwcLtuVLKirq8PMzAxmZmYoKysDn8/Hs2fPcP/+fejq6nLBSIsWLd7rui9evEBcXBzatWsHMzMzmbRdgjGG1atX49ChQ4iJiYG5uXmDf0ZeXt5bC5m6uLggMDAQL1++rBYohoeHo1u3bjWu/ygrK0NgYCAmTpwICwsLqX2MMW6tjouLC3bv3o3MzMxqi9DDw8Oho6NDI5iENAG0BoQQ0izo6+ujZcuWb317WtObTcm2upxnYmKC4uJiFBQUVDtOLBYjIyOD3p42AHV1dXz22Wc4dOgQnj9/jqCgIOTl5cHLywtWVlZYtGgRrl69WuubdAl5BR9vUlVVhampKXr37g1HR0cYGhri+fPnuHjxIm7cuIH09HSUl5e/8zqlpaWIj49H27Zt0alTJ5m2mTGGtWvXYteuXTh9+jQsLS1l8jmyKmSqpKSErVu3SqXuBYCjR4+itLQUzs7OAAAvLy+0bt0aixYtkjouIyMDmzdvxqxZsygDFiFNAGXBIoQ0G25ubhCLxdXWeojFYnTp0gWurq7YsmWL1D6hUAh9fX0sWbIEfn5+UvvS0tJgZmaGf/75B5999hmys7NhYmKCAwcOYMKECVLHXrhwAYMGDcKNGzfoDaqMlJWV4fTp0wgODkZYWBjU1NQwatQo+Pj4oF+/flIL4sViMY4cOYI2bdrINfh4m4qKCggEAggEAhQUFEBLSwvGxsYwMjKq1r7S0lLExcWhTZs2MDc3l+nIGmMMmzdvxtq1a3HmzBnY2dnJ7LPq4kMKmWpoaGD//v2YMmUKJkyYADc3N9y7dw9BQUHw8fHBwYMHuetLChEOHz4cY8eORW5uLoKCgmBoaIjz589zGbMIIY2HAhBCSLMRFhaGUaNGITIyEq6urtz2bdu2Yf78+Vwa3tzcXGhpaXFz87///nvs27cPiYmJUiMYkjS89+/f59LwjhkzhkvDK6mYLBQKuTS8V69eleMdf7rKy8tx9uxZBAcH4/jx42jRogVGjhyJ0aNHo2/fvpg1axYuXLiAGzduyLRw3oeqrKzkgpH8/HxoamrCyMgIxsbGAIC4uDi0atVK5gUcGWPYvn07Vq5ciVOnTlVbQ9FY3reQqeRn+ejRo1i5ciXu3r2LVq1aYdq0afDz86s2qnHp0iX4+/sjLi4OmpqaGDNmDJYvX17j+i5CiPxRAEIIaVYmT56MkJAQzJ8/H9bW1rh8+TJ27NiB5cuXY+nSpUhJSYGlpSWcnZ1x6tQpAK9qKzg5OaGwsBALFy6Evr4+Dh06hOjoaPz7779S2XMkhQi1tbUxb948qKioYNeuXXjw4AHOnz8Pa2vrxrr1T1ZlZSWio6MRHByMo0eP4uXLl+DxeNiwYQPGjx/f4BmpGppQKEROTg74fD5XxVtLSwtWVlbQ0NCQ2ecyxrBnzx74+fnh33//hZOTk8w+ixBC3gcFIISQZkUkEmHjxo3YuXMnMjIyYGFhgR9++AGTJk0C8CoNqJ2dHdzc3LB7927uvLy8PPj7++PYsWMoKSlB7969sWrVqhoLkqWlpWHp0qWIiopCVVUVBg4ciICAAJnNm69JRUUFysrKqm1XVVV974XOHwuxWIxvvvkGx44dg7OzM2JiYiAWi+Hp6QkfHx8MHDiw3hmpZKmsrAxxcXFQU1ODoqIi8vLyoKqqyk3T0tDQaLDREMYYDh48iO+//x4nTpzA4MGDG+S6hBDSECgAIYSQeng9IMrMzIS5uTm+//57TJ48udZzMjIy8P333+PUqVNQUFCAq6srNmzYgDZt2nDH/Pe//6224BYAgoKC8O2338riVpo0sViMuXPn4tSpUzh37hzat2+PqqoqXLhwAUeOHMGxY8dQWVkJT09PeHt7Y/DgwU0qGCkvL0dcXBz09PRgaWkJHo+Hqqoq5Obmgs/nIzc3Fy1btuSCEU1NzXoFI0eOHMHcuXMREhIiNV2REEKaAgpACCGkHiZNmoSQkBD4+vrCxsYGFy9exK5du+Dv7w9/f/9qxxcVFaFHjx5QVlbGf/7zHwBAQEAAlJWVkZiYyKUmHT9+PLKzs/Hzzz9LnW9ubl4tvein4LvvvsPx48cRExNTY5VwkUiEixcvSk3T8vDwgLe3N1xcXKTWFshbRUUF4uLioKOjAysrqxoDC5FIhNzcXAgEAuTk5EBFRYVbM6KlpfVewcjx48cxffp0HDp0CCNHjmzIWyGEkAZBAQghhHygEydOwMvLCxEREVLV07du3YoFCxZwi+Jfd+HCBUyZMgUXL17kAonHjx/DwsICe/fuxZQpUwAAffv2xYABA7B+/Xr53VATduXKFbRt27bG4ONNIpEIV65c4YKR4uJiuLu7w9vbG0OHDpVrxqyKigrEx8dDS0sL3bp1q1MgIRKJkJ+fDz6fj5ycHCgpKXHBiLa29luvERERgSlTpmDfvn0YM2ZMQ94KIYQ0GApACCHkA31IWmDg1fz8NzuRxsbGmDt3LjdqYmxsDH9/f8ydOxeVlZVNajpRcyIWi3Ht2jUEBwcjNDQU+fn5cHNzg7e3N4YPH95gVdNrUllZyWVh6t69+wdNqRKLxVLBCI/H46Zp6erqSl3z7NmzGD9+PP744w+MHz++IW+FEEIaFBUiJIQ0qpKSksZuwgcRi8U4f/48RowYUW2fgoIC3N3dcebMmRrPfbMj+ujRI+Tk5MDKygoA8PLlSwgEAly5cgWmpqZo0aIFTE1N8ddffzX8jXzkFBQU0L9/f2zYsAEpKSk4ffo0OnTogGXLlsHU1JSbQldaWtqgn1tZWYn4+HhoaGjUeeSjtvYbGBigW7duGDhwILp37w6xWIw7d+7g888/x5dffomjR4/i7NmzmDBhArZs2YIvvviiQe+FEEIaGpUDJYQ0qunTp6OyshKHDx9uVm/58/LyUF5ejg4dOtS439TUFJmZme+8TmVlJb766it06NABnp6eAICCggJoamoiIiICAQEBaN26NQ4fPoypU6cCADdNi7wfBQUF9OnTB3369EFgYCASEhIQHByMlStXYvbs2Rg2bBi8vb3h7u5er2J1QqEQCQkJUFNTQ/fu3aGg0DDv+hQUFKCvrw99fX0wxlBWVoZ//vkH33zzDYqLi9G/f38YGRlBKBQ2mZ+lqqoqvHjxotb9WlpaUFBQgEgkqvFlhLKyMtTV1WXZREJII6AREEJIo/Lx8cHVq1eRlZUF4FWHBXiVNai5e9dbb8YYpk2bhtjYWOzZs4dbKG1iYoK0tDRcv34ds2fPhpeXF/7++2+MGTMG/v7+oJmz9aegoAAHBwesWbMG9+/fx6VLl2BlZYWAgACYmppi3Lhx+N///oeioqL3uq5QKER8fDxatmwJa2vrBgs+3sTj8eDm5oZvvvkGAODr64vevXtj9uzZMDIywuTJk3HixIkG/zkKCwtD3759oaGhATMzMyxbtqzGdNESly5dgq6ubq1f6enpAIAzZ87UuH/ixIkN2n5CSNNAAQghpFE5OzujuLgYqampAAAlJSWUl5dj0qRJsLW1xdOnTxu3gbXQ19dHy5YtkZaWVuP+1NRUqarrNfnuu+/w999/Y/fu3XB2dpbap6uri86dO0ttGzduHNLT05GdnV2vthNpCgoKsLW1xS+//IL79+/j+vXr6NmzJzZs2AAzMzN8/vnnOHjwIAoLC98a/ElGPlq0aAEbGxuZBR8St27dgpeXF3788Uds2rQJQUFBSEtLQ1RUFFq1aoWFCxciPDy8wT5v9+7d8PLyQqdOnbB9+3Z89dVX2LJlC7y8vLgXB2/q2bMnYmJiqn2NGTMG6urqXGXy1NRUaGtrVztu1apVDdZ+QkgTwgghpJGIxWJWWVnJXFxc2IwZMxhjjCUnJzM3NzdmZGTETpw40cgtfDtXV1c2bNiwattFIhEzNzdnc+fOrfXc5cuXMwDs999/r7bvzp077Mcff6y2/fDhwwwA4/P59Ws4qROxWMySkpLYTz/9xKytrZmKigpzdXVlv//+O8vIyGAvXrxgpaWlrLS0lGVmZrLFixezixcvspKSEm67rL5u3LjB9PX12cqVK5lYLK61/VVVVQ3yLJ49e8bU1dXZ4sWLpbbHx8czFRUVtm3btjpfSyAQME1NTebn58dtW7x4MbOzs2uQthJCmj4aASGENCplZWVYWFigpKQEe/fuxZgxY1BZWYnw8HCMHDkSYrG4sZtYq7lz5+L06dM4deqU1Pbt27fj6dOnmD17NgAgNzcXlZWV3P5Nmzbhp59+wvr167ljXvf48WOsWrUKFy5ckNp+4MABWFlZwcjISAZ3Q97E4/HQrVs3/Pzzz7h16xYSExMxYMAA7NixAx07doS3tzf27t2LlJQUuLu74+zZs+jWrZvMRz4ePHgAT09PzJ49G0uXLq11qh+Px4OiomKDfOZff/0FZWVlLFu2TGq7nZ0dJk6ciK1bt9b5WitXroSysjIWLVrEbXv69Ck6duwI4NVIEiHk40ZpeAkhje7MmTNwd3eHSCTCDz/8gCVLlkBPT6/W48ViMRhjDda5qo/JkycjJCQE8+fPh7W1NS5fvowdO3Zg+fLlWLp0KVJSUmBpaQlnZ2ecOnUKR48exZgxYzBw4MBqFc0NDAzg6OgIxhhcXV1x48YNLFq0CG3atMGRI0cQGRmJ8PBwuLm5Nc7NEgCv1u48evQIwcHBOHLkCBITE6GpqYlly5bh888/h6GhYb2qmL/NkydP4ObmhvHjx+PXX3+VebAjIUlZfOzYsWr7QkNDMWbMGGRnZ6NVq1Zvvc7Tp0/RtWtXrFq1iivECQB9+vSBhoYGSkpKEB8fD01NTcyaNQurVq2CsrJyQ98OIaSRURYsQkijio+Px4EDByASifD555/j119/feuoh1AobFIdkj179qBHjx7YuXMnNm3aBAsLC+zZsweTJk0CAKirq8PAwIArOnjr1i0wxnD+/HmcP39e6lqDBg3CuXPnwOPxcOzYMfz000/47bffUFhYCFtbW0RGRmLo0KEN1nahUFhj+tkWLVrItVhfc8Pj8dC5c2csXLgQZ8+eRe/eveHp6Yng4GD4+flhwIAB8Pb2xqhRo2BsbNxgwUhaWho8PT0xevRouQYfAJCVlVXr956pqSkAIDMz850ByI8//ghDQ0PMmzdPartQKERMTAwWL16Mn3/+GVevXkVgYCAEAgH27NnTIPdACGlCGnP+FyHk0ySZlx4aGspMTEzY559/zmxsbNhnn33GRCJRjXPa+Xw+W7FiBRsyZAhzcnJiO3fuZC9fvpQ6RiQSMZFIJJd7aGqqqqrYunXrWOfOnZmamhqzsbFhf/3111vP2b59OwNQ7WvBggXVjv3zzz+ZjY0NU1NTY507d2YbNmz4ZJ81Y4yVlZWx4cOHM0dHR1ZSUsIYe7XmIiUlha1du5b169ePKSoqMicnJ7Zu3Tr26NEjqTUj7/v16NEjZmZmxmbOnCmT5/78+XOWnZ1d41dFRQWzsrJi8+fPr/Hc+Ph4BoDFxcW99TNu3rzJeDwe27FjR7V9QqGw2vm//fYbA8AePXr04TdGCGmSaA0IIUTuFBUV8eeff2LChAnw8PDAX3/9hcDAQMTExCAjI6PGN8bp6elITExE//794ejoiDVr1khNYRKJRFBQUKj2VlgymiIQCJCYmCjL22pUU6dOxbJly+Dt7Y2dO3eiX79+mDZtGlasWFHrOampqejSpUu1zENvvp1etmwZZsyYgQEDBmDnzp3w8vKCn58fpk+fLuvbarJmzpyJkpISREREQENDA8CrkREzMzP88MMPuHz5MlJSUuDj44OjR4+ia9euGD58OLZs2YKMjIz3SqX8/PlzeHh4wMnJCdu2bZPJyIeJiQlat25d49eVK1e41NA1kWSwe1fWt8WLF8Pc3BzTpk2rtk9JSQn29vZS28aNGwcAiI2N/YA7IoQ0aY0dARFCPi2FhYXMw8ODGRoaMn9/f257amoq09PTYydPnqz13BcvXnD/PyoqimloaLCQkBDGGGPff/89++KLL2p9O3z48GHG4/FYVFRUA91J03H8+HEGgEVEREht37JlC1NUVGR37typ8bxx48ax0aNHv/XaiYmJTEFBoVq2rrCwsBo/81Nx7949VlhYWKdjxWIxy8jIYJs2bWIDBw5kioqKrE+fPuyXX35hd+/efevISGpqKrOysmJffPEFEwqFMrufwsJCVlBQUOOXUChkAQEBTEdHh5WWllY796uvvmLdunV76/Wjo6MZAHbo0KFq+3Jzc9n3339f7XkKBAIGgB0+fLh+N0cIaXIoACGEyFV5eTnbvHkzO3v2LLetoqKCMcbYkCFD2MyZMxljTKqzlZiYyD777DPWrVs3ZmpqyhYsWMAEAgEzMDDgphmFh4czMzMzdu/ePcYYY/n5+ezEiROsoKCAMfYqte13333H8vLy5HGbcvWh6YB79+7NfvjhB8bY//03eNOsWbNYly5dapwWN3jwYObh4VGPln96xGIxy8rKYlu2bGHOzs5MSUmJOTg4sFWrVrE7d+5IBSMZGRnMxsaG+fj4sMrKykZttyQN75IlS6S237x5k6moqEgFqC9evKgWTPTq1YvZ2trWOr1SWVmZrVixQmr7+vXrmaKiIsvKymrAOyGENAUUgBBCmozvv/+e2dnZSXVe+Hw+c3FxYfb29iw0NJQdPHiQjRs3jvXp04eZmJiwsLAwxtirOfmGhoYsMjKSVVRUMFdXV6apqcn+/PNPxhhjp0+frtaJE4vFTCgU1lpHoTkQiUSsZcuWLCgoqMb9vr6+rEuXLjXuMzIyYl5eXszS0pLxeDxmZGTEfv31V6nnYWFhUeOaEMZedRBVVVWb9fNrTGKxmGVnZ7Pff/+dDRkyhCkpKTFbW1u2fPlydvnyZWZvb888PDxqDQ7lbdeuXYzH47Evv/yS7d+/n61cuZLp6uoyNzc3qXoj5ubmTE9Pj1sbI6lf87bRzVWrVjEFBQU2d+5cduDAAebr68sUFRWlaoUQQj4eFIAQQpqM27dvs8GDB7Ps7GxuW1FREVNTU5OauiEUCtmgQYOYk5MTS05O5rYvWrSIOTg4MFdXV9a9e3f24MEDxhhj9+/fZzwej128eJExxlhlZSU3MtLcSaaphIaG1rh//fr1TF1dvdp2oVDIDA0NmYqKCgsMDGRhYWFs3rx5jMfjsZ9//pk7Tk1NjW3YsKHGa4eEhDAALCcnp2Fu5hMmFouZQCBgO3bsYMOHD2c8Ho917dqVlZWVNXbTpJw4cYL16dOHqaurM1NTU7Zs2bJqbRw8eDCzsrLiAqfo6Gg2a9asd157x44drGvXrqxFixasS5cubMuWLTK5B0JI46M0vISQJsPa2hrR0dFS21q2bIkJEybgzz//RPv27aGtrY3Y2FjcuXMHkydPllr4+vz5c8THx8PPzw+7d+/m9oWHh8PU1BSOjo64f/8+1q9fj4sXLwIAZsyYgVmzZnELiT9GNS3qV1JSQmpqKh4/fgwbGxsAgKenJ1q0aIFff/0VCxcuhJaW1gdfn7wfHo8HQ0NDzJw5EzNmzEBycjK0tbXRsmXLxm6alJEjR2LkyJFvPebNn+HBgwdj8ODB77z2zJkzMXPmzHq1jxDSPFAWLEJIk6aiooKFCxeiqqoKzs7OWLp0KdasWYMWLVpg0KBB0NbWRlFREXx8fJCYmAgejwcfHx+YmJhwGbAOHz4MDw8PAICfnx8iIiKwYsUKfPXVV9i1axd+++23xrzFetHX10fLli3fmqGotuxEampqXPAhMW7cOLx8+RJJSUkA8M7sR6qqqm8tGkneH4/HQ/fu3dGuXbvGbgohhMgEBSCEkCbPysoKZ8+eRU5ODjZv3owlS5bAwsICZmZmOHr0KNzc3PD06VNs3boVn332Gfbu3QsAUFBQwJMnT5CQkIAvvvgCAKCqqopRo0Zh7NixWLx4MSZOnIhz587V2slu6hQUFDBo0CBERERU2ycWi3Hy5MkaC8ilpaXhu+++q1b0kf3/9LBKSq8GyF1cXBAZGVlj2tjw8HC4uLjQCAghhJD3QgEIIaTZ0NLSQrt27TB16lScOXMGZmZmCA0NRbdu3XD06FE4Ojqic+fOUnUDwsLC0KpVK/Tp0wcA8O233yIiIgI+Pj44d+4cfvzxR0RGRnKVypujuXPn4vTp0zh16pTU9u3bt+Pp06eYPXs2ACA3NxeVlZUAgIKCAgQFBeHgwYNS5xw4cAC6urrcyMicOXPw6NEj7Ny5U+q4iIiIGmuGEEIIIe9Ca0AIIc2SsrIylJWVsX//fqntnp6e+PXXX3HmzBkMHToU//zzD8aMGQMlJSUkJSWhV69eSExMxK+//opVq1ahtLQUHh4eUFRUbKQ7qb+RI0di0qRJGD16NObPnw9ra2tcvnwZO3bswPLly9G9e3ekpKTA0tISzs7OOHXqFHr27Inp06dj5syZuHfvHqysrBAVFYX9+/dj586d3NqDHj16YOnSpZg3bx7u3LmD/v374/bt29i8eTOmT58ONze3Rr57QgghzQ2P1TSuTgghzdjhw4e5EY+OHTvizJkz6NGjBxwdHTF//nzMmTMHlZWVWLBgAZKTkxESEgJDQ8NGbnX9iEQibNy4ETt37kRGRgYsLCzwww8/YNKkSQAAPp8POzs7uLm5Yffu3dw5gYGB+OOPP/D8+XN07doVS5Ys4SpQv27Pnj0ICgrC48eP0a5dO8yZMwfz589v0Krc5eXlKC8vr3GfgoICtyi+oqICZWVl1Y5RVVVFixYtGqw9hBBCZIMCEELIR4sxhsjISLi6uoLH48HPzw8XLlyAn58fevXqhS1btmDfvn04ffo0LCwsGru5H53Xg6LMzEyYm5vj+++/x+TJk2s8/ueff8by5ctr3NehQwekpqYCAP773/9izZo11Y4JCgrCt99+21DNJ4QQIiM0BYsQ8tHi8Xhwd3fn/r1gwQJkZ2dj7NixMDIygrGxMSZPnkzBh4xMnToVISEh8PX1hY2NDS5evIhp06YhNTUV/v7+NR7v7OxcbfuMGTNgbGzM/Ts1NRWDBg3Czz//LHWcubl5Q98CIYQQGaAREELIJ+nSpUto1aoV12lljFE2pwZ04sQJeHl5ISIiQioI3Lp1KxYsWIDExER07979ndeJjIyEu7s7oqKiMGzYMABA3759MWDAAKxfv15m7SeEECI7lAWLEPJJcnR0lHpjTsFHw9q2bRuGDRsmFXwAr7JqmZmZYfv27e+8BmMM//3vf+Hi4sIFHwDw9OlTdOzYEQC4rF6kdlu3bkWLFi1w//79tx6XlJSEUaNGQU9PD8bGxpg0aRIyMjJqPPbSpUtwcXGBtrY22rZtC19fX+Tn58ui+YSQjxAFIIQQQhqUWCzG+fPnMWLEiGr7FBQU4O7ujjNnzrzzOgcPHkRiYiICAgK4bS9fvoRAIMCVK1dgamqKFi1awNTUFH/99VeD3sPHoLi4GGPHjsW8efPeGajdvHkTAwYMgEAgwNq1a/HTTz8hNjYWjo6OyMzMlDo2MjISLi4uaNGiBTZv3oyFCxciNDQULi4uKC4uluUtEUI+EjQFixBCSIPKycmBkZERQkND4ePjU23/hg0b4O/vjxcvXtR6jcrKSnTt2hU9e/ZEaGgotz0rKwuWlpZQVFREQEAAWrdujcOHD+N///sf9u7diylTpsjknpojZ2dnJCcn4+uvv0ZgYCDu3buHrl27VjuOMYZevXpBVVUV0dHRUFZWBgAUFhaiV69esLOzw+HDhwEAZWVlsLCwgKOjIw4dOsRdIy0tDfb29txnEULI29AidEIIIXL3rilvv//+O9LT0/Hvv/9KbTcxMUFaWhpycnLQuXNnAICXlxcqKyvh7++PyZMn03S6/2/lypUwMzPD48eP3xoUXL9+HfHx8bh8+TIXfACAjo4Oli1bhq+++goCgQBGRkY4fvw4srOzsW7dOqlrdOjQAfPnz0dQUBBWr14NJSXqXhBCakdTsAghhDQofX19tGzZEmlpaTXuT01NhYmJSa3nl5SUYPXq1Zg0aRIsLS2r7dfV1eWCD4lx48YhPT0d2dnZ9Wv8R8TJyQlt27Z953HR0dHQ1dVFv379qu3z8PCAWCxGdHQ0d6y1tXWN1/X09ERhYSHi4uLq33hCyEeNAhBCCCENSkFBAYMGDUJERES1fWKxGCdPnsTQoUNrPX/t2rUoLi6usSZIUlISli1bVm27ZDYxvXl/f1lZWWjXrl2NI0f6+vrQ1NTk1oFkZWWhQ4cONV7H1NQUAKqtGSGEkDdRAEIIIaTBzZ07F6dPn8apU6ektm/fvh1Pnz7F7NmzAQC5ublSC6T5fD42bNiAOXPmoH379tWu+/jxY6xatQoXLlyQ2n7gwAFYWVnByMhIBnfTNPH5fDx//rzGr4bODvY+09poChwh5F3oVREhhJAGN3LkSEyaNAmjR4/G/PnzYW1tjcuXL2PHjh1Yvnw5unfvjpSUFFhaWsLZ2ZkLVJYvXw4FBQX4+fnVeF0vLy8MGzYMXl5eWLRoEdq0aYMjR44gMjIS4eHh8rzFRmdiYgKRSFTjvpiYmBqLOtZ2nYyMjBpr4eTl5aGkpISbMmdiYoLY2NgaryOpVP+26XWEEAJQAEIIIURG9uzZgx49emDnzp3YtGkTLCwssGfPHkyaNAkAoK6uDgMDA6n1BNbW1lixYgUMDQ1rvCaPx8OxY8fw008/4bfffkNhYSFsbW0RGRn51mldH6O8vDzUlshSQ0OjztdxcXHB0qVLcfXqVfTv319q37///gsFBQW4uLhwx+7evRuZmZnV1oGEh4dDR0cHDg4O73knhJBPDaXhJYQQ8kkoKyvD/PnzER4e/tbF6mFhYVi9ejWSkpJgaGiIL7/8En5+flBVVa127J49e7Bx40Y8fvwYbdu2xezZs7FgwQIoKDSdGc7nzp3D4MGDpdLwPnv2DG3atAHwf2l41dTUEB0dza2jKSoq4tLwSlLuStLwDhw4EH///Tf3GRkZGbC1tcX06dOxZs0aOd8hIaS5aTq/IQkhhBAZefjwIfr27Ytdu3bVOmoAALt374aXlxc6deqE7du346uvvsKWLVvg5eWFqqoqqWOXLVuGGTNmYMCAAdi5cye8vLzg5+eH6dOny/p26uXgwYMwMTHhCjzyeDz88ccfuHXrFgYNGoTdu3fj999/R9++fVFZWYn169dz56qqqmLXrl0IDg6Gp6cn9u3bhw0bNqB///5o3749li5d2li3RQhpThghhBDyESsoKGDa2tqsR48ebOLEiczY2LjG4549e8bU1dXZ4sWLpbbHx8czFRUVtm3bNm5bYmIiU1BQYL///rvUsWFhYQwAi4iIaPgb+UAxMTEMALt37x5jjLHIyEimqanJ9uzZI3XcnTt32MiRI5muri4zNDRkkyZNYhkZGTVe8+LFi2zw4MFMU1OTtWnThvn6+rL8/HxZ3woh5CNBU7AIIYR89I4ePQp3d3esWbMG27dvx/Pnz6sds2bNGgQGBiIzMxPq6upS+6ZNm4bY2FgkJSUBAGbPno1z587h3r171RZuu7i4QE1N7ZNbFE8IIXVFU7AIIYR89Hx8fNCyZcu3HhMdHY1BgwZVCz6AV0X2kpOTucAlOjoabm5uNaac9fT0RHR09FunehFCyKeMAhBCCCEE71dk713HlpWVIS8vTybtJISQ5o4CEEIIIaSOqCAfIYTUHwUghBBCCF4V0EtLS6tx35tF9t51rKqqKvT09GTSTkIIae4oACGEEELwavH4+fPn8fLly2r7wsPD0a1bN7Rq1Yo7NjIyssZ1HuHh4XBxcaEREEIIqQUFIIQQQj5JIpEIfD6f+/eUKVMgFAqxcuVKqeMSExNx8OBBzJs3j9s2Z84cPHr0CDt37pQ6NiIiAjExMVLHEkIIkabU2A0ghBBCGsPs2bPx559/4sKFCxgwYABat26NTZs2YcaMGcjMzISrqytSU1OxYcMGuLi4YMaMGdy5PXr0wNKlSzFv3jzcuXMH/fv3x+3bt7F582ZMnz4dbm5ujXhnhBDStFEAQggh5JNkYmICHR0daGtrc9u+/vprGBkZYfXq1Th69CgMDQ0xb948+Pn5QVFRUer8FStWwMzMDEFBQfjzzz/Rrl07/PLLL5g/f768b4UQQpoVKkRICCGEEEIIkRtaA0IIIYQQQgiRGwpACCGEEEIIIXJDAQghhBBCCCFEbigAIYQQQgghhMgNBSCEEEIIIYQQuaEAhBBCCCGEECI3FIAQQgghhBBC5IYCEEIIIYQQQojcUABCCCGEEEIIkRsKQAghhBBCCCFyQwEIIYQQQgghRG4oACGEEEIIIYTIDQUghBBCCCGEELmhAIQQQgghhBAiNxSAEEIIIYQQQuSGAhBCCCGEEEKI3FAAQgghhBBCCJEbCkAIIYQQQgghckMBCCGEEEIIIURuKAAhhBBCCCGEyA0FIIQQQgghhBC5oQCEEEIIIYQQIjcUgBBCCCGEEELkhgIQQgghhBBCiNxQAEIIIYQQQgiRGwpACCGEEEIIIXJDAQghhBBCCCFEbigAIYQQQgghhMgNBSCEEEIIIYQQuaEAhBBCCCGEECI3FIAQQgghhBBC5IYCEEIIIYQQQojcUABCCCGEEEIIkRsKQAghhBBCCCFyQwEIIYQQQgghRG4oACGEEEIIIYTIDQUghBBCCCGEELmhAIQQQgghhBAiNxSAEEIIIYQQQuSGAhBCCCGEEEKI3FAAQgghhBBCCJEbCkAIIYQQQgghckMBCCGEEEIIIURuKAAhhBBCCCGEyA0FIIQQQgghhBC5oQCEEEIIIYQQIjcUgBBCCCGEEELkhgIQQgghhBBCiNxQAEIIIYQQQgiRGwpACCGEEEIIIXJDAQghhBBCCCFEbigAIYQQQgghhMgNBSCEEEIIIYQQuaEAhBBCCCGEECI3FIAQQgghhBBC5IYCEEIIIYQQQojcUABCCCGEEEIIkRsKQAghhBBCCCFyQwEIIYQQQgghRG4oACGEEEIIIYTIDQUghBBCCCGEELmhAIQQQgghhBAiNxSAEEIIIYQQQuSGAhBCCCGEEEKI3FAAQgghhBBCCJEbCkAIIYQQQgghckMBCCGEEEIIIURuKAAhhBBCCCGEyA0FIIQQQgghhBC5oQCEEEIIIYQQIjcUgBBCCCGEEELkhgIQQgghhBBCiNxQAEIIIYQQQgiRGwpACCGEEEIIIXJDAQghhBBCCCFEbigAIYQQQgghhMgNBSCEEEIIIYQQuaEAhBBCCCGEECI3/w/C55wiAWO9AgAAAABJRU5ErkJggg==" } }, ] }, { "role": "user", "parts": [ { "text": "it made two outputs, a white one and a sphere plot, and said an internal error occurred, but it seems to have worked." }, ] }, { "role": "model", "parts": [ ] }, { "role": "user", "parts": [ { "text": "oh hrm now it's continuing to fail in the conversation." }, ] }, { "role": "model", "parts": [ ] }, { "role": "user", "parts": [ { "text": "INSERT_INPUT_HERE" }, ] }, ], "generationConfig": { "temperature": 0, "topP": 1, "responseMimeType": "text/plain", }, "tools": [ { "codeExecution": {} }, ], } EOF curl \ -X POST \ -H "Content-Type: application/json" \ "https://generativelanguage.googleapis.com/v1beta/models/${MODEL_ID}:${GENERATE_CONTENT_API}?key=${GEMINI_API_KEY}" -d '@request.json'