Exponomial Accumulation of Possible Necessities

Farrel Al Feshal

Abstract

This formula does not come from students who are good at mathematics, nor from students who always answer on the board when the mathematics teacher is in class. I was not a vocal person in school. At 5th grade, I slowly fell in love with mathematics and created a personal blueprint as a life map, with only two questions at age 11:

1. When will I be 17 years old? 2. What do I need to do at productive age? I did not explicitly write the formula on paper at the time, but here it is:

$$F(i) = \gamma^{i/R} \tau \sum_{j=0}^{i} S_j \phi^j$$

I need to accept reality—no matter the failures in each episode that I cannot predict for sure. The life map with this mathematical formula is only possible when I feel late to continue learning. I finally believe that **possibility will be possible**, and we can accumulate. This calculation is based on **Every Accumulated Life Value Exposed**, through weighted summing, focusing on what we truly need, rather than defending unnecessary things.

1 Introduction

At 5th grade, I began reflecting on life mathematically. Using only the two questions above, I created a life map to model **accumulated possibilities**. The Exponomial function formalizes this idea:

$$F(i) = \gamma^{i/R} \tau \sum_{j=0}^{i} S_j \phi^j$$

It measures cumulative life potential through weighted experiences, providing insight into personal growth and decision-making.

2 Recursive Mentality

When facing fear in choosing a life path or feeling like living passively (as an NPC), the Exponomial can quantify outcomes.

Example calculation at age 11:

- $S_i = 1$ for j = 0..11
- $\phi = 1.1, \gamma = 1.05, R = 20, \tau = 1$

$$F(11) = \gamma^{11/20} \tau \sum_{j=0}^{11} 1 \cdot 1.1^j \approx 1.0269 \cdot 21.38 \approx 21.95$$

Reflection:

- Living passively results in minimal accumulation; life loops recursively with little growth.
- Choosing the "1% life" path maximizes weighted experiences and growth.
- Even small, consistent contributions $(S_i = 1)$ create significant cumulative potential.

Conclusion: Actively pursuing meaningful experiences is mathematically and philosophically superior to passive repetition.

3 Expressist Philosophia

At age 13, every moment—measured in tens of thousands of seconds—contributes to life's accumulation. Using:

$$F(i) = \gamma^{i/R} \tau \sum_{j=0}^{i} S_j \phi^j$$

- $11/29 \approx 0.55$
- Weighted sum: $F(11) \approx 1.0269 \cdot 21.38 \approx 21.95$

Philosophically, this expresses **personal growth and nostalgia**: reflecting on past experiences, repetitions, and life choices.

- Nostalgia is optional; what matters is **accepting reality**.
- At 19, reflecting on past crises and mathematical calculations, I realize it is never too late to learn, to try, and to accumulate life potential.
- Each failure contributes to weighted growth; life is cumulative, not instantaneous.

References

- 1. Al-Khwarizmi, Muhammad ibn Musa (780–850). Al-Kitab al-Mukhtasar fi Hisab al-Jabr wal-Muqabala.
- 2. Omar Khayyam (1048–1131). Treatise on Demonstration of Problems of Algebra.
- 3. Sharaf al-Din al-Tusi (1135–1213). Risalah tentang Persamaan Kubik.
- 4. Al-Samawal, Al-Karaji (953–1029). Al-Badi fi Hisab al-Jabr.
- 5. Kamāl al-Dīn al-Fārisī (1265–1318). Contributions to number theory and numerical equations.
- 6. Ibrahim al-Fazari (8th Century). Introduction of decimal numbers to Islamic mathematics.
- 7. Nasir al-Din al-Tusi (1201–1274). Treatise on Trigonometry and Mathematical Astronomy.
- 8. Roshdi Rashed (1947–). Historian of mathematics focusing on Islamic contributions.
- 9. Omar Masmoudi (Contemporary, Tunisia). Modern analysis and partial differential equations.
- 10. Faisal Al-Faisal (Contemporary, Canada). Number theory and arithmetic geometry.