Perhaps you'd care to publish your p, g, and g^k here on the list, so we can begin hacking them while you finish your pre-launch checkout. :) -- Eric Michael Cordian 0+
Lucrative mints support an arbitrary number of simultaneous series, so the g, p, and g^k components will vary, but here's a set to work on. p is straight from Ben Laurie's Lucre paper (8.1). (8.2) gives us a good g as well: 4. g=4 p=ffffffffffffffffc90fdaa22168c234c4c6628b80dc1cd129024e088a67cc74020bbe a63b139b22514a08798e3404ddef9519b3cd3a431b302b0a6df25f14374fe1356d6d51c2 45e485b576625e7ec6f44c42e9a637ed6b0bff5cb6f406b7edee386bfb5a899fa5ae9f24 117c4b1fe649286651ece45b3dc2007cb8a163bf0598da48361c55d39a69163fa8fd24cf 5f83655d23dca3ad961c62f356208552bb9ed529077096966d670c354e4abc9804f1746c 08ca237327ffffffffffffffff public=1fd29bb747e2db8f3389d7be7abc1a6abb6d7f698f7eb85b49fb83d41be883cd5 de6d6afb802913c5df7621688b91ee647971742fbf8f5ec82873ea72dedfe755e95fe6eb 30d4143645ac43d8660a5d54d837aabaa56be93598a452b6bf951a1be342c4b3dd53a0a5 64bdabb6802f408472a9bdfefea909bc224af381d52bb3b4e21401888b2b053b82d422d1 ac0a6f2ae35d33da9b1b69951eeef73d09da617ad01cb18017374423de47ee3de33730ac be0a86f55c2764f9a01e377175b785d Knock yourself out! If you can identify a weakness, I would be very grateful. Patrick http://lucrative.thirdhost.com/