http://linuxdevices.com/articles/AT2656883479.html [ker-snip] The third one, is one you haven't asked me about, this is actually my pet hobby, here -- we've added these fully sophisticated and very powerful security instructions into the... Q19: That was my last question! A19: So the classic question is, hey, you built some hardware, who's going to use it? Well, the answer is, six months after we first started shipping our product with encryption in it [story], we have three or four operating systems, including Linux, OpenBSD, and FreeBSD, directly supporting our security features in the kernel. Getting support that quickly can't happen in the Microsoft world. Maybe they'll support it someday, maybe they won't. Quite honestly, if you want to build it, and hope that someone will come, you've got to count on something like the free software world. Free software makes it very easy for people to add functionality. You've got extremely talented, motivated people in the free software world who, if they think it's right to do it, will do it. That was my strategy with security. We didn't have to justify it, because it's my hobby, so we did it. But, it would have been hard to justify these new hardware things without a software plan. My theory was simple: if we do it, and we do it right, it will appeal to the really knowledgeable security guys, most of whom live in the free software world. And those guys, if they like it, and see it's right, then they will support it. And they have the wherewithal to support it, because of the way open software works. So those are my three themes, ignoring the fourth one, that's obvious: that without competition, Windows would cost even more. To summarize, for our business, [Linux is] important because it allows us to build lower-cost PC platforms, it allows people to build new, more sophisticated embedded applications easier, and it allows us, without any software costs, to add new features that we think are important to the world. Our next processor -- I haven't ever told anyone, so I won't say what it is -- but our next processor has even more things in it that I think will be just as quickly adopted by the open source software world, and provide even more value. It's always bothered me that hardware can do so many things relatively easily and fast that aren't done today because there's no software to support it. We just decided to try to break the mold. We were going to do hardware that, literally, had no software support at the start. And now the software is there, in several variations, and people are starting to use it. I actually think that's only going to happen in the open source world. Q20: We'd like a few words from you about your security strategy, how you've been putting security in the chips, and so on. A20: Securing one's information and data is sort of fundamental to the human need -- it's certainly fundamental to business needs. With the current world, in which everyone's attached to the Internet -- with most peoples' machines having back-door holes in them, whether they know it or not -- and with all the wireless stuff going on, people's data, whether they know it or not, is relatively insecure. The people who know that are using secure operating systems, and they're encrypting their data. Encrypting of data's been around for a long time. We believe, though, that this should be a pervasive thing that should appear on all platforms, and should be built into all things. It turns out, though, that security features are all computationally intensive. That's what they do. They take the bits and grind them up using computations, in a way that makes it hard to un-grind them. So, we said, they're a perfect candidate for hardware. They're well-defined, they're not very big, they run much faster in hardware than in software -- 10 to 30 times, in the examples we use. And, they are so fundamental, that we should add the basic primitives to our processor. How did we know what to add? We added government standards. The U.S. government has done extensive work on standardizing the encryption protocols, secure digital signature protocols, secure hash protocols. We used the most modern of government standards, built the basic functions into our chip, and did it in such a way that made it very easy for software to use. Every time you send an email, every time you send a file to someone, that data should be encrypted. It's going out on the Internet, where anyone with half a brain can steal it. Second, if you really care about not letting people have access to certain data that's on your hard drive, it ought to be encrypted, because half the PCs these days have some, I don't know what the right word is, some "spy" built into it, through a virus or worm, that can steal data and pass it back. You'll never get that prevented through operating system upgrades. I do have some background, sort of, in security: it's always been my hobby. The fundamental assumption you should make is, assume that someone else can look at what you're looking at. In other words, don't try to protect your data by assuming that no one's going to come steal your hard drive, or no one can snoop through a backdoor in Windows. You protect your data by saying, "Even if they can see the data, what good is it going to do them?" We think this is going to be a pervasive need. The common if-you-will person's awareness of worms and viruses has gone up a million percent in the last few years, based on all the problems. The awareness of the need to protect data is going to go up substantially, too. We're doing more than encryption, though. There's another need, which is coming, related to message authentication and digital signatures. We're encrypting all the time. Every time you buy something over the Web, your order is encrypted. So there is encryption going on already. But the next major thing -- and this is already done in the high-security circles of banks -- is message authentication through digital signatures. How do you know someone didn't intercept that order, and they're sending in their own orders using your credit card number? How do you know, when you get a message from somebody, that they didn't substitute the word "yes" for "no," things like that? These are very important in the world of security. They're well understood in the government world, or the high-security world, and there are government standards on how you do these things. They are called secure hashes, and things like that. So we've added features for those. To summarize, the things we've added fall into three categories. One is a good hardware random number generator. That was actually the first thing, and that's actually one of the hardest things to do. It sounds trivial, but it's actually very hard to generate randomness, with any kind of process. It needs to be done in hardware. Software cannot generate random numbers that pass the tests that the government and others define. The second thing we did is a significant speedup in the two basic forms of encryption. One's called symmetric key encryption, and the government standard is AES, which is a follow-on to a thing called DES. So we do AES encryption very fast. The other form of encryption that's widely used is public key encryption, and the most common form there is a thing called RSA. That's what's being used, you know, for secure Web transactions. We think we're the only people who've done this: we added instructions in our new processor that's coming to speed up RSA. The third thing we've done is added what's called a secure hash algorithm. Again, it's a government standard. Its used for message authentication and digital signatures. It deals with the issue, if you send me an email, how do I know that the email I got was the one you sent? That it wasn't intercepted and changed? And more fundamentally, how do I know that it actually came from you? Anyone can put their name, in our world, on that email. Things like that. So there's got to be some code in that email that I can look at, and know that only you could have sent it. I can explain this more if you want to know. Q21: That's probably sufficient. We're looking more for the strategy. A21: Okay, let me back up. Our strategy was, assuming that we believe that security is fundamental and ought to be there, to define the primitive operations that need to be done as the building blocks of security. Those we put into hardware. We're not trying to impose a particular, I don't know, protocol or use. We're just making available the tools. We're doing it for free. The tools are in the processors, at no extra price. They don't require any OS support, no kernel support, no device drivers. It's getting into the kernels of BSD and Linux, but applications can directly use the features [even without kernel support], and the hardware takes care of the multitasking aspects. The two guys who worked on it with me are both heavy Linux users. They wrote to friends in the security and Linux communities. Very little marketing money was spent. When the security press release went out, at the Embedded Processor Forum, it had three key quotes, real quotes. Not quotes written by PR managers. My quote was written by a PR manager, but the others weren't. All three were big names in the security world, and all were saying good stuff. Q22: Beyond security, are other cool features planned? A22: The next chip has some tools to do computationally intensive things where hardware provides a big advantage. But I don't want to say yet what they are. Q23: Would they be useful for multimedia? Yes, for multimedia, and for other things. Q24: Like a DSP? A24: Kind of like that. Q25: Okay, we won't push. We appreciate you taking the time to speak with us. We can't imagine getting the president of AMD or Intel to do this. A25: Our whole strategy is so close to the, if you will, the fate of Linux. We identify so much with it. We're low-cost, aimed at the common person, we're aimed at new applications, and we don't have any massive PR or marketing or sales budget, so. Actually, I have a special softness in my heart for Linux. I think without Linux our business would be much less than what it is today. It's just very important to us, so, I wanted to give you guys the time. About the Interviewee Glenn Henry is the founder and president of Centaur Technology. Throughout his career, he has played an integral role in the development of the U.S. computer industry. Prior to founding Centaur in April 1995, Henry served as a consultant to MIPS Technology (SGI) for one year. From 1988 to 1994 he was Chief Technology Officer and Senior Vice President of the Product Group at Dell Computer Corporation. As Senior VP, he was responsible for all product development activities and, at various times, also responsible for product marketing, manufacturing, procurement, information systems, and technical support. Before his tenure at Dell, Henry served 21 years with IBM. He was the instigator, lead architect, and development manager responsible for the IBM System/32, System38 (forerunner of AS/400), and RT/PC (forerunner of Power systems). In 1985, he was appointed an IBM Fellow. -- Eugen* Leitl <a href="http://leitl.org">leitl</a> ______________________________________________________________ ICBM: 48.07078, 11.61144 http://www.leitl.org 8B29F6BE: 099D 78BA 2FD3 B014 B08A 7779 75B0 2443 8B29 F6BE http://moleculardevices.org http://nanomachines.net [demime 1.01d removed an attachment of type application/pgp-signature]